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Statistical Relational Learning
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Structured and relational data

In real-world problems, machine learning has very often to deal
with highly structured and relational data.
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Why do we need SRL ?

Statistical learning assumes examples to be independent and
identically distributed (i.i.d.)

Traditional logic approaches (ILP) can handle relations but
assume no noise or uncertainty in data

Many application domains need both uncertainly handling and
knowledge representation !
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Why do we need SRL ?

General observations

Improve perfomance on certain tasks

Improve interpretability of results

Maybe computationally more expensive

Learning could be much harder
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Structured and relational data: tasks

Collective classification
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Structured and relational data: tasks

Node classification

User profiles in a social network

Gene functions in a regulatory network

Congestions in a transportation network

Service requests in p2p networks

Fault diagnosis in sensor networks

Hypertext categorization on the Internet

. . .
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Structured and relational data: tasks

Node classification

use attributes of each node

use attributes of neighbor nodes

use features coming from the graph structure

use labels of other nodes

In social networks, two important phenomena can happen

homophily → a link between individuals is correlated with
those individuals being similar in nature

co-citation regularity → similar individuals tend to be
related/connected to the same things
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Structured and relational data: tasks

Node classification

Iterative approaches:

1 label a few nodes, given existing labels and features

2 train using the newly labeled examples

3 repeat the procedure until all nodes are labeled

Random walk approaches:

the probability that a node v receives label y is that of a
random walk starting at v will end at a node labeled with y

could be solved by label propagation or graph
regularization
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Structured and relational data: tasks

Edge classification

Classify properties of edges

viral marketing: influence of a user on his neighbors

argumentation mining: support/attack relationships

social networks: types of interatcions between users

In social networks there are two main theories:

balance → the friend of my friend is my friend, the enemy of
my friend is my enemy

status → positive edge between vi and vj means vj has a
higher status than vi
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Structured and relational data: tasks

Link prediction (or Link mining)
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Structured and relational data: tasks

Link prediction

Friendship in a social network

Recommendation in a customer-product network

Interaction in a biological network

Link congestion in a transportation network

Link congestion in a p2p network

. . .
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Structured and relational data: tasks

Networks are very often dynamic:

nodes may change over time

links may change over time

node properties may change over time

edge properties may change over time

Shall we predict the evolution of the network ?
E.g., given current links, which ones are likely to change ?
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Structured and relational data: tasks

Entity resolution

[Image from Entity Resolution Tutorial, VLDB2012, Lise Getoor]
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Structured and relational data: tasks

Entity resolution

Same paper in a bibliography corpus

IP aliases over the Internet

User matching across social networks

Name disambiguation in a collection of documents

Multiple records across databases
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Structured and relational data: tasks

Group detection
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Structured and relational data: tasks

Group detection

Communities in mobile networks

Terrorist cells in social networks

Correlation in international flight databases

Document ranking and hypertext connectivity

Information retrieval and document clustering

. . .
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Structured and relational data: tasks

Frequent subgraph discovery
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Structured and relational data: tasks

Structure learning
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Structured and relational data: tasks

Predicate invention

[Image from Khan et al., ILP 1998]
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Statistical Relational Learning (SRL)

The “relational revolution” of SRL stays at the intersection of
Artificial Intelligence, Logic and Statistics

Logic
→ powerful and expressive formalism
→ describes a domain in terms of quantified logic formulae
→ allows to easily include background knowledge

Probabilistic graphical models
→ represent dependencies between random variables
→ naturally handle uncertainty in data
→ i.e., Bayesian Networks, Markov Random Fields

Marco Lippi Machine Learning 21 / 73



Logic

Propositional logic

each proposition is associated to a symbol

symbols have an associated truth value (true/false)

logical operators (connectives) and inference at propositional
level

Example
P = If it rains, Alice carries an umbrella
Q = It rains
R = Alice carries an umbrella

Can we infer (entail) R from P and Q ?
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Logic

