
Efficient Single Frontier Bidirectional Search

Marco Lippi
Dip. Ingegneria dell’Informazione

Università di Siena
Italy

lippi@dii.unisi.it

Marco Ernandes
QuestIT s.r.l. and

Dip. Ingegneria dell’Informazione
Università di Siena

Italy
marcoernandes@gmail.com

Ariel Felner
Dept. Information Systems Engineering

Ben-Gurion University
Israel

felner@bgu.ac.il

Abstract

The Single Frontier Bi-Directional Search (SBS) framework
was recently introduced. A node in SBS corresponds to a pair
of states, one from each of the frontiers and it uses front-to-
front heuristics. In this paper we present an enhanced version
of SBS, called eSBS, where pruning and caching techniques
are applied, which significantly reduce both time and memory
needs of SBS. We then present a hybrid of eSBS and IDA∗

which potentially uses only the square root of the memory
required by A∗ but enables to prune many nodes that IDA∗

would generate. Experimental results show the benefit of our
new approaches on a number of domains.

Introduction
Bidirectional search is a well known idea but is not used
very often, especially when the search is guided by a heuris-
tic function (h-function) and when the optimal solution is
required. The main reason, well studied by (Kaindl and
Kainz 1997), is the meet in the middle problem, which is
the problem of guaranteeing the optimality of the solution
when the two search frontiers meet. Recently, a new bidirec-
tional search framework called Single Frontier Bidirectional
Search (SBS) was introduced (Felner et al. 2010)1. The main
idea of SBS is to search through a double node search tree,
where each double node (from now on, simply node) N in-
cludes two states, one state s from the forward search and
one state g from the backward search. The task in node N is
to find the shortest path between s and g. This task is recur-
sively decomposed by expanding either s or g and generat-
ing new nodes between (1) s and the neighbors of g, or (2) g
and the neighbors of s. At every node a jumping policy de-
cides which of the two states to expand next, i.e., the search
can proceed forward or backward.

Given a jumping policy, a tree is induced which can be
searched using any admissible search algorithm such as
A∗ (SBS-A∗) or IDA∗ (SBS-IDA∗). The original SBS pa-
per (Felner et al. 2010) studied different jumping policies
and their influence on the performance; impressive savings
were obtained in many domains, but in some cases a blowup
in the search tree made SBS ineffective.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1It was labeled by the authors as SFBDS but to improve the
readability we shorten the notation and denote it by SBS.

In this paper we take SBS several steps further. First, we
provide deeper insights on the implementation of this algo-
rithm and introduce four interdependent enhancements that
can be implemented within the SBS framework to get signif-
icant improvements in both space and time complexity. The
main idea is to split the memory into two data structures.
The first is the OPEN-list which stores nodes but in the form
of two pointers, one for each of the states. The second is
a state transposition table which stores states that were al-
ready seen during the search either in the forward or back-
ward directions. This split may save a large amount of mem-
ory and enables an effective duplicate pruning mechanism
for SBS. SBS with our enhancements is called Enhanced-
SBS (denoted eSBS and when coupled with A∗ denoted by
eSBS-A∗).

In addition, based on these enhancements, we present
a new variant of SBS, called eSBS-H which is a hybrid
between eSBS-A∗ and SBS-IDA∗. Similarly to eSBS-A∗,
eSBS-H uses the state transposition tables for effective du-
plicate pruning, but similarly to IDA∗, it does not use an
OPEN list and the search is performed by a series of depth-
first search iterations on nodes. While A∗ needs memory lin-
ear in the number of generated nodes whereas IDA∗ does not
need any memory, eSBS-H offers a good compromise and its
memory needs is the square root of the number of generated
nodes. While the number of generated nodes is quadratic in
the number of states (O(b2d)), unlike ordinary bidirectional
searches eSBS-H needs memory which is only linear in the
number of states seen (O(b2)). Experimental results show
that eSBS-A∗ outperforms basic SBS-A∗ and that eSBS-H
outperforms both eSBS-A∗ and SBS-IDA∗ on a number of
domains including the 15 puzzle, the pancake puzzle and
room maps.

Single-frontier bidirectional search (SBS)
In this paper we use the term node and use capital letters
(e.g., N ) to indicate nodes of the search tree, while the term
state and small letters (e.g., x) indicate states (or vertices) of
the input graph.

