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Convolutional Neural Networks
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Convolutional neural networks

Architecture inspired by biological processes, focused on vision:

neurons respond to overlapping regions in a visual field

extremely fast computation (especially now with GPUs)

pioneering models back from the 80s-90s !

[Figure from Google Research]
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Quite a long history. . .

The human visual cortex is hierarchical

[Figure from nyu.edu, Simon Thorpe]
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Quite a long history. . .

Hubel and Wiesel model (1962)

[Figure from nyu.edu]

Simple cells detect (edge-like) local features

Complex cells receive input from simple cells and their
receptive fields are spatially invariant
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Quite a long history. . .

Cognitron and Neocognitron (Fukushima, 1974-1982)

[Figure from Fukushima, 1980]
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Quite a long history. . .

LeNet5 (LeCun et al., 1989)

[Figure from LeCun et al., 1989]
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Receptive fields and convolutional filters

Convolutional filter: a matrix (tensor) of weights to be applied
on the image to perform convolutions
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Receptive fields and convolutional filters

Convolution between image patch and filter

[Figure from http://deeplearning.stanford.edu/]
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Receptive fields and convolutional filters

Convolution between image patch and filter

[Figure from http://deeplearning.stanford.edu/]

Marco Lippi Machine Learning 17 / 68



Receptive fields and convolutional filters

Stride
Hyper-parameter S indicating the “step” to be used when moving
the filter on the image

given a W × H image

given a F × F filter

(W − F )/S and (H − F )/S must be integers

Zero padding
Adding zeros along the border to allow convolutions on all pixels

if S = 1 → zero padding with (F − 1)/2

Marco Lippi Machine Learning 18 / 68



Convolutional Layer

Given a volume of size W × H × D

Choose hyper-parameters:

# filters K

filter dimension F

stride S

amount of zero padding P

Output is a volume of size Ŵ × Ĥ × D̂ where:

Ŵ = (W − F + 2P)/S + 1

Ĥ = (H − F + 2P)/S + 1

D = K

Common settings: K=2m, F=3, S=1, P=1 (or F=5, S=1, P=2)
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Rectification Layer

Typically placed on top of a convolutional layer:

drops to zero negative inputs

it is often added to further augment non-linearity

operating on each activation map independently

Marco Lippi Machine Learning 20 / 68



Pooling Layer

An aggregation/subsampling function:

operating on each activation map independently

take the max/avg over a M ×M filter with stride Z

no parameters to learn

just a computation above previous layer !

[Figure from http://deeplearning.stanford.edu/]
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Local Contrast Normalization Layer

Recently introduced layer. . .

operating on the output of max pooling

subtracting mean and dividing by standard deviation of input

this allows to obtain brightness invariance
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Fully Connected Layer

Standard layer as in classic ANNs:

every neuron connected to every neuron in previous layer

typically implementing a linear classifier

[Figure from colah.github.io]
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Convolutional neural networks

One of the key advantages is to share weights between neurons !
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INPUT IMAGE
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Convolutional neural networks

A crucial advantage must be in the structure of a CNN !

[Figure from Ranzato et al., 2007]
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Properties

CNNs features have many nice properties:

compositionality due to hierarchical structure

translation invariance due to max pooling

scale invariance via sub-sample processing
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Feature extraction

Features obtained with various natural images

[Figures by Lee et al., 2009]
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Feature extraction

Features obtained with images belonging only to a given category

[Figures by Lee et al., 2009]
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Feature extraction

Features obtained with images belonging only to a set of categories

[Figures by Lee et al., 2009]
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ImageNet

The dream: build a computer vision system capable of
recognizing thousands of object categories

over 14 millions images

over 20 thousands categories

tagged via crowdsourcing !

organized according to the WordNet noun hierarchy

[Figure from vision.stanford.edu]

Marco Lippi Machine Learning 30 / 68

vision.stanford.edu


The ImageNet challenge

Annual competition:
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)

Breakthrough in 2012 by AlexNet [Krizevsky et al., 2012]*

[Slide from YannLeCun]

*2012 paper with 4,377 citations. . .
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The ImageNet challenge

Breakthrough in 2012 by AlexNet [Krizevsky et al., 2012]

