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Kernel machines




o First algorithm on Support Vector Machines in 1963
(Vapnik & Chervonenkis)

e Extension to non-linear classifiers (Kernels) in 1992
(Boser, Guyon & Vapnik)

@ Current formalization in 1995
(Cortes & Vapnik)

o Extremely popular at the end of the 90s. ..
... Now we have deep learning, yet...
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Maximum separating hyperplane

A common binary classification problem
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[Figure from Wikipedia]
Which hypothesis is to be preferred ?
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Maximum separating hyperplane

We aim at finding the hyperplane with maximum margin
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[Figure from Wikipedia]
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Maximum separating hyperplane

The solution depends only on a (small ?) subset of the examples
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[Figure from Wikipedia)
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Hard margin SVM

Learning problem:

1
min *HWH2
w 2
sit. yi(w'xi+b)>1 Y(x,y)eD

The constraints guarantee correct classification of points in D

It is a quadratic optimization problem ©
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Hard margin SVM

To include constraints we employ the Lagrangian:

N
1
L(w, b,a) = S[wl® = Y ai(yi(w’xi +b) —1)
i=1

The solution is to minimize wrt w and maximize wrt «;
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Hard margin SVM

Vanishing derivatives wrt primal variables w, b:

N
3}
%L(W, b,a)=0 = ga;yi =0

w

N
aiL(w, b,a)=0 = w= ;aiyixi =0
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Hard margin SVM

By substituting back in the Lagrangian we get the dual problem:

N

1
L(a) = Za,- ~5 Zoz,-ozjy,-)gx,-TXj

i=1 ij

which is to be maximized wrt dual variables o
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Hard margin SVM

Dual formulation:

i
s.t a; >0 Vi=1,...,m
N
> aiyi=0
i=1
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Hard margin SVM

Primal vs. dual problem:
@ primal problem has d + 1 variables (# features + 1)
@ dual problem has N variables (# examples)
@ we can solve either

@ the constraints of the dual are easier (box constraints)
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Hard margin SVM

We know (from the derivatives) that w = Z,N:l Qi YiXi

The decision function then becomes:

N
f(z)=w'z+b= Za;y;x,-Tz +b
i=1

It is a linear combination of dot products with training examples !
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Karush-Kuhn-Tacker conditions

The solution of the optimization problem is such that:

ai(yilwTxi +b)—1)=0

@ either a point has associated o; = 0

@ or it stays on the boundary: y;(w'x; +b) =1
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Maximum separating hyperplane

Such points are named support vectors !
The other points do not contribute to the solution !

[Figure from Wikipedia]
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Soft margin SVM

In most cases, data will not be perfectly separable
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[Figure from Ruiz-Gonzalez et al., 2014]
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Soft margin SVM

Learning problem:

N
1 5
min EHWH + C;&
=

st yiw'x+b)>1-&  V(x,y) €D
5,20 VI:].,,N
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Soft margin SVM

N
min = i + € s )

The second term is about error minimization (loss function)
The first term is about regularization (smooth solutions)

Uy F(xi) = 1 = yif (i) |+
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[1—yf(x)l+

1 yf(x)

[Figure by A. Passerini]

yi, F(xi)) = 11— yif (xi) |+
z ifz>0

Z =
121+ 0 otherwise

The examples not violating the margin constraint have zero loss
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Soft margin SVM

Again we can exploit the Lagrangian approach:

N
L(W,b,a,ﬁ):%*Z (YI(W X/+b *1 ZB@
i=1

from which we obtain the following dual formulation:

-
max E o — E QiQjyiyixi X
aeéR’V i

s.t. 0<a;<C Vi=1l,...,m

N
Z ajyi =0
i—1
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Soft margin SVM

This time the support vectors are those examples for which:

y,'(WTX,' +b)<1

e if a; < C we have & = 0 (unbound SV)
o if i = C we have & > 0 (bound SV) — margin errors
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Soft Margin SVM

Primal vs. dual problem at prediction time:

@ the solution of the dual problem depends on the number of
support vectors — it could be quite costly !

@ the solution of the primal problem is independent of the
number of support vectors
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Regularization

The effect of the C parameter is crucial:

@ large C — avoid mis-classifying training examples —
— narrow margin — overfitting (?)