Assume the task is to find a path between s and g on
an undirected graph. Traditional unidirectional search algo-
rithms formalize a search tree such that each node of the tree
includes one state of the graph. The root node R includes the
start state s. Assume that node N corresponds to state x: the



s

a b

c d e f

g

g

a b

c h b c b h

s

c c

g

(a) (b)

g

a a

Figure 1: Unidirectional vs. SBS search trees (expanded states are
represented in gray for SBS).

task at N is to find a (shortest) path between x and g. When
a heuristic is applied, it estimates the length of the path from
x to g (h-cost) and adds this to the accumulated path from s
to x.

SBS: formal definition
The search tree of SBS (Felner et al. 2010) uses double
nodes. Each double node is defined as a pair of states x and
y and is denoted by N(x, y). The root node R(s, g) includes
the start state s and the goal state g. The task beneath a node
N(x, y) is to find a shortest path between x and y. This can
be done by either treating x as the start and y as the goal,
searching from x to y or by reversing the direction of the
search by treating y as the start and x as the goal, searching
from y to x. For example, if at N(x, y) both x and y have
two neighbors, then the children of N(x, y) of the two alter-
natives are:

(a) regular direction (expand x): (x1, y) and (x2, y); or
(b) reverse direction (expand y): (x, y1) and (x, y2).

Each node N should be expanded according to one of these
alternatives. We employ a jumping policy to decide which
side should be expanded for every given node. The search
terminates when a goal node is reached, where a goal node
is in the form N(x, x). The choice made by the jumping pol-
icy for the search direction in N is reflected by N ’s children
only, but no other node that is currently in the search tree is
influenced by this choice of direction. Solutions or cost esti-
mates from node N are naturally passed up to the parent of
N , regardless of the direction used for N .

Examples
Unidirectional search and SBS are illustrated in Figure 1.
The objective is to find a shortest path from the start state, s,
to the goal state, g. Consider the unidirectional search (Fig-
ure 1a): in this tree, every node implicitly solves the task of
getting from the current node to g, and the search will pro-
ceed across the tree until g is found.

Now, consider searching the same tree with SBS (Fig-
ure 1b). Nodes are labeled with the shortest-path task that
should be solved beneath them. Within each node, the state
expanded is shaded in the figure where left (right) means
expanding the forward (backward) state. The jumping pol-
icy used in this example is the alternate policy, so that at
even depths the forward state is expanded and at odd depth
the backward state is expanded. For example, at the root, the
task is (s, g) resulting in two children, (a, g) and (b, g). At
node (a, g), however, the jumping policy chooses g for ex-
pansion. This generates nodes for all neighbors of g, leading

to (a, c) in our example. Finally, at (a, c), state c is chosen
for expansion, generating a goal node (c, c).

Edges in the SBS tree are of two types. The first type are
edges from a node (x, y) to a node (w, y) which corresponds
to an edge (x,w) in the graph (expanding x). The second
type are edges from a node (x, y) to a node (x, z) which cor-
responds to an edge (y, z) in the graph (expanding y). When
backtracking up the search tree from a goal node, edges that
correspond to forward expansions are appended to the front
of the path, while edges that correspond to backward expan-
sions are appended to the end of the path. Thus, the path of
(s, a, c, g) is constructed from this branch.

Jumping policies
We use a jumping policy to choose which direction to con-
tinue the search at each node2. Trivial policies are the never
jump policy, replicating a classical unidirectional algorithm,
where we always expand the forward side. Similarly, The
jump only at root policy, corresponds to a unidirectional
backward search form the goal to the start where we al-
ways expand the backward side. A deep study on jump-
ing policies was performed by (Felner et al. 2010): the au-
thors concluded that it would be best to devise a specific
jumping policy for each possible domain, but also suggested
good general purpose policies (Felner et al. 2010). Among
them is the branching factor (BF) policy, which expands the
side with the smaller branching factor. Similarly, in the case
of asymmetric heuristic the jump if larger policy for node
N(x, y) chooses to expand x (y) if h(x, y) > h(y, x) (and
vice versa). Another jumping policy that we introduce here
is called the alternating policy, or always jump, which at the
odd levels expands the forward side and at the even level
expands the backward side.