First-Order Logic (FOL)

propositional logic is not enough expressive

FOL described domains with objects, properties, relations

it employs connectives as well as quantifiers

Constants: Alice, Italy, Snoopy, . . .
Variables: x, y, z, . . .
Functions: father of, . . .
Predicates: blonde, friends, . . .
Atoms: blonde(Alice), friends(x,father of(y))
Literals: blonde(Alice), ¬blonde(Alice)
Formulas: ∀ x,y,z friends(x,y) ∧ friends(y,z) => friends(x,z)
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First-Order Logic (FOL)

Inference in first-order logic is semi-decidable

Remark

Semi-decidability of logic entailment KB |= F implies that there is
an algorithm which can always tell correctly when F is entailed by
KB, but can provide either a negative answer or no answer at all in
the case that F is not entailed by KB.
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Inductive Logic Programming

A research area that started during the 70s

Logic programming (Prolog)

Key ideas:

describe the domain of interest in terms of logic facts

background knowledge is also encoded in the logic database

learn concepts (rules) directly from data

try to entail all positive examples and none of the negatives
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Inductive Logic Programming

Example
FOIL – First Order Inductive Learner

General-to-specific learner

Starts from an empty clause

Iteratively adds literals

Exploits information gain

Example:
strawberry(x)
strawberry(x) :- red(x)
strawberry(x) :- red(x), smaller than apple(x)
strawberry(x) :- red(x), smaller than apple(x), bigger than ribes(x)
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Graphical models

A graphical model is a probabilistic model where a graph encodes
the conditional dependence between random variables

The model can be either directed or undirected:

directed → Bayesian networks

undirected → Markov networks
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Bayesian networks

The network structure is a directed acyclic graph

It represents the joint probability of random variables

Node have associated local conditional probability tables

[Image from Russel & Norvig]
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Bayesian networks

Given variables X1, . . . ,Xn, the joint probability is computed as:

P(X1, . . . ,Xn) =
n∏

i=1

P(xi |pai )

where pai are the parents of node i

Use Bayes theorem to find the values of other variables
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Markov networks (or Markov random fields)

The network structure is an undirected graph

It represents the joint probability of random variables

Random variables have to satisfy Markov properties

Each clique has an associated potential function

P(X = x) =
1

Z

∏
C∈cl(G)

φC (xC )

[Image from washington.edu]
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Markov networks (or Markov random fields)

Markov properties:

1 Any two non-adjacent variables are conditionally independent
given all other variables

2 A variable is conditionally independent of all other variables
given its neighbors

3 Any two subsets of variables are conditionally independent
given a separating subset

[Image from washington.edu]
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Markov networks (or Markov random fields)

Any Markov network can be written as a log-linear model:

P(X = x) =
1

Z
exp

(∑
k

wT
k f (x{k})

)

Remark

A Markov network can represent dependencies which a Bayesian
network cannot (e.g., cyclic dependencies) and the other way
round (induced dependencies)
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Inference in graphical models

Probabilistic inference: inferring the posterior distribution of
unobserved variables, given observed ones

Exact methods (#P-complete):

variable elimination

clique tree propagation

recursive conditioning

. . .

Approximate methods:

loopy belief propagation

Markov Chain Monte Carlo

importance sampling

. . .
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Inference in graphical models

Example: Markov Chain Monte Carlo with Gibbs sampling

1 state ← random truth assigment

2 for i ← 1 to numSamples

3 for each variable x

4 sample x according to P(x |neighbors(x))

5 state ← state with new value of x

6 P(F )← fraction of states where F is true

[Slide from washington.edu]
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Statistical Relational Learning (SRL)

The SRL alphabet soup:

Stochastic Logic Programs (SLPs) [Muggleton, 1996]

Relational Bayesian Networks (RBNs) [Jaeger, 1997]

Bayesian Logic Programs (BLPs) [Kersting & De Raedt, 2001]

