PhD in Computer Science and Engineering
Bologna, April 2016

Machine Learning

Marco Lippi

marco.lippi3@unibo.it

Marco Lippi Machine Learning 1/68



Convolutional Neural Networks




Convolutional neural networks

Architecture inspired by biological processes, focused on vision:
@ neurons respond to overlapping regions in a visual field
e extremely fast computation (especially now with GPUs)

@ pioneering models back from the 80s-90s !

[Figure from Google Research]
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Quite a long hist .

The human visual cortex is hierarchical
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[Figure from nyu.edu, Simon Thorpe]
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Quite a long history. . .

Hubel and Wiesel model (1962)

Electrical signal
from brain

Recording electrode —» |

ey
N T
\
Stimulus (‘!

=

g 2
.
.

\

Snmulus onsnlat\on deg)

Neural respor\se (spikes/sec)

[Figure from nyu.edu]

e Simple cells detect (edge-like) local features
@ Complex cells receive input from simple cells and their
receptive fields are spatially invariant
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Quite a long history. . .

Cogpnitron and Neocognitron (Fukushima, 1974-1982)

Ua

[Figure from Fukushima, 1980]
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LeNet5 (LeCun et al., 1989)

C€3: 1. maps 16@10x10
C1: feature fnaps S4: 1. maps 16@5x5
6@28x28

S2:f. maps
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INPUT
32x32
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[Figure from LeCun et al., 1989]
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Receptive fields and convolutional filters

Convolutional filter: a matrix (tensor) of weights to be applied
on the image to perform convolutions

It must be the same !

D channels (RGB)
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Receptive fields and convolutional filters

Convolution between image patch and filter
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[Figure from http://deeplearning.stanford.edu/]
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Receptive fields and convolutional filters

Convolution between image patch and filter

1 1x1 1xCI Oxl 0
0/1(1(1]0 4|3
0 Oxl 1xCI 1x1 1
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Feature

[Figure from http://deeplearning.stanford.edu/]
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Receptive fields and convolutional filters

Convolution between image patch and filter

1 1 1x1 OxO 0x1
0/1(1,1,)0, 4,34
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0(1|1(0]0
Image Convolved
Feature

[Figure from http://deeplearning.stanford.edu/]
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Receptive fields and convolutional filters

Convolution between image patch and filter
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Image Convolved
Feature

[Figure from http://deeplearning.stanford.edu/]
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Receptive fields and convolutional filters

Convolution between image patch and filter
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Image Convolved
Feature

[Figure from http://deeplearning.stanford.edu/]
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Receptive fields and convolutional filters

Convolution between image patch and filter
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0/1({1,1)0, 4,34
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Image Convolved
Feature

[Figure from http://deeplearning.stanford.edu/]
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Receptive fields and convolutional filters

Convolution between image patch and filter

1(1|1(0]|0
Oj|1(1|1|0 4134
0/0)1,/1(1 2043
0,0/1,/1(0 2
Ox:l 1x0 1x1 0 0
Image Convolved
Feature

[Figure from http://deeplearning.stanford.edu/]
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Receptive fields and convolutional filters

Convolution between image patch and filter

1(1|1(0]|0
Oj|1(1|1|0 4134
001,11 2043
0/0f1(1]0 23
0 1x1 1x0 oxl 0
Image Convolved
Feature

[Figure from http://deeplearning.stanford.edu/]
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Receptive fields and convolutional filters

Convolution between image patch and filter

1(1|1(0]|0
Oj|1(1|1|0 4134
001,11, 2043
0/0(1,1,)0, 234
0 1 1x1 Oxa Oxl
Image Convolved
Feature

[Figure from http://deeplearning.stanford.edu/]
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Receptive fields and convolutional filters

Stride
Hyper-parameter S indicating the “step” to be used when moving
the filter on the image

@ given a W x H image
@ given a F x F filter
o (W—F)/S and (H— F)/S must be integers