Figure 2 shows all these policies in a policy space tree.
Nodes of this tree correspond to the different order of ex-
pansion actions. At each step, moving left corresponds to a
forward expansion and moving right corresponds to a back-
ward expansion. Each path from the root of this tree to a leaf
of level d corresponds to a given jumping policy. The three
simple policies described above are shown in this tree. Reg-
ular unidirectional search (never jump) is to always go left.
Backwards search (jump only at root) is to always go right.
The alternate policy is shown in the middle were the left and
the right children are taken alternately.

SBS should be seen as a general paradigm. On top of SBS
we should first specify the jumping policy which decides
which side to expand for each of the nodes. Given such a
policy, a search tree is induced. At any node N(x, y) the
remaining search effort can be estimated by a front-to-front
heuristic function, h(x, y), estimating the distance between
x and y. This search tree can then can be searched using
any search algorithm such as breadth-first search, A∗, IDA∗

etc. Such algorithms are labeled by SBS-A∗, SBS-IDA∗ etc.

2The term jump comes for an earlier version of SBS called dual
search (Zahavi et al. 2008) where changing the direction of the
search resulted in jumping to the so called dual state. Here we do
not actually jump as the two states are at hand. The policy needs to
decide which of these to expand and may jump from side to side.



FW

FW

FW FW

FW

FW

BW

BW BW

BW BW BW

never

jump
jump

at root

always

jump

Figure 2: Some examples of jumping policy: always jump (always
expand FW direction), jump at root (always expand BW direction),
always jump (alternately expand FW and BW directions).

The optimality of the solution is naturally guaranteed if an
A∗-based search is activated on such a tree, employing an
admissible front-to-front heuristic function.

Enhanced SBS
In this section we present our enhanced-SBS-A∗ (labeled
eSBS-A∗). eSBS-A∗ is based on four interdependent en-
hancements to basic SBS-A∗ (as described in (Felner et al.
2010)) which greatly speed up the search. We describe each
of them in turn in the following subsections. Based on these
enhancements, we will then introduce our new algorithm
eSBS-H (a hybrid between eSBS-A∗ and SBS-IDA∗).

Referencing states with pointers

STTsDOUBLE NODE SEARCH SPACE

a

b
c

d
z

F

a z

b z c z d z

B

Figure 3: Representation of nodes in classic SBS (left) and in
eSBS (right), using pointers to the states stored in the STTs.

A basic implementation of SBS-A∗ explicitly stores two
states inside each node (see Figure 3.left). The key ingre-
dient of eSBS-A∗ is based on the simple observation that
the number of states seen during the execution of SBS is
greatly smaller than the number of generated nodes, since
the same state will be contained in many different nodes.
The number of nodes grows quadratically with the number
of states as each pair of states from the two frontiers, respec-
tively, can potentially have their own node. Therefore, the
first enhancement is not to maintain states inside nodes, but
just their references through the use of pointers. This idea is
shown in Figure 3.right. Forward and backward states that
are seen during the search states are stored inside two state
transposition tables (STT), named Forward STT (FSTT) and
Backward STT (BSTT), respectively. Nodes of the SBS-A∗

search tree are stored in an OPEN list but such nodes simply
contain two pointers, one to a state in the FSST and one to a
state in BSST.

There is an immediate memory benefit in domains where
a state description is larger than the size of a pointer. How-
ever, the main purpose of storing state pointers is to obtain
further speedup and pruning via our pruning and caching
techniques, described below. These cannot work with a ba-
sic implementation of SBS-A∗.

Parent pointers and best-g update
An additional reduction in the number of stored pointers can
be obtained by moving parent pointers from nodes to states
within the STT. In this way, each state will contain a pointer
to its predecessor. Thus, while the same state occurs many
times inside nodes, there will be only one parent pointer for
each state. This might cause a quadratic reduction in the
number of pointers. These parent pointers will be used to
reconstruct the solution path once the algorithm has termi-
nated successfully.

Using such parent pointers introduces a problem as par-
ent pointers are no longer unique to a given node: two
nodes sharing the same state will now share the same parent
pointer. To guarantee admissibility we must ensure that the
pointed parent of each state lies on the optimal path. This can
be obtained by providing each state with a variable, called
best-g, that keeps track of the lowest observed cost, from
the corresponding first state (start or goal, depending on the
direction) to the state itself. The parent pointer will be up-
dated whenever best-g is updated as follows. When generat-
ing a new node, it is necessary to check whether each of the
two states can be found in the appropriate STT. If a state had
not yet been seen, it would be saved in the respective STT
and its best-g would be initialized to the total cost of ac-
tions that originated it. If the state was already in the STT, it
must be checked whether its new g-value is smaller than the
previously recorded best-g. In such case, the state must be
updated by resetting the best-g and the pointer to the parent
state.