Probabilistic Relational Models (PRMs) [Friedman et al., 2001]

Relational Dependency Networks (RDNs) [Neville & Jensen, 2007]

Problog [De Raedt et al., 2007]

Type Extension Trees (TETs) [Jaeger & al., 2013]

Learning From Constraints (LFC) [Gori & al., 2014]

Markov Logic Networks (MLNs) [Domingos & Richardson, 2006]

. . .
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Markov Logic Networks
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Markov Logic Networks [Domingos & Richardson, 2006]

An MLN is a set of FOL formulae with attached weights

An example

1.2 Friends(x,y) ∧ WatchedMovie(x,m) => WatchedMovie(y,m)

2.3 Friends(x,y) ∧ Friends(y,z) => Friends(x,z)

0.8 LikedMovie(x,m) ∧ Friends(x,y) => LikedMovie(y,m)

. . . . . .

The higher the weight of a clause →
→ The lower the probability for a world violating that clause

What is a world or Herbrand interpretation ?
→ A truth assignment to all ground predicates
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Markov Logic Networks

Together with a (finite) set of (unique and possibly typed)
constants, an MLN defines a Markov Network which contains:

1 a binary node for each predicate grounding in the MLN, with
value 0/1 if the atom is false/true

2 an edge between two nodes appearing together in (at least)
one formula on the MLN

3 a feature for each formula grounding in the MLN, whose value
is 0/1 if the formula is false/true, and whose weight is the
weight of the formula
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Markov Logic Networks

Set of constants

people = {Alice,Bob,Carl,David}
movie = {BladeRunner,ForrestGump,PulpFiction,TheMatrix}

Friends
(Alice,Bob)

Friends
(Bob,Carl)

WatchedMovie
(Alice,TheMatrix)

WatchedMovie
(Bob,TheMatrix)
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Link with graphical models

The semantics of MLNs induces a probability distribution over all
possible worlds. We indicate with X a set of random variables
represented in the model, then we have:

P(X = x) =
exp

(∑
Fi∈F wini (x)

)
Z

being ni (x) the number of true groundings of formula i in world x .

The definition is similar to the joint probability distribution induced
by a Markov network and expressed with a log-linear model:

P(X = x) =
exp

(∑
j wj fj(x)

)
Z
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Discriminative setting

Typically, some atoms are always observed (evidence X),
while others are unknown at prediction time (query Y)

EVIDENCE
Friends(Alice,Bob)

Friends(Bob,Carl)

WatchedMovie(Alice,PulpFiction)

WatchedMovie(David,BladeRunner)

. . .

QUERY
LikedMovie(Alice,BladeRunner) ?
LikedMovie(Alice,PulpFiction) ?
LikedMovie(Bob,BladeRunner) ?
LikedMovie(Bob,TheMatrix) ?

. . .

P(Y = y |X = x) =
exp

(∑
Fi∈Fy

wini (x , y)
)

Zx
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Discriminative setting

Three main MLN tasks:

1 Inference

2 Parameter Learning

3 Structure Learning

Popularity of Markov Logic:
→ Alchemy, an open-source software
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Inference

In the discriminative setting, inference corresponds to finding the
most likely interpretation (MAP – Maximum A Posteriori)

y∗ = argmax
y

P(Y = y |X = x)

#P-complete problem → approximate algorithms

MaxWalkSAT [Kautz et al., 1996], stochastic local search
→ corresponds to minimizing the sum of weights of

unsatisfied clauses

Note: there are also algorithms for estimating the probability of
query atoms to be true
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Inference: MaxWalkSAT [Kautz et al., 1996]

Main ideas:

start with a random truth value assignment

flip the atom giving the highest improvement (greedy)

can get stuck in local minima

sometimes perform a random flip

stochastic algorithm (many runs often needed)

need to build the whole ground network !
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Inference: MaxWalkSAT [Kautz et al., 1996]

Main drawback
Memory explosion: with N constants and c as highest clause arity,
the ground network requires O(nc) memory

One possible solution
Exploit sparseness by lazily grounding clauses (LazySAT) . . . But

still not enough !
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Lifted inference

Key ideas:

exploit symmetries

reason at first-order level

reason about groups of objects

scalable inference

Marco Lippi Machine Learning 46 / 73



Inference

In many cases, one would prefer to have a probability distribution
over query atoms, rather than just inferring the most likely state.