@ small C — penalize non-smooth functions —
— larger error on training set — generalization (?)
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Regularization

C=1000

[Figure from Stack Overflow]
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Multi-class Support Vector Machines

We have considered a binary classification problem.
What if we have to deal with M classes 7

Typically reduced to many binary classification problems:

@ one-vs-all: build M binary classifiers — in turn each class is
the positive class and all the other classes are the negative
class — the winner is the class with the largest score

@ one-vs-one: build M(M — 1)/2 binary classifiers for each pair
of classes — count the number of wins
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Support Vector Regression

Also regression problems can be easily defined in the SVM setting

Define an e-tube to tolerate errors up to a certain value ¢

[Figure from A. Passerini]
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Support Vector Regression

The choice of € clearly induces different solutions

[Figure from A. Passerini|
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Support Vector Regression

We define an e-insensitive loss, that penalizes only errors j €

ly — f(x)]e
A

e c v f(x)

[Figure from A. Passerini]

)k_{o ifly — F(x)| <e

ly — f(x)] — e otherwise
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Support Vector Regression

Learning problem:

m|n \WH2—|— CZ &+ &%)

s.t. w x,-—i—b—y,-ge—i-f;
yi— (WTx + b) < e+ E&x;
&, 6xi >0

Two constraints for upper and lower sides of the e-tube
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Support Vector Ranking

In some applications, one would like just to have a ranking
between examples: information retrieval, recommendation, ...

@ Given pairwise comparisons x; < x; in the training set
@ Constrain function f to score x; higher than Xx;

@ It can be formalized as a classification task !
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Support Vector Ranking

Learning problem:
1 N
. 2 )
mmlanHWH —i—CZ;&
=

st wid(x)—wld(x)>1—¢ if x=<x

&>0  Vij=1...N

wT®(x;) — wT ®(x;) can be written as w ®(x; — x;)

The decision function becomes: f(x) = w'®(x)
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One-class SVM

In some cases, one may be given only positive examples, or one
would like to predict deviation from a certain model class
— novelty/anomaly detection

It is possible to learn an SVM from positive examples only

Key idea:

o find the smallest hypersphere that encloses the examples

@ penalty for leaving outliers out of the hypersphere
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One-class SVM

Optimization problem:

N
in R2+ C ;
gin RE+ €2 ¢

st [|[o(x) - OI? <R*+¢  Vi=1,...,N
& >0, i=1,...,N

The hypersphere has center in O and radius R (to be minimized)
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One-class SVM

Novelty Detection

—— learned frontier

ooo training observations

new regular observations
new abnormal observations

-4 2 4
error train: 21/200 ; errors novel regular: 2/40 ; errors novel abnormal: 1/40

[Figure from http://scikit-learn.org]
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Soft margin SVM

Still not enough. ..
We can solve linearly separable problems (hard case). ..

... Possibly with outliers (soft case)

Since the linear classifier is very efficient. . .

@ map the examples into a higher dimensional space

e perform linear classification in that space
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Feature spaces

Find a mapping ¢ : X — H

Input Space Feature Space

[Figure from Stack Overflow]
A non-linear separation in X’ becomes linear in H
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Feature spaces

Now replace x with ®(x) in the SVM algorithm:
f(x) =w'o(x)+ b

Example 1:
¢(X17X2) = (X127X1X27X22)

Example 2:
(D(X17 X2) = (Xla X2, X1X2)
Consider this case for the XOR function. ..
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Kernel trick

Using function ® to map examples to high-dimensional spaces:

@ could be computationally much expensive

@ also remember that ® appears only in dot products !

Replace dot product with an equivalent kernel function

k(x,z) = ®(x) Td>(z)
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Kernel properties

The SVM problem formulation (and solution) remain the same !

What are valid kernel functions ?

@ A similarity function k: X x X - R

@ A generalization of a dot product in arbitrary spaces
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Kernel properties

The Gram matrix is defined as the matrix of pairwise kernels
between examples:

Kij = Kji = k(xi, xj) = k(xj, i)

A kernel is valid if one of the following holds:

@ matrix K is positive definite
@ all eigenvalues are non-negative
@ there exists a matrix A such that K = ATA
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Kernel properties

Positive definiteness is necessary and sufficient condition for a
kernel to correspond to a dot product of some feature map ¢

How to verify kernel validity:

@ prove positive definiteness
o find out explicit feature map

@ combine kernels
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Kernel properties

Combine simple kernels to obtain more complex ones

(ki + ko)(x, 2) = ki(x, 2) + ko(x,2) =
= ®1(x) Td1(x) + Do(x) T P2(x)

The two kernels can be defined on completely different spaces
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Kernel properties

Combine simple kernels to obtain more complex ones

Kernel Product

(ki - k2)(x,2) = ki(x,2) - ka(x,2) =
= 201 P1i(x)1i(2) 207, D2i(x)P2i(2)

It corresponds to the Cartesian product of the features
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Kernel examples

@ Linear kernel
k(x,z) =x"z

@ Polynomial kernel
k(x,z) = (xTz+c)?

o Gaussian (RBF) kernel
IIX*ZH2)
202

k(x,z) = exp(—
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Regularization with RBF kernel
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[Figure from A. Smola]
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Regularization with RBF kernel

[Figure from A. Smola]
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Regularization with RBF kernel

[Figure from A. Smola]
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Kernel learning

The linear combination of kernels is still a kernel

P
k(x,z) = Z wpkp(x, z)
p=1

The weights w,, of each kernel can be jointly learned
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Structured data

In many real-world applications one has to deal with structured
data, e.g., in the form of trees, graphs, sequences, strings, ...