Zero padding
Adding zeros along the border to allow convolutions on all pixels

e if S =1 — zero padding with (F —1)/2
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Convolutional Layer

Given a volume of size W x H x D

Choose hyper-parameters:
o 7 filters K
o filter dimension F
@ stride S

@ amount of zero padding P

Output is a volume of size W x H x D where:
o W=(W-F+2P)/S+1
o H=(H-F+2P)/S+1
e D=K
Common settings: K=2", F=3, S=1, P=1 (or F=5, S=1, P=2)
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Rectification Layer

Typically placed on top of a convolutional layer:
@ drops to zero negative inputs
@ it is often added to further augment non-linearity

@ operating on each activation map independently
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Pooling Layer

An aggregation/subsampling function:

@ operating on each activation map independently
o take the max/avg over a M x M filter with stride Z
@ no parameters to learn

@ just a computation above previous layer !

Single depth slice

2 11124
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[Figure from http://deeplearning.stanford.edu/]
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Local Contrast Normalization Layer

Recently introduced layer. ..
@ operating on the output of max pooling
@ subtracting mean and dividing by standard deviation of input

@ this allows to obtain brightness invariance
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Standard layer as in classic ANNs:

@ every neuron connected to every neuron in previous layer

o typically implementing a linear classifier

[Figure from colah.github.io]
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Convolutional neural networks

One of the key advantages is to share weights between neurons !
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Convolutional neural networks

A crucial advantage must be in the structure of a CNN !

Classification error on the MNIST dataset
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[Figure from Ranzato et al., 2007]
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CNNs features have many nice properties:
@ compositionality due to hierarchical structure
e translation invariance due to max pooling

@ scale invariance via sub-sample processing
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Feature extraction

Features obtained with various natural images
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[Figures by Lee et al., 2009]

Marco Lippi Machine Learning 27 /68



Feature extraction

Features obtained with images belonging only to a given category
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[Figures by Lee et al., 2009]
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Feature extraction

Features obtained with images belonging only to a set of categories

faces, cars, airplanes, motorbikes

[Figures by Lee et al., 2009]
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The dream: build a computer vision system capable of
recognizing thousands of object categories

@ over 14 millions images

@ over 20 thousands categories

@ tagged via crowdsourcing !

@ organized according to the WordNet noun hierarchy

[Figure from vision.stanford.edu]
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vision.stanford.edu

The ImageNet challenge

Annual competition:
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)

Breakthrough in 2012 by AlexNet [Krizevsky et al., 2012]*

M FULL CONNECT | 4Miop —

16M FULL 4096/ReLU | 1om
37M FULL 4096/ReLU | 37m

MAX POOLING |
442K [T CONV 3x3/ReLU 256fm | 74

13M [ CONV3x3ReLU 384fm | 204m
884Kk [ CONV 3x3/ReLU 384fm | 149m

MAX POOLING 2x2sub
LOCAL CONTRAST NORM
307K | CONV 11x11/ReLU 256fm | 223m

MAX POOL 2x2sub
LOCAL CONTRAST NORM
35K CONV 11x11/ReLU 96fm 105M

[Slide from YannLeCun]
*2012 paper with 4,377 citations. ..
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Yann LeCun

The ImageNet challenge

Breakthrough in 2012 by AlexNet [Krizevsky et al., 2012]

~60,000,000 parameters
~650,000 neurons
trained for 5-6 days with 2 GPUs in parallel

achieved a top-5 error rate of 18.2 % (second best 26.2 %)
reduced to 15.4 % with multiple models and pre-training

achieved a top-1 error rate 40.7 %
reduced to 36.7 % with multiple models and pre-training
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The ImageNet challenge

Predictions

sea slug swimming trunks stupa
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jelly fungus coral fungus tumble-dryer
gill fungus | i lichen photocopier
dead-man’'s-fingers nail polish polypore CD player

[Figure from Krizhevsky et al., 2012]
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The ImageNet challenge

Predictions

rapeseed
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[Figure from Krizhevsky et al., 2012]