Several attempts:

Markov Chain Monte Carlo over the Markov Network induced
by the Markov Logic Networks, and the given set of constants

Markov Chain SAT (MC-SAT), combining Markov Chain
Monte Carlo and WalkSAT
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Parameter Learning

Maximize the conditional likelihood of query predicates given
evidence ones: requires inference as subroutine !

∂

∂wi
logP(Y = y |X = x) = ni − Ew [ni ]

Several different algorithms can be adopted to address the task:

Voted Perceptron

Contrastive Divergence

Diagonal Newton

(Preconditioned) Scaled Conjugate Gradient
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Structure Learning

Directly infer the rules from the data !

A classic task for Inductive Logic Programming (ILP), which for
MLNs can be addressed together with parameter learning

Modified ILP algorithms (e.g., Aleph)

Bottom-Up Clause Learning

Iterated Local Search

Structural Motifs

Still an open problem !
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Structure Learning

Modified ILP algorithms

Two-step approach:

1 learn a set of clauses with FOIL

2 just learn the weights with Alchemy

It works quite well in practice, but it still relies on a
non-probabilistic ILP framework !

Jointly learning clauses and weights should be better !
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Structure Learning

Bottom-Up Clause Learning, Iterated Local Search, Structural
Motifs

Start with unit clauses (single literal)

Add/Remove literal

Measure evaluation function (e.g. pseudo-likelihood)

Learn weights by counting groundings
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Applications

Hypertext Classification

Topic(page,topic)

HasWord(page,word)

Link(page,page)

HasWord(p,+w) => Topic(p,+t)

Topic(p,t) ∧ Link(p,q) => Topic(q,t)
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Applications

Information Retrieval

InQuery(word)

HasWord(page,word)

Link(page,page)

Relevant(page)

HasWord(p,+w) ∧ InQuery(w) => Relevant(p)

Relevant(p) ∧ Link(p,q) => Relevant(q)
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Applications

Entity Resolution

HasToken(token,field,record)

SameField(field,record,record)

SameRecord(record,record)

HasToken(+t,+f,r1) ∧ HasToken(+t,+f,r2) =>

SameField(f,r,s)

SameField(f,r1,r2) => SameRecord(r1,r2)

SameRecord(r1,r2) ∧ SameRecord(r2,r3) =>

SameRecord(r1,r3)
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Applications: a chemical OCR

From images to structured data. . .

IsOxygen(A1)

IsCarbon(A2)

IsCarbon(A3)

DoubleBond(A1,A2)

SingleBond(A1,A3)

. . .

http://mlocsr.dinfo.unifi.it
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System Architecture

Two-stage architecture

1 Image Processing level

2 Markov Logic level

Main idea
→ extract low-level features
→ translate them into Markov logic rules
→ infer the final structure
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Original input image
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Output of Image Processing stage
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Output of Markov Logic stage
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Applications: opponent modeling

Opponent modeling in games

Games have always been a great opportunity for AI

incomplete information

uncertainty in data

a lot of background knowledge

A nice domain also for SRL
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Applications: opponent modeling

Opponent modeling in games

Understand an adversarial’s move given her past behavior:

describe the domain in terms of logic predicates

represent past played matches

try to learn strategies through probabilistic rules
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Handling continuous features

In many cases it is necessary to use continuous features

classic machine learning classifiers naturally employ them

they are often crucial in order to build accurate predictors

→ How to integrate them with first-order logic ?
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Markov logic networks with grounding-specific weights

Solution: grounding-specific weights [Lippi & Frasconi, 2009]

Instead of having a weight for a first-order logic rule, we allow
different weights for different ground clauses.