∼60,000,000 parameters

∼650,000 neurons

trained for 5-6 days with 2 GPUs in parallel

achieved a top-5 error rate of 18.2 % (second best 26.2 %)
reduced to 15.4 % with multiple models and pre-training

achieved a top-1 error rate 40.7 %
reduced to 36.7 % with multiple models and pre-training
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The ImageNet challenge

Predictions

[Figure from Krizhevsky et al., 2012]
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[Figure from Krizhevsky et al., 2012]
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The ImageNet challenge

Predictions

[Figure from Krizhevsky et al., 2012]
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The ImageNet challenge

Retrieval

[Figure from Krizhevsky et al., 2012]
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The ImageNet challenge

Feature maps (convolutional layer 1)

[Figure from Krizhevsky et al., 2012]
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The ImageNet challenge

Feature maps (convolutional layer 1)

[Figure from Krizhevsky et al., 2012]
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The ImageNet challenge

Features of the 2014 edition:

1.2 million images for training

50k images for validation

100k images for test

1,000 semantic categories

Winner: GoogLeNet (22 layers !!!) → 6.67 % Top-5 error

In 2015 ResNet (Microsoft Research) → 3.6 % top-5 error !!!

They employed a 152-layer net !!!

They won all the tasks (localization, detection, segmentation)
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Transfer learning with CNNs

A large number of layers implies a large number of parameters,
thus a large number of examples needed to train the network.

What if one has only a small training set ?

it has now become common to pre-train the network on a
large dataset (e.g., ImageNet)

fine-tuning is then performed on the (smaller) dataset related
to a specific task

This is an instance of transfer learning !
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Transfer learning (without CNNs)

[Torrey & Shavlik, 2009]

“Transfer learning is the improvement of learning in a new task
through the transfer of knowledge from a related task that has
already been learned.”

Complex but crucial for any machine learning system

One of the tasks that humans are very good at

Need to map features/relations across domains
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Transfer learning with CNNs

Two possible scenarios:

1 use a CNN trained on ImageNet as a fixed feature extractor
→ this means to remove the last fully connected layer

2 also fine-tune some/all the weights of the CNN with the
smaller dataset → be careful of overfitting !

A fine-tuning of the whole network might be required if our own
dataset is much different from the one used in pre-training, and
not too small. . .
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Object detection

Quite straightforward adaptation of CNNs:

sliding window over the image

multi-scale resolution

[Figure by Sermanet et al., 2013]
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Tricks of the trade

Most of the tricks common to other kinds of deep networks

dropout

data augmentation (jittering, noise injection, . . . )

weight decay

sparsity of hidden units

carefully choose learning rate

In addition. . .

visualize feature maps

visualize parameters (filters)
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Visual Turing Challenge

[Figure from http://www.mpi-inf.mpg.de]Marco Lippi Machine Learning 45 / 68



Applications to bioinformatics, neuroscience, etc...

Prediction of epilepsy seizures from intra-cranial EEG

Temporal CNNs [Mirowski et al., 2008]

[Figure by Mirowski et al.]
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Applications to bioinformatics, neuroscience, etc...

Cancer diagnosis and classifications

Auto-Encoders [Fakoor et al., 2013]

Convolutional Neural Networks [Cruz-Roa et al., 2013]

[Figure by Cruz-Roa et al.]
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Applications to text processing

Sentence classification

Sentiment analysis

Question classification

Subjectivity score

. . .

[Figure by Kim, 2014]
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Word Embeddings,
Language Models, etc.
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Modeling language

In Natural Language Processing/Understanding (NLP/NLU), one
crucial element is to represent sentences for the desired task

Classification

Segmentation

Tagging

...

A classic representation is that of Bag-of-Words (Bow)

The cat is walking in the garden

0 0 0 0 0 0 0 0 0 0 0 0 0111

cat garden walking
VECTOR LENGTH =
VOCABULARY DIMENSION
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Modeling language

Other BoW variants: consider frequencies

frequency of a word within a document
Term Frequency (TF)

0 0 0 0 0 0 0 0 0 0 0 0111

cat garden walking
VECTOR LENGTH =
VOCABULARY DIMENSION

2

the

frequency of a word within a corpus:

Inverse Document Frequency (IDF) → TF × IDF

0 0 0 0 0 0 0 0 0 0 0 0 00.10.80.5

cat garden walking
VECTOR LENGTH =
VOCABULARY DIMENSION

Rare words in common are much more significant...
...But still, it is not enough !