Marco Lippi Machine Learnin,

34/68



The ImageNet challenge
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[Figure from Krizhevsky et al., 2012]
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The ImageNet challenge

Retrieval

[Figure from Krizhevsky et al., 2012]
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The ImageNet challenge

Feature maps (convolutional layer 1)

[Figure from Krizhevsky et al., 2012]

Marco Lippi Machine Learning 37/68



The ImageNet challenge

Feature maps (convolutional layer 1)
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[Figure from Krizhevsky et al., 2012]
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The ImageNet challenge

Features of the 2014 edition:
@ 1.2 million images for training
@ 50k images for validation
@ 100k images for test
e 1,000 semantic categories
e Winner: GooglLeNet (22 layers !!) — 6.67 % Top-5 error

In 2015 ResNet (Microsoft Research) — 3.6 % top-5 error !!!
@ They employed a 152-layer net !!!
@ They won all the tasks (localization, detection, segmentation)
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Transfer learning with CNNs

A large number of layers implies a large number of parameters,
thus a large number of examples needed to train the network.

What if one has only a small training set ?
@ it has now become common to pre-train the network on a
large dataset (e.g., ImageNet)
o fine-tuning is then performed on the (smaller) dataset related

to a specific task

This is an instance of transfer learning !
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Transfer learning (without CNNs)

[Torrey & Shavlik, 2009]

“Transfer learning is the improvement of learning in a new task
through the transfer of knowledge from a related task that has
already been learned.”

o Complex but crucial for any machine learning system
@ One of the tasks that humans are very good at

@ Need to map features/relations across domains
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Transfer learning with CNNs

Two possible scenarios:
© use a CNN trained on ImageNet as a fixed feature extractor
— this means to remove the last fully connected layer
@ also fine-tune some/all the weights of the CNN with the
smaller dataset — be careful of overfitting !

A fine-tuning of the whole network might be required if our own

dataset is much different from the one used in pre-training, and
not too small. ..
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Object detection

Quite straightforward adaptation of CNNs:
@ sliding window over the image

@ multi-scale resolution

[Figure by Sermanet et al., 2013]
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Tricks of the trade

Most of the tricks common to other kinds of deep networks
e dropout
e data augmentation (jittering, noise injection, ...)
@ weight decay
@ sparsity of hidden units

o carefully choose learning rate

In addition. ..
@ visualize feature maps

e visualize parameters (filters)
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QA: (What is behind the table?, window)
Spatial relation like *behind are dependent
on the reference frame. Here the annotator

Visual Turing Challenge

QA: (what s bencath the candle holder,
decorative plate)

Some annotators use variations on spatial

The annotators arc using different names to
call the same things. The names of the
brown object near the bed include *ight

Some objects, like the table on the left of
image. are severcly occluded or truncated.

Yet, the annotators refer to them in the
uestions.

uses observer-centric view. relations that are similar, e.g. ‘beneath” is Sodl_aad

closely related to *below”.
s i front of the wall divider

0
clarify object references (i.e. wall divider).
Morcover, the perspective plays an
important roke in these spatial relations
interpretations.

JQA: (what is behind the table?, sofa)
\palu] relations exhibit different reference
ome annotations use observer-
others object-centric view

S{The annotators use their comenan
knowledge for amodal completion. Here the
annotator infers the Sth drawer from the

he image’
Different interpretation of ¢--r results in
ifferent counts: 1 door at the end of the hall
. 5 doors including lockers

Morcover, some questions require deiection
lof states “light on or off”

Spatial relations matter more in complex
environments where reference resolution
becomes more relevant. In cluttered scenes
pragmatism starts playing a more important
rolc

QA: (What s the object on the counter in
‘the corner?, microwave)

References like ‘comer” are difficul

resolve given current computer
imodels. Yet such scene featy
frequently used by humans

QA: (How many doors are open?, 1)
Notion of states of object (like open) is not
well captured by current vision techniques.
Annotators use such attributes frequently
for disambiguation

Q: what s at the back side of the sofas?
Annotators use wide range spatial rclations.
such as “backside’ which is object-centric
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Applications to bioinformatics, neuroscience, etc...