Introducing vector of features

Node(N12,$Features N12) ∧ Node(N23,$Features N23)

⇒ Link(N12,N23)

Node(N18,$Features N18) ∧ Node(N25,$Features N25)

⇒ Link(N18,N25)

The two rules will have different weights, which will be computed
using as feature vectors the “constants” with the dollar symbol ($).
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Markov logic networks with grounding-specific weights

Re-parametrize the MLN by computing each weight wi as a
function of variables of each specific grounding cij :

Standard MLN

P(Y = y |X = x) =
exp
(∑

Fi∈Fy
wini (x ,y)

)
Zx

MLNs with grounding-specific weights

P(Y = y |X = x) =
exp
(∑

Fi∈Fy

∑
j wi (cij ,θi )nij (x ,y)

)
Zx

Instead of having a weight for a first-order logic rule, we allow
different weights for different ground clauses.
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Markov logic networks with grounding-specific weights

The weights wi (cij , θi ) can be computed in several ways

using neural networks, by taking as input an encoding of the
grounding cij (in principle any feature can be used !)

Inference algorithms do not change.

Learning algorithm can implement gradient descent:

∂P(y |x)

∂θk
=
∂P(y |x)

∂wi

∂wi

∂θk

where the first term is computed by MLN inference
and the second one is computed by backpropagation.
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Other frameworks
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Stochastic Logic Programs (SLPs) [Muggleton, 1996]

Generalization of:

Hidden Markov Models

Probablistic Context-Free Grammars

Based on the concept of stochastic clause:

λ A← B1, . . . ,Bn

The weight λ represents the probability that a clause is used in a
derivation, provided that head is true

If some rules have no λ, the SLP is called impure, and it can allow
both stochastic and deterministic derivations
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Relational Bayesian Networks (RBNs) [Jaeger, 1997]

Directed acyclic graph:

each node corresponds to a relation r in the domain

attached probability formula Fr (x1, . . . , xn) over the symbols
in the parent nodes of r

Semantics
For every relation r , the RBN associates a probability distribution
over interpretations of r , which is defined on the interpretations of
pa(r) within the underlying Bayesian network
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Probabilistic Relational Models (PRMs) [Friedman et al., 2001]

Probability distribution over a relational database:

description of the relational schema of the domain

probabilistic dependencies among its objects

Given a set of ground objects, a PRM specifies a joint probability
distribution over all instantiations of a relational schema.

Probabilities on unseen variables, given partial instantiations

[Image from mit.edu]
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Problog [De Raedt et al., 2007]

Probabilistic extension of Prolog

logic clauses with associated probability

probability of each clause is independent of the others

distribution over logic programs

P(L|T ) =
∏
cj∈L

pj
∏
cj /∈L

(1− pj)

Initially designed to answer probabilistic queries
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Type Extension Trees (TETs) [Jaeger & al., 2013]

Representation formalism for complex combinatorial features in
relational domains.

A TET is a tree which represents a feature or a set of features:

nodes contain literals, or conjunctions of literals

edges are labeled with sets of variables (possibly empty)

TETs are syntactically closely related to predicate logic formulae,
where subtrees correspond to sub-formulae.

TETs have been used for feature discovery and for classification
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Learning From Constraints (LFC) [Gori & al., 2014]

Combining kernel machines and first-order logic

Translate logic clauses (background knowledge) into a semantic
regularization term, in addition to classic regularization

min
f

N∑
i=1

V (f ) + R(f ) + S(f )

S(f) can encode generic constraints

logic rules transformed through p-norms
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Conclusions and future work

SRL aims at combining logic and statistical learning
→ crucial when dealing with relational data

The problem is far for being solved:

scalability

expressivity

more efficient approximation algorithms

extend to many other applications and contexts !

. . . How about incorporating deep learning ?
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