Duplicate detection and best-g pruning
Typically, when search algorithms expand a node N they do
not generate the parent of N (this is usually done by keeping
the operator that generated N and not applying its inverse to
N ). As just explained, in eSBS two operators (in the form
of pointers) are kept for N(x, y), one for each of x and y.
When a node is expanded from its forward (backward) side,
the inverse of the operator that was used to first reach x (y)
is not applied.

Furthermore, best-first algorithms like A∗ store OPEN
and CLOSED lists and usually perform duplicate-detection
(DD) as follows. When a node is generated, it is searched
over both the OPEN and CLOSED lists: if the same node al-
ready exists in these lists, we keep the copy with the small-
est g-value and prune the other node3. In SBS, a trivial du-
plicate detection technique would be to check whether the

3Strictly speaking, if the heuristic is consistent then only nodes
in OPEN should be checked because nodes that were already ex-
panded and moved to CLOSED are guaranteed to already have the
best g-value. If, however, the heuristic is inconsistent both OPEN
and CLOSED should be checked and nodes from CLOSED might
be re-opened (Felner et al. 2011).



a pg=3

g=4
PRUNED

a q N

M

Figure 4: An example of best-g pruning.

same node already exists in OPEN or CLOSED. However,
since there are O(V 2) possible nodes that can be created out
of all possible pairs of states, this is not enough.

An improved DD technique which we call best-g pruning
is as follows. During node generation, whenever the g value
of an already seen state a (both in the forward or backward
direction) is greater than its current best-g value, we know
that this node lies on a suboptimal path and all its descen-
dants would fail the best-g check anyway: thus, this node
can be pruned from OPEN. In other words, duplicate prun-
ing is done for each frontier of the search on its own. But,
these pruning have mutual effects as duplicates states will
never be added to a new generated node. This technique is
shown in Figure 4. State a was first seen in node M = (a, p)
with g = 3: when seen later inside node N = (a, q) with
g = 4, node N can be pruned since it necessarily lies on
a suboptimal path. Within eSBS-A∗ search, including in the
OPEN set such a suboptimal successor node, obviously does
not lead to a final optimal solution, but it could lead to a great
waste of computational resources.

Successor caching
The improvements which have been presented so far rely on
the fact that the number of generated nodes greatly domi-
nates the number of states stored in the STTs. This obser-
vation implies that the same state can appear in many dif-
ferent nodes, and thus the successor function may be exe-
cuted multiple times on the same state. We exploit this con-
dition by adding to each state in the STT a list of pointers
to its successor states. When a state s is first generated, its
successor pointers are set to NIL. The first time the succes-
sor function is called on s (when a node including s is ex-
panded) we update all the successor pointers. Before calling
the successor function we check whether the successors are
already available, in which case we simply return the cached
pointers. This technique, that we call successor caching has
a strong contribution in reducing the number of executions
of the successor function. This greatly reduces the resources
required to generate the successors, which might be costly in
a real-world problem. For example, successor states could
be obtained by calling a third-party web service (e.g. a
Google Maps API call) that may require important finan-
cial resources (e.g. subscriptions, bandwidth). On the other
hand, caching successors increases memory consumption:
since we add a pointer for each successor, the overhead is
proportional to the branching factor of the problem. Hence,
each domain introduces a different memory vs. speed trade-
off, and the use of successor caching should be evaluated

beforehand.
Our resulting eSBS-A∗ algorithm is therefore SBS-A∗

coupled with all the enhancements described above: state
referencing, parent pointers, best-g pruning and successor
caching. These enhancements enable a large speedup in the
search as well as a reduction in the amount of memory.

eSBS-A∗ lite
The best-g pruning technique detects and prunes those du-
plicate states within each frontier where one copy of a given
state had a smaller g-value than the other copy. But, if both
copies had the same g-value, the resulting node must be gen-
erated. Therefore, the same node (with the same g-value) can
be generated via different paths. When keeping OPEN and
CLOSED lists of nodes, the traditional trivial node pruning
can detect such duplicate nodes.