Marco Lippi Machine Learning 51 / 68



Modeling language

A classic problem: not capturing lexical and semantic similarity !

The cat is walking in the garden

A dog was running towards the park

Almost no similarity: only article “the” in common...

A lot of approaches have tried to include lexical/semantic features

Use of ontologies (e.g., WordNet)

Analysis of co-occurrences

Word disambiguation (e.g., bank: river/finance ?)
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Modeling language

“You shall know a word by the company it keeps” (J.R. Firth, 1957)

Use context to learn word representations (embeddings)

A word will be represented by a dense real-valued vector

France
Germany

Italy

Bread
Cheese

Ham

Soccer
Tennis

Rugby

FEATURE1

FEATURE2

FEATURE3
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Statistical Language Model

Learn a probability distribution over sequences of words

The probability of observing a sequence of words w1, . . .wm is:

P(w1, . . . ,wm) =
m∏
i=1

P(wi |w1, . . . ,wi−1)

A classic approach employs n-grams:

P(wm|wm−1,wm−2, . . . ,wm−n+1) =
count(wm−n+1, . . . ,wm)

count(wm−n+1, . . . ,wm−1)

Just counting words. . .
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Neural Network Language Model [Bengio et al., 2003]

The idea of neural embeddings dates back to over one decade:

predict next word given current (and previous ones)

f (wt , . . . ,wt−n+1) = P(wt |wt−1,wt−2, . . . ,wt−n+1)

Function f is decomposed in two parts:

a mapping C : |V | → <d

an ANN: g(i ,C (wt−1), . . . ,C (wt−n+1)))

C is the matrix of word embeddings (or word vectors)
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Neural Network Language Model

[Figure by Bengio et al., 2003]
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Neural Network Language Model

Additional considerations. . .

Output layer has |V | size → quite expensive

Reducing to log |V | via hierarchical softmax

Partitioning the output spaces into a hierarchical structure

Using a bit vector encoding of words (e.g., binary Huffman
tree)

Exploiting WordNet hierarchy
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Recurrent Neural Network Language Model

Next lecture !

[Figure by Mikolov et al., 2010]
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Word vectors (word2vec)

Continuous bag-of-words
Predict word given past and future context

[Figure by Mikolov et al., 2013]
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Word vectors (word2vec)

Continuous bag-of-words

Objective function: maximize the average log probability

1

T

T−k∑
t=k

log p(wt |wt−k , . . . ,wt+k)
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Word vectors (word2vec)

Skip-gram
Predict contextual words of a given word

[Figure by Mikolov et al., 2013]
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Word vectors (word2vec)

Skip-gram

Objective function: maximize the average log probability

1

T

T∑
i=1

∑
−c≤h≤c,j 6=0

log p(wt+j |wt)

Trade-off to choose size of context c :

if larger, the model is more accurate. . .

. . . but it is computationally more expensive
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Word vectors (word2vec)
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The power of word embeddings

[Table by R. Collobert et al., 2011]
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The power of word embeddings

[Figure by T. Mikolov]
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The power of word embeddings

Transfer learning !

named entity recognition

part-of-speech tagging

parsing

semantic role labeling

machine translation

Marco Lippi Machine Learning 66 / 68



Sentence, paragraph, document vectors (doc2vec)

Generalization of word embeddings to any text

W is the word embedding matrix

D is the paragraph/document embedding matrix

[Figure by Le & Mikolov, 2014]
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Word vectors (word2vec)

Pre-trained word vectors:

GloVe (Global Vectors for word representation) @ Stanford
http://nlp.stanford.edu/projects/glove/
Different versions (Wikipedia, Twitter, Common Crawl)

word2vec @ Google
https://code.google.com/archive/p/word2vec/
Trained on GoogleNews
Naming version trained on FreeBase

. . .
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