Prediction of epilepsy seizures from intra-cranial EEG

e Temporal CNNs [Mirowski et al., 2008]

(a) EEG on 06-Dec-2001, 12:00 (interictal) {(c) EEG on 12-Dec-2001, 06:20 (preictal)
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[Figure by Mirowski et al.]
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Applications to bioinformatics, neuroscience, etc...

Cancer diagnosis and classifications

o Auto-Encoders [Fakoor et al., 2013]
e Convolutional Neural Networks [Cruz-Roa et al., 2013]

Non-cancer]| Cancer

[Figure by Cruz-Roa et al.]
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Applications to text processing

Sentence classification

@ Sentiment analysis
@ Question classification
@ Subjectivity score

wait
for
the
video
and
do
n't
rent

nxk on of C layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

[Figure by Kim, 2014]
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Word Embeddings,
Language Models, etc.




Modeling language

In Natural Language Processing/Understanding (NLP/NLU), one
crucial element is to represent sentences for the desired task

Classification

°
@ Segmentation
o Tagging

°

A classic representation is that of Bag-of-Words (Bow)

The cat is walking in the garden

[0]ojojofojojofifofojo]1]0]0|1]0]

VECTOR LENGTH = .
VOCABULARY DIMENSION cat garden walking
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Modeling language

Other BoW variants: consider frequencies
@ frequency of a word within a document
o Term Frequency (TF)

|0|0|0|0|0|0|0|%|0|2|0|1|0|0|1|0|

VECTOR LENGTH =
VOCABULARY DIMENSION cat the garden walking

o frequency of a word within a corpus:
o Inverse Document Frequency (IDF) — TF x IDF

[o]o]oJo[o]o]ofos[o[o]oogfofo]o.1]0]
f f f

VECTOR LENGTH = )
VOCABULARY DIMENSION cat garden walking

Rare words in common are much more significant...
...But still, it is not enough !
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Modeling language

A classic problem: not capturing lexical and semantic similarity !

The cat is walking in the garden
A dog was running towards the park

Almost no similarity: only article “the” in common...

A lot of approaches have tried to include lexical /semantic features

@ Use of ontologies (e.g., WordNet)
@ Analysis of co-occurrences

e Word disambiguation (e.g., bank: river/finance ?)
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Modeling language

“You shall know a word by the company it keeps” (J.R. Firth, 1957)

@ Use context to learn word representations (embeddings)
@ A word will be represented by a dense real-valued vector

FEATURE3
A Ital
France aly
Germany
Rugby Breac
Tennis >
Soccer FEATURE1

FEATURE2
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Statistical Language Model

Learn a probability distribution over sequences of words

The probability of observing a sequence of words wi, ... w,, is:

m

P(Wl,...,Wm) = HP(W,"Wl,... y W,'_]_)
i=1

A classic approach employs n-grams:

count(Wm—n+t1, - Wm)

P(Wm|Wm—17Wm—2w~-an—n+1) = COUI'It(W o W 1)
m—n+1y-++, Wm—

Just counting words. . .
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Neural Network Language Model [Bengio et al., 2003]

The idea of neural embeddings dates back to over one decade:

e predict next word given current (and previous ones)
f(We, ..., Weny1) = P(we|weo1, we 2, ..., We_ny1)

Function f is decomposed in two parts:
@ a mapping C : |[V| — R
@ an ANN: g(i, C(wt—1),..., C(Wt—p+1)))

C is the matrix of word embeddings (or word vectors)
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Neural Network Language Model

i-th output = P(w; = i | context)

softmax
C [EE []

most|computation here \
. '

tanh !