However, with eSBS-A∗, the use of best-g pruning tech-
nique might already detect many duplicate nodes and only
few of them are pruned by the trivial duplicate pruning. For
this reason, we propose also a special version of eSBS-A∗,
named lite, which does not use a CLOSED list at all, and
moreover does not perform the trivial duplicate detection in
the OPEN list, but only relies on best-g evaluations to prune
the search. The experimental results will confirm the effec-
tiveness of this variant, which produces an algorithm that
generates more nodes than plain eSBS-A∗, but is faster and
uses less memory. The optimality of this lite algorithm can
be easily proved as well.

eSBS-H: a hybrid between A∗ and IDA∗

The enhancements we described above were developed for
SBS-A∗, but they might be interleaved with other algorithms
too. We now present a new algorithm, called eSBS-H, which
is a hybrid between eSBS-A∗ and SBS-IDA∗.4 eSBS-H ex-
ploits all the computational improvements of eSBS and re-
sults to be a very smart compromise between computational
speed and memory consumption.

Like SBS-IDA∗, eSBS-H does not employ an OPEN list
to decide which node to expand next and it uses an iterative
deepening approach on the double node search tree. How-
ever, like eSBS-A∗, eSBS-H stores and maintains the STTs
for the two search frontiers. Thus, all the above methods,
parent pointers, best-g pruning and successor caching can
be still performed within eSBS-H. In fact, eSBS-H acts like
IDA∗ with transposition table, but its transpositions are not
in the form of nodes but in the form of states. eSBS-H can
also be seen as a further step of eSBS-A∗ lite. While eSBS-
A∗ lite does not use the CLOSED list, in eSBS-H both the
CLOSED and OPEN lists are not used and the search pro-
ceeds according to the IDA∗ approach, but, instead of push-
ing/popping nodes in a stack which is newly re-generated
on-the-fly at each iteration, it stores the forward/backward
states in two STTs, as in eSBS-A∗. In this way, by exploiting
the successor caching technique, at each new iteration of the
algorithm at depth d, the whole subtree of depth d−1 will be

4In fact, it can be seen as the iterative deepening implementa-
tion of eSBS (thus eSBS-IDA∗), but we prefer to call it a hybrid to
highlight the fact that it combines features of both A∗ and IDA∗.



immediately available and would not need to be generated,
but just accessed via the successor pointers. Furthermore,
g-pruning is also available. Thus, while the search strategy
is that of iterative deepening, eSBS-H exploits many of the
benefits of keeping the STTs.

Complexity issues
We now compare the time and space complexities of the dif-
ferent algorithms. The number of search nodes generated by
eSBS-A∗ and SBS-IDA∗ grows exponentially with the depth
of the solution. Similarly, we can observe from Figure 3 that
eSBS-H will generate bk nodes at each level k and will ter-
minate at a search depth of d, hence the number of generated
nodes for eSBS-H is: O(

∑d
k=1 b

k) = O(bd).
The time complexity depends mostly on the number of

generated nodes, thus for all optimal heuristic search algo-
rithm, this complexity is O(bd). Of course, in practice SBS-
IDA∗ will generate the largest number of nodes as it does
not perform any kind of duplicate detection and it generates
many nodes more than once in the different iterative deep-
ening iterations. On the other hand, eSBS-A∗ generates ev-
ery node at most once and performs full duplicate detection,
and it will thus generate the least amount of nodes. eSBS-
H is a hybrid: it performs the best-g duplicate pruning but
generates nodes in an iterative deepening manner. Different
constants are associated with each of these algorithms and as
we will see below, eSBS-H has the best actual CPU time. In
addition, the caching technique described in Section greatly
contributes to speed up the computation, as the experimental
section will highlight.

Now, let us consider the memory complexity. Recall that
eSBS-A∗ stores both the OPEN and CLOSED lists as well
as the STTs while eSBS-H only stores the STTs. Assume
we employ the alternate jumping policy (which expands the
forward state at one level and the backward at the following
one). Only those states corresponding to the successors of
either the forward or the backward states will be generated
in the relevant STT, heading to:

Level 0→ 2 new states
Level 1→ b new states (fw expansion)
Level 2→ b new states (bw expansion)
Level 3→ b × b new states (fw expansion)
Level 4→ b × b new states (bw expansion)
. . .

