
PhD in Computer Science and Engineering
Bologna, April 2016

Machine Learning

Marco Lippi

marco.lippi3@unibo.it

Marco Lippi Machine Learning 1 / 64

Kernel machines

Marco Lippi Machine Learning 2 / 64

History

First algorithm on Support Vector Machines in 1963
(Vapnik & Chervonenkis)

Extension to non-linear classifiers (Kernels) in 1992
(Boser, Guyon & Vapnik)

Current formalization in 1995
(Cortes & Vapnik)

Extremely popular at the end of the 90s. . .
. . . Now we have deep learning, yet. . .

Marco Lippi Machine Learning 3 / 64

Maximum separating hyperplane

A common binary classification problem

[Figure from Wikipedia]

Which hypothesis is to be preferred ?

Marco Lippi Machine Learning 4 / 64

Maximum separating hyperplane

We aim at finding the hyperplane with maximum margin

[Figure from Wikipedia]

Marco Lippi Machine Learning 5 / 64

Maximum separating hyperplane

The solution depends only on a (small ?) subset of the examples

[Figure from Wikipedia]

Marco Lippi Machine Learning 6 / 64

Hard margin SVM

Learning problem:

min
w

1

2
‖w‖2

s.t. yi (w
T xi + b) ≥ 1 ∀(xi , yi) ∈ D

The constraints guarantee correct classification of points in D

It is a quadratic optimization problem

Marco Lippi Machine Learning 7 / 64

Hard margin SVM

To include constraints we employ the Lagrangian:

L(w , b, α) =
1

2
‖w‖2 −

N∑
i=1

αi (yi (w
T xi + b)− 1)

The solution is to minimize wrt w and maximize wrt αi

Marco Lippi Machine Learning 8 / 64

Hard margin SVM

Vanishing derivatives wrt primal variables w , b:

∂

∂b
L(w , b, α) = 0 ⇒

N∑
i=1

αiyi = 0

∂

∂w
L(w , b, α) = 0 ⇒ w =

N∑
i=1

αiyixi = 0

Marco Lippi Machine Learning 9 / 64

Hard margin SVM

By substituting back in the Lagrangian we get the dual problem:

L(α) =
N∑
i=1

αi −
1

2

∑
i ,j

αiαjyiyjx
T
i xj

which is to be maximized wrt dual variables α

Marco Lippi Machine Learning 10 / 64

Hard margin SVM

Dual formulation:

max
α∈<N

N∑
i=1

αi −
1

2

∑
i ,j

αiαjyiyjx
T
i xj

s.t. αi ≥ 0 ∀i = 1, . . . ,m

N∑
i=1

αiyi = 0

Marco Lippi Machine Learning 11 / 64

Hard margin SVM

Primal vs. dual problem:

primal problem has d + 1 variables (# features + 1)

dual problem has N variables (# examples)

we can solve either

the constraints of the dual are easier (box constraints)

Marco Lippi Machine Learning 12 / 64

Hard margin SVM

We know (from the derivatives) that w =
∑N

i=1 αiyixi

The decision function then becomes:

f (z) = wT z + b =
N∑
i=1

αiyix
T
i z + b

It is a linear combination of dot products with training examples !

Marco Lippi Machine Learning 13 / 64

Karush-Kuhn-Tacker conditions

The solution of the optimization problem is such that:

αi (yi (w
T xi + b)− 1) = 0

either a point has associated αi = 0

or it stays on the boundary: yi (w
T xi + b) = 1

Marco Lippi Machine Learning 14 / 64

Maximum separating hyperplane

Such points are named support vectors !
The other points do not contribute to the solution !

[Figure from Wikipedia]

Marco Lippi Machine Learning 15 / 64

Soft margin SVM

In most cases, data will not be perfectly separable

[Figure from Ruiz-Gonzalez et al., 2014]

Marco Lippi Machine Learning 16 / 64

Soft margin SVM

Learning problem:

min
w

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. yi (w
T x + b) ≥ 1− ξi ∀(xi , yi) ∈ D

ξi ≥ 0 ∀i = 1, . . . ,N

Marco Lippi Machine Learning 17 / 64

Soft margin SVM

min
w

1

2
‖w‖2 + C

N∑
i=1

`(yi , f (xi))

The second term is about error minimization (loss function)
The first term is about regularization (smooth solutions)