Clwia)  Clwa)y -7

(ee. @) ... (s ... ®) (ee @)
Table |, ~, Matrix C .
{:nrlé—up T shared parameters

across words

index for W, .1 index for w,_, index for w,_;

Figure 1: Neural architecture: f(i,w;_1,++ ,Wy—p+1) = g(i,C(w;_1 ), -+ ,C(W_p+1)) where g is the
neural network and C(i) is the i-th word feature vector.

[Figure by Bengio et al., 2003]
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Neural Network Language Model

Additional considerations. ..

Output layer has |V/| size — quite expensive

°

@ Reducing to log|V/| via hierarchical softmax

@ Partitioning the output spaces into a hierarchical structure
°

Using a bit vector encoding of words (e.g., binary Huffman
tree)

Exploiting WordNet hierarchy
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Recurrent Neural Network Language Model

Next lecture !

w(t) y(2g)

s(t) .

s(t-1)

[Figure by Mikolov et al., 2010]
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Word vectors (word2vec)

Continuous bag-of-words
Predict word given past and future context

INPUT PROJECTION QUTPUT

w(t-2)
wi(t-1)
SUM
}_. wi(t)
wi(t+1)
w(t+2)

[Figure by Mikolov et al., 2013]
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Word vectors (word2vec)

Continuous bag-of-words

Objective function: maximize the average log probability

\i
X

1

7 logp(Wt|Wt—k7"‘7Wt+k)

i
L
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Word vectors (word2vec)

Skip-gram
Predict contextual words of a given word

INPUT PROJECTION OUTPUT

w(t-2)
w(t-1)
wit) ‘\—P
wit+1)

wi(t+2)

I I e B

[Figure by Mikolov et al., 2013]
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Word vectors (word2vec)

Skip-gram
Objective function: maximize the average log probability
1 T
2. DL logp(Weyjlwe)
i=1 —c<h<c,j#0

Trade-off to choose size of context c:
o if larger, the model is more accurate. . .

@ ...but it is computationally more expensive
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Word vectors (wor

translatiofoyers fantasy stars

man
laundering
m
inals

transaction talk  ¢fplevision
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tape mars  Sun
flash asteroid |
) alaxy moon
rer%%'i'é:lpality direction planet Ig:'
boundary
gap 9
plateau
territory

FﬂEﬁﬁ‘hzw%:»ods

Marco Lippi Machine Learning 63 /68



The power of word embeddings

FRANCE IESUS XBOX HEDDISH ~ SCRATCHED — MEGABITS
454 1973 6909 11724 209869 BT025
AUSTRIA GoD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION HLUISH SMASHED MBS
GERMANY CHRIST MSEX PINKISH PUNCHED BIT/S
ITALY SATAN 1POD PURPLISH POPPED BAUD
GREECE KALL SEGA BROWNISH CRIMPED CARATS
SWEDEN wpra  PsNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED  MEGAHERTZ
EUROPE ANANDA  DREAMCAST WHITISH SECTIONED ~ MEGAPIXELS
HUNGARY PARVATIL GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND  GRACE CAPCOM YELLOWISH RIPPED AMPERES

[Table by R. Collobert et al., 2011]
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The power of word embeddings

hicknkirin QUEENS

/ AUNT
s / KINGS
UNCLE
QUEEN \ QUEEN

KING KING

[Figure by T. Mikolov]
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The power of word embeddings

Transfer learning !

named entity recognition

part-of-speech tagging

°
°

@ parsing
@ semantic role labeling
°

machine translation
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Sentence, paragraph, document vectors (doc2vec)

Generalization of word embeddings to any text

e W is the word embedding matrix

@ D is the paragraph/document embedding matrix

Classifier m

Average/Concatenate o

Paragraph the cat sat
id

[Figure by Le & Mikolov, 2014]
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Word vectors (word2vec)

Pre-trained word vectors:

@ GloVe (Global Vectors for word representation) @ Stanford
http://nlp.stanford.edu/projects/glove/
Different versions (Wikipedia, Twitter, Common Crawl)

@ word2vec @ Google
https://code.google.com/archive/p/word2vec/
Trained on GoogleNews
Naming version trained on FreeBase
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