Level d-1→ b× b× . . .× b︸ ︷︷ ︸
d/2 times

new states (fw expansion)

Level d→ b× b× . . .× b︸ ︷︷ ︸
d/2 times

new states (bw expansion)

Thus, the overall number of stored states in the STTs will
be:

O(

d/2∑
k=1

(bk + bk)) = O(2

d/2∑
k=1

bk) = O(bd/2)

since the search process will store 2 ·bk states every two lev-

Algorithm Nodes States Total
eSBS-A∗ 2 · cp bd cs · 2 · bd/2 bd

eSBS-H 2 · cp d cs · 2 · bd/2 bd/2

SBS-IDA∗ 2 · cp d - d

Table 1: Memory complexity comparison.

els5. Assume that cp is the constant memory allocated for a
pointer and cs is the constant memory needed to store a state.
While cs is mainly problem-dependent, cp depends primar-
ily on the hardware/software implementation. If cs ≤ cp
eSBS-H will not reduce memory consumption, since the
overhead of maintaining pointers to the states would be
greater than the advantage of reducing the number of stored
states. Anyway, in most problems we can expect cs being
much greater than cp, heading to considerable memory sav-
ings.

The space complexity of the different algorithms is sum-
marized in Table 1 . The first column corresponds to the the
number of stored nodes. eSBS-H and SBS-IDA∗ are both
based on depth-first search and thus only need memory lin-
ear in d. By contrast, eSBS-A∗ needs memory exponen-
tial in d. The second column presents the number of stored
states and the third column is the total asymptotic complex-
ity. Given modern memory capacities, SBS-IDA∗ essentially
needs almost no memory, and thus does not exploit the avail-
able memory. By contrast, eSBS-A∗ needs memory which
is exponential in the depth of the search and this may be be-
yond the abilities even of modern machines. Clearly, eSBS-
H offers a nice compromise and potentially only needs mem-
ory which is the square root of the memory needs for eSBS-
A∗.

Anyhow, it should be underlined that the number of gen-
erated nodes and stored states, and therefore the ratio be-
tween the memory requirements of different algorithms, will
highly depend, on the adopted jumping policy and more im-
portantly on the heuristic function guiding the search. We
can predict that with no heuristic information the number of
states can be effectively estimated as twice the square root
of the number of generated nodes. With increasing heuristic
information this ratio will grow, slightly reducing the effi-
ciency of the proposed framework, and in the trivial case
of domains with perfect information, the number of states
will match the number of nodes. This hypothesis can be eas-
ily proved by running eSBS-A∗ and eSBS-H with increas-
ing heuristic quality. We have done this for the 8-puzzle.
With h = 0 (no heuristic information), the ratio between
the number of states and the square root of number of nodes
generated by eSBS-A∗ is 3.3, whereas with the misplaced
tiles heuristic this grows to 7.3 and with Manhattan distance
it reaches 12.7. This data show that for a weaker heuristic
we are much closer to the square root bound. Similarly, with
eSBS-H these three ratios correspond to 2.4, 5.4 and 12.2,
respectively.

Another feature that can strongly affect the states-vs-

5More precisely, the number of new states would be bkfw + bkbw,
if the branching factors along the two directions were different.



nodes ratio is the jumping policy. It is easy to prove that the
square root ratio could be guaranteed only with a perfectly
balanced policy (as the alternate policy), where both direc-
tions are equally explored. On the other hand, with a never-
jump policy (which reproduces a single-direction search) the
number of states would match the number of nodes and,
thus, eSBS would provide no added value. Any other jump-
ing policy would fall between these two extremes.

The experimental results presented in the forthcoming
section will confirm the intuition that the number of differ-
ent states that an eSBS search encounters is substantially
smaller than the number of visited double nodes. This ob-
servation is crucial to understand the properties of the model
and explain its capability to improve heuristic search. As a
consequence, the more information will be stored in the state
rather than in the node, the greater will be the gain of our
new approach.

Experiments
We performed experiments on the Fifteen puzzle, the Pan-
cake puzzle and on the Room Maps data set. All tests were
run on a 3GHz processor with 4MB cache, and 16GB of
RAM. We want to point out that, for each considered algo-
rithm, we used the same implementation in all the tested do-
mains, just adapting the state representation and the heuris-
tic function computation. Hence, we employed a very gen-
eral implementation with no domain-dependent tricks to be
more efficient. Nevertheless, for this reason, some algo-
rithms might be slower in CPU time if compared to ad-hoc
implementations with domain dependent enhancements for
some of the considered domains.