`(yi , f (xi)) = |1− yi f (xi)|+

Marco Lippi Machine Learning 18 / 64

Hinge loss

[Figure by A. Passerini]

`(yi , f (xi)) = |1− yi f (xi)|+

|z |+ =

{
z if z > 0

0 otherwise

The examples not violating the margin constraint have zero loss

Marco Lippi Machine Learning 19 / 64

Soft margin SVM

Again we can exploit the Lagrangian approach:

L(w , b, α, β) =
1

2
−

N∑
i=1

αi (yi (w
T xi + b)− 1)−

N∑
i=1

βiξi

from which we obtain the following dual formulation:

max
α∈<N

N∑
i=1

αi −
1

2

∑
i ,j

αiαjyiyjx
T
i xj

s.t. 0 ≤ αi ≤ C ∀i = 1, . . . ,m

N∑
i=1

αiyi = 0

Marco Lippi Machine Learning 20 / 64

Soft margin SVM

This time the support vectors are those examples for which:

yi (w
T xi + b) ≤ 1

if αi < C we have ξi = 0 (unbound SV)

if αi = C we have ξi > 0 (bound SV) → margin errors

Marco Lippi Machine Learning 21 / 64

Soft Margin SVM

Primal vs. dual problem at prediction time:

the solution of the dual problem depends on the number of
support vectors → it could be quite costly !

the solution of the primal problem is independent of the
number of support vectors

Marco Lippi Machine Learning 22 / 64

Regularization

The effect of the C parameter is crucial:

large C → avoid mis-classifying training examples →
→ narrow margin → overfitting (?)

small C → penalize non-smooth functions →
→ larger error on training set → generalization (?)

Marco Lippi Machine Learning 23 / 64

Regularization

[Figure from Stack Overflow]

Marco Lippi Machine Learning 24 / 64

Multi-class Support Vector Machines

We have considered a binary classification problem.
What if we have to deal with M classes ?

Typically reduced to many binary classification problems:

one-vs-all: build M binary classifiers → in turn each class is
the positive class and all the other classes are the negative
class → the winner is the class with the largest score

one-vs-one: build M(M − 1)/2 binary classifiers for each pair
of classes → count the number of wins

Marco Lippi Machine Learning 25 / 64

Support Vector Regression

Also regression problems can be easily defined in the SVM setting

Define an ε-tube to tolerate errors up to a certain value ε

[Figure from A. Passerini]

Marco Lippi Machine Learning 26 / 64

Support Vector Regression

The choice of ε clearly induces different solutions

[Figure from A. Passerini]

Marco Lippi Machine Learning 27 / 64

Support Vector Regression

We define an ε-insensitive loss, that penalizes only errors ¿ ε

[Figure from A. Passerini]

`(f (x), y) = |y − f (x)|ε =

{
0 if |y − f (x)| ≤ ε
|y − f (x)| − ε otherwise

Marco Lippi Machine Learning 28 / 64

Support Vector Regression

Learning problem:

min
w ,ξ,ξ∗

1

2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i)

s.t. wT xi + b − yi ≤ ε+ ξi

yi − (wT xi + b) ≤ ε+ ξ∗i
ξi , ξ∗i ≥ 0

Two constraints for upper and lower sides of the ε-tube

Marco Lippi Machine Learning 29 / 64

Support Vector Ranking

In some applications, one would like just to have a ranking
between examples: information retrieval, recommendation, . . .

Given pairwise comparisons xi ≺ xj in the training set

Constrain function f to score xi higher than xj

It can be formalized as a classification task !

Marco Lippi Machine Learning 30 / 64

Support Vector Ranking

Learning problem:

min
w

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. wTΦ(xi)− wTΦ(xj) ≥ 1− εij if xi ≺ xj

ξij ≥ 0 ∀i , j = 1, . . . ,N

wTΦ(xi)− wTΦ(xj) can be written as wTΦ(xi − xj)

The decision function becomes: f (x) = wTΦ(x)

Marco Lippi Machine Learning 31 / 64

One-class SVM

In some cases, one may be given only positive examples, or one
would like to predict deviation from a certain model class

→ novelty/anomaly detection

It is possible to learn an SVM from positive examples only

Key idea:

find the smallest hypersphere that encloses the examples

penalty for leaving outliers out of the hypersphere

Marco Lippi Machine Learning 32 / 64

One-class SVM

Optimization problem:

min
R,O,ξ

R2 + C
N∑
i=1

ξi

s.t. ‖Φ(xi)− O‖2 ≤ R2 + ξi ∀i = 1, . . . ,N

ξi ≥ 0, i = 1, . . . ,N

The hypersphere has center in O and radius R (to be minimized)

Marco Lippi Machine Learning 33 / 64

One-class SVM

[Figure from http://scikit-learn.org]

Marco Lippi Machine Learning 34 / 64

Soft margin SVM

Still not enough. . .