Convolution kernel
Given the decomposition of a structure into its sub-parts:

R(X) = (x1,...,xp)

the convolution kernel is defined as the convolution of its parts:

- T Y Tkt

reR(x) seR(z) d=1

computed over all possible decompositions of x and z
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Kernels on sequences

Sequences are found in many application domains:

@ bioinformatics — DNA, RNA, proteins
@ time series

@ text documents (word sequences)

Marco Lippi Machine Learning 50 /64



Kernels on sequences

Spectrum kernel
The k-spectrum of a sequence is the set of all k-length

subsequences (named k-mers) that it contains

ACGTGGCA — ACG, CGT, GTG, TGG, GGC, GCA (if k =3)

One feature for each existing k-mer
Feature space dimension = |X |k

Count k-mer occurrences

Dot product in this new feature space
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Kernels on sequences

Spectrum kernel
ks(x,z) = ®(x) T ®(2)

X = ABAABA x' = AAABB

D(x) \ / ®(z")

AAA 0 1

AAB 1 |

ABA 9 0

ABB 0 1 ,
BAA 1 0 i ) —
BAB 0 0

BBA 0 0

BBB 0 0

[Figure by A. Passerini]
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Tree Kernels

Measuring similarity between two trees

A significant number of

republicans
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| | |
regulation of  JJ NN a  better alternative

online gambling
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Tree Kernels

e Evaulating common substructures or fragments

@ Different definitions of fragments — different kernels

vP vP VP
T S N
VBZ ADJP VBZ  ADJP VP VBZ ADJP
I T [N N (.
s J CCo s 3 CC 1 VBZ ADJP i JJ VP
I | |
unfair andelitist unfair is ditist  VBZ
(a) an STK fragment (b) an SSTK fragment (c) PTK fragments
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Tree Kernels

Intuition:

@ each possible fragment associated to a different feature

@ feature space can become really high-dimensional

KT, T2)= > > Alny,n)

nxeNTX nzeNTz

e N7, and N7, are the set of nodes of the two trees

@ A(-, ) measures the score between two nodes
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Tree Kernels

Rich feature space

Tree kernels can automatically generate a very rich feature set,
capable of capturing structured representations without the need
of a costly feature engineering process

Software: Alessandro Moschitti, KeLP
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Graph Kernels

Measure similarity between graphs

Classification

I i o Support vector machine ¥ 8" Ty 1 om

[Figure from http://www.bic.kyoto-u.ac.jp/]
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Graph Kernels

Key ideas:
@ one feature for each possible subgraph
@ possibly limiting the size of considered subgraphs

@ count number of subgraph occurrences

o« o ®

[Figure by A. Passerini]
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Structured output

The SVM framework has been recenly [Tsochantaridis et al., 2005]
extended towards structured output predictions, where the
output space is a structure

Hidden Markov Models
Probabilistic Context Free Grammars
Sequence Alignment

Information Retrieval

e 6 6 o o

Activity Recognition

Marco Lippi Machine Learning 59 /64



LIBSVM — A Library for Support Vector Machines

Download:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Alternatively:
http://svmlight.joachims.org/
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Data format

@ Plain text file
@ First column — prediction target

@ Other columns — sparse vector describing the features

An example:

1 12:-0.87 23:0.11 25:0.05 51:-0.45
2 10:-0.18 23:0.01 77:0.98
2 21:0.13 40:0.58 71:0.91

Pay attention: feature indices must be in increasing order.
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svm-train [options] training set_file [model_file]

Choose the type of SVM

-s svm_type : set type of SVM (default 0)

0 -- C-SvVC

1 -- nu-SVC

2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR
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svm-train [options] training_set_file [model_file]

Choose the type of kernel

-t kernel_

0

=W N

type : set type of kernel function (default 2)
-- linear: u’*v

-- polynomial: (g*u’*v + coef0)"d

-- radial basis function: exp(-g*|u-v|~2)

-- sigmoid: tanh(g*u’*v + coef0)

-- precomputed kernel
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svm-train [options] training_set_file [model_file]

Other options

-d
g
-r
-c
P
-e
-b

degree : degree in kernel function (def. 3)
gamma : gamma in kernel function (def. 1/num_features)
coef0 : coefO in kernel function (def. 0)
cost : parameter C of C-SVC, epsilon-SVR, and nu-SVR (def. 1)
epsilon : epsilon in loss function of epsilon-SVR (def. 0.1)
epsilon : tolerance of termination criterion (def. 0.001)
probability_estimates : whether to train a SVC or SVR model

for probability estimates, 0 or 1 (def. 0)

-wi weight : set the parameter C of class i

-V

to weight*C, for C-SVC (def. 1)
n: n-fold cross validation mode
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