Fifteen puzzle
In our first domain, we experimented on the 100 random in-
stances of the 15 puzzle first used in (Korf 1985). We com-
pared the following algorithms: unidirectional A∗, SBS-A∗,
SBS-IDA∗, eSBS-A∗, eSBS-A∗ lite, unidirectional IDA∗,
SBS-IDA∗, eSBS-H and also unidirectional IDA∗ with a
transposition table (IDA∗

tt). For each problem instance we
recorded the number of states stored by eSBS-H in the two
STTs and then allowed (IDA∗

tt) to store exactly the same
number of states. The intent of implementing IDA∗

tt) is to
compare our framework with standard transposition tables,
with equal memory requirements. We employed the always
jump policy (labeled A), but also tested the impact of the
branching factor policy (BF) (choose to expand the side with
expansion the lower BF) and, additionally, we also tried an
enhanced version which uses the BF policy but in cases of a
tie it uses an alternate policy (this is labeled BF/A). Table 2
summarizes the performance of the different algorithms with
the Manhattan distance heuristic. The results are averaged
over the 83 configurations solved by all the algorithms (top)
and for those who could also solve all 100 instances (bot-
tom) where IDA∗ exactly replicate those reported in (Korf
1985). SBS-A∗ only solved 77 configurations out of 100,
running out of memory on the remaining. Thus, for SBS-A∗

the results on the 83 configurations are based only on these
77 instances. In practice, for the entire 83 configurations the
numbers are a little higher.

Algorithm Policy Nodes States Time
83 instances

A∗ 7,911,967 7,911,967 666,259
SBS-A∗ A 14,758,988 14,758,988 245,609
eSBS-A∗ A 16,162,187 250,278 114,453
eSBS-A∗ lite A 21,046,781 250,379 78,386
IDA∗ 88,470,043 – 70,051
IDA∗

tt 87,703,982 355,371 142,711
SFBDS-IDA∗ A 63,391,897 – 90,491
SFBDS-IDA∗ BF 40,270,972 – 60,333
eSBS-H A 46,208,977 355,371 16,896
eSBS-H BF 17,165,052 4,237,163 25,297
eSBS-H BF/A 28,057,228 535,756 12,010

100 instances
IDA∗ 363,028,080 – 287,770
IDA∗

tt 358,775,931 742,963 633,094
SFBDS-IDA∗ A 239,252,329 – 342,321
eSBS-H A 164,027,089 742,963 58,559
eSBS-H BF/A 92,339,888 1,179,106 38,078

Table 2: Results on the 15-puzzle. Time is measured in ms.

The experimental results clearly show the benefits of the
eSBS variants. The first four lines compare four A∗ versions:
unidirectional A∗, SBS-A∗ and the eSBS-A∗ variants. The
results on the A∗ versions show that all SBS versions gener-
ated more nodes than unidirectional A∗. This phenomenon
was well studied in (Felner et al. 2010; Zahavi et al. 2008)
and is due to the penalty of jumping (Zahavi et al. 2008) and
the task blowup (Felner et al. 2010). However, clearly, even
though more nodes were generated by eSBS-A∗ and eSBS-
A∗ lite the number of states stored was significantly smaller
and the total CPU time was reduced by up to a full order
of magnitude. The next three lines compare IDA∗ to SBS-
IDA∗, replicating the results shown by (Felner et al. 2010).
SBS-IDA∗ generates a factor of 2 less nodes and much of
it reflects in the CPU time. The three subsequent lines show
the behavior of eSBS-H with the different policies, on the
83 easy configurations. eSBS-H is up to 6 times faster than
unidirectional IDA∗ and up to 5 times faster than SBS-IDA∗

at the cost of slightly larger memory needs due to storing
the STTs. It only needs to store 535,756 states compared
to 16,162,187 nodes plus 250,278 that A∗ stores. The effi-
ciency of eSBS-H increases when we report results on all
100 instances. For the best jumping policy, eSBS-H gener-
ates a factor of 4 less nodes than IDA∗ and the running time
is faster by a factor of 7.5.