We can solve linearly separable problems (hard case). . .
. . . Possibly with outliers (soft case)

Since the linear classifier is very efficient. . .

map the examples into a higher dimensional space

perform linear classification in that space

Marco Lippi Machine Learning 35 / 64

Feature spaces

Find a mapping Φ : X → H

[Figure from Stack Overflow]

A non-linear separation in X becomes linear in H

Marco Lippi Machine Learning 36 / 64

Feature spaces

Now replace x with Φ(x) in the SVM algorithm:

f (x) = wTΦ(x) + b

Example 1:
Φ(x1, x2) = (x2

1 , x1x2, x
2
2)

Example 2:
Φ(x1, x2) = (x1, x2, x1x2)
Consider this case for the XOR function. . .

Marco Lippi Machine Learning 37 / 64

Kernel trick

Using function Φ to map examples to high-dimensional spaces:

could be computationally much expensive

also remember that Φ appears only in dot products !

Kernel trick

Replace dot product with an equivalent kernel function

k(x , z) = Φ(x)TΦ(z)

Marco Lippi Machine Learning 38 / 64

Kernel properties

The SVM problem formulation (and solution) remain the same !

What are valid kernel functions ?

A similarity function k : X × X → <
A generalization of a dot product in arbitrary spaces

Marco Lippi Machine Learning 39 / 64

Kernel properties

The Gram matrix is defined as the matrix of pairwise kernels
between examples:

Kij = Kji = k(xi , xj) = k(xj , xi)

A kernel is valid if one of the following holds:

matrix K is positive definite

all eigenvalues are non-negative

there exists a matrix A such that K = ATA

Marco Lippi Machine Learning 40 / 64

Kernel properties

Positive definiteness is necessary and sufficient condition for a
kernel to correspond to a dot product of some feature map Φ

How to verify kernel validity:

prove positive definiteness

find out explicit feature map

combine kernels

Marco Lippi Machine Learning 41 / 64

Kernel properties

Combine simple kernels to obtain more complex ones

Kernel Sum

(k1 + k2)(x , z) = k1(x , z) + k2(x , z) =
= Φ1(x)TΦ1(x) + Φ2(x)TΦ2(x)

The two kernels can be defined on completely different spaces

Marco Lippi Machine Learning 42 / 64

Kernel properties

Combine simple kernels to obtain more complex ones

Kernel Product

(k1 · k2)(x , z) = k1(x , z) · k2(x , z) =
=

∑n
i=1 Φ1i (x)Φ1i (z)

∑m
i=1 Φ2i (x)Φ2i (z)

It corresponds to the Cartesian product of the features

Marco Lippi Machine Learning 43 / 64

Kernel examples

Linear kernel
k(x , z) = xT z

Polynomial kernel
k(x , z) = (xT z + c)d

Gaussian (RBF) kernel

k(x , z) = exp(−‖x−z‖
2

2σ2)

Marco Lippi Machine Learning 44 / 64

Regularization with RBF kernel

[Figure from A. Smola]

Marco Lippi Machine Learning 45 / 64

Regularization with RBF kernel

[Figure from A. Smola]

Marco Lippi Machine Learning 46 / 64

Regularization with RBF kernel

[Figure from A. Smola]

Marco Lippi Machine Learning 47 / 64

Kernel learning

The linear combination of kernels is still a kernel

k(x , z) =
P∑

p=1

wpkp(x , z)

The weights wp of each kernel can be jointly learned

Marco Lippi Machine Learning 48 / 64

Structured data

In many real-world applications one has to deal with structured
data, e.g., in the form of trees, graphs, sequences, strings, . . .

Convolution kernel

Given the decomposition of a structure into its sub-parts:

R(X) = (x1, . . . , xD)

the convolution kernel is defined as the convolution of its parts:

k(x , z) =
∑

r∈R(x)

∑
s∈R(z)

D∏
d=1

kd(xd , zd)

computed over all possible decompositions of x and z

Marco Lippi Machine Learning 49 / 64

Kernels on sequences

Sequences are found in many application domains:

bioinformatics – DNA, RNA, proteins

time series

text documents (word sequences)

Marco Lippi Machine Learning 50 / 64

Kernels on sequences

Spectrum kernel

The k-spectrum of a sequence is the set of all k-length
subsequences (named k-mers) that it contains

ACGTGGCA → ACG, CGT, GTG, TGG, GGC, GCA (if k = 3)

One feature for each existing k-mer

Feature space dimension = |Σ|k

Count k-mer occurrences

Dot product in this new feature space

Marco Lippi Machine Learning 51 / 64

Kernels on sequences

Spectrum kernel

ks(x , z) = Φ(x)TΦ(z)

[Figure by A. Passerini]

Marco Lippi Machine Learning 52 / 64

Tree Kernels

Measuring similarity between two trees

Marco Lippi Machine Learning 53 / 64

Tree Kernels

Evaulating common substructures or fragments

Different definitions of fragments → different kernels

Marco Lippi Machine Learning 54 / 64

Tree Kernels

Intuition:

each possible fragment associated to a different feature

feature space can become really high-dimensional

K (Tx ,Tz) =
∑

nx∈NTx

∑
nz∈NTz

∆(nx , nz)

NTx and NTz are the set of nodes of the two trees

∆(·, ·) measures the score between two nodes

Marco Lippi Machine Learning 55 / 64

Tree Kernels

Rich feature space

Tree kernels can automatically generate a very rich feature set,
capable of capturing structured representations without the need
of a costly feature engineering process

Software: Alessandro Moschitti, KeLP

Marco Lippi Machine Learning 56 / 64

Graph Kernels

Measure similarity between graphs

[Figure from http://www.bic.kyoto-u.ac.jp/]

Marco Lippi Machine Learning 57 / 64

Graph Kernels

Key ideas:

one feature for each possible subgraph

possibly limiting the size of considered subgraphs

count number of subgraph occurrences

[Figure by A. Passerini]

Marco Lippi Machine Learning 58 / 64

Structured output

The SVM framework has been recenly [Tsochantaridis et al., 2005]
extended towards structured output predictions, where the
output space is a structure

Hidden Markov Models

Probabilistic Context Free Grammars

Sequence Alignment

Information Retrieval

Activity Recognition

Marco Lippi Machine Learning 59 / 64

LIBSVM – A Library for Support Vector Machines

Download:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Alternatively:
http://svmlight.joachims.org/

Marco Lippi Machine Learning 60 / 64

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org/

Data format

Plain text file

First column → prediction target

Other columns → sparse vector describing the features

An example:

1 12:-0.87 23:0.11 25:0.05 51:-0.45

2 10:-0.18 23:0.01 77:0.98

2 21:0.13 40:0.58 71:0.91

. . .

Pay attention: feature indices must be in increasing order.

Marco Lippi Machine Learning 61 / 64

Training

svm-train [options] training_set_file [model_file]

Choose the type of SVM

-s svm_type : set type of SVM (default 0)

0 -- C-SVC

1 -- nu-SVC

2 -- one-class SVM

3 -- epsilon-SVR

4 -- nu-SVR

Marco Lippi Machine Learning 62 / 64

Training

svm-train [options] training_set_file [model_file]

Choose the type of kernel

-t kernel_type : set type of kernel function (default 2)

0 -- linear: u’*v

1 -- polynomial: (g*u’*v + coef0)^d

2 -- radial basis function: exp(-g*|u-v|^2)

3 -- sigmoid: tanh(g*u’*v + coef0)

4 -- precomputed kernel

Marco Lippi Machine Learning 63 / 64

Training

svm-train [options] training_set_file [model_file]

Other options

-d degree : degree in kernel function (def. 3)

-g gamma : gamma in kernel function (def. 1/num_features)

-r coef0 : coef0 in kernel function (def. 0)

-c cost : parameter C of C-SVC, epsilon-SVR, and nu-SVR (def. 1)

-p epsilon : epsilon in loss function of epsilon-SVR (def. 0.1)

-e epsilon : tolerance of termination criterion (def. 0.001)

-b probability_estimates : whether to train a SVC or SVR model

for probability estimates, 0 or 1 (def. 0)

-wi weight : set the parameter C of class i

to weight*C, for C-SVC (def. 1)

-v n: n-fold cross validation mode

Marco Lippi Machine Learning 64 / 64