It is very interesting to notice that, when coupling the
algorithm with a smarter jumping policy, eSBS-H stores a
larger number of states while generating a smaller number of
nodes: this happens because using the BF policy we expand
the forward state if bfw ≤ bbw, and therefore the many tie-
breaks between bfw and bbw are all resolved in favor of the
forward direction, which means that the behavior of eSBS-H
(BF) is in this case somehow closer to plain IDA∗. This ex-
planation is confirmed by the results obtained when adopting
a mixed policy, that we name BF/A, which still employs BF,
but this time solves the tie-breaks using an alternate policy.



Algorithm Nodes States Time
A∗ 2,615,014 2,615,014 24,152
SBS-A∗ 4,279,104 4,279,104 29,204
eSBS-A∗ 2,964,043 390,250 11,912
eSBS-A∗ lite 2,964,043 390,250 11,824
IDA∗ 17,388,654 – 20,554
SBS-IDA∗ 13,041,418 – 27,300
eSBS-H 12,945,026 1,275,697 10,613

Table 3: Results on the 50 Pancake puzzle data set. Time in
ms. Results are averaged on 99 configurations.

Pancake puzzle
The N -pancake puzzle is a sorting problem, where the goal
is to order the N integer numbers (i.e., pancakes of differ-
ent sizes) and the allowed moves are permutations of the
first k = 2, . . . , N (i.e., flipping the top k pancakes upside-
down). Therefore, there is a constant branching factor of
N−2 (if not considering the parent). We employed the GAP
heuristic, recently shown to be the state-of-the-art within
this domain (Helmert 2010), which can be easily extended
to a front-to-front framework. The GAP heuristic iterates
through the state and counts the number of consecutive pan-
cakes who are not consecutive in their numbers. For each
of these cases an unique operator must be activated on the
optimal path. Thus, this heuristic is admissible.

We performed experiments with N ranging from 10 to 50,
and using 100 random instances for each value of N : Table 3
shows the results for the 50-pancakes case on 99 cases that
could be solved by all variants. We did not use a higher of
number of pancakes (which was up to 60 in (Helmert 2010)),
because that would have limited the number of configura-
tions to compare with A∗, which often runs out of memory
with higher values of N . The jumping policy was the al-
ternate policy (A). The results on the A∗ versions (top of
the table) again show that all SBS versions generated more
nodes than unidirectional A∗. However, a large reduction of
more than a factor of 2 was obtained in CPU time due to the
caching and referencing techniques we used.

SBS-IDA∗ (bottom of the table) generated more nodes
due to the lack of DD but its constant time per node is much
smaller. eSBS-H generated fewer nodes and was the fastest
algorithm among all variants. On the 50 puzzle, the average
computational time of eSBS-H is half of that of plain IDA∗

with GAP heuristic (Helmert 2010).
It should be noted that the Pancake puzzle with GAP

heuristic is not particularly favorable for our algorithm, since
the heuristic is extremely well informed (the difference be-
tween the initial heuristic and the goal is 0.64 for N=50 us-
ing our 100 random puzzles); as it has been explained in
the complexity analysis section, a scenario with perfect (or
almost perfect) heuristic function is not the configuration
where our framework can show its advantages at best.

Room Maps
A room map consists in a grid of rooms with random doors
between them. Our experiments are performed on 5 differ-
ent maps, obtained from the data set used in (Sturtevant et

Algorithm JP Nodes States Time Wint

Plain setting
A∗ 8,592 8,592 70.0 –
SBS-A∗ A 461,711 461,711 11,041.1 –
SBS-A∗ BF 1,293,980 1,293,980 30,651.1 –
eSBS-A∗ A 26,347 1,378 74.4 55 %

Random-weighted setting
A∗ 8,831 8,831 70.9 –
SBS-A∗ A 500,689 500,689 12,356.8 –
SBS-A∗ BF 1,381,780 1,381,780 34,136.6 –
eSBS-A∗ A 12,594 1,437 70.3 7 %
eSBS-A∗ lite A 12,294 1,419 42.2 96 %

Table 4: Results on the room maps data set. JP stands for
Jumping Policy. Top: plain setting with octile heuristic also
adopted in (Felner et al. 2010). Bottom: setting with random-
weighted edges. Time is measured in ms. Wint indicates the
percentage of configurations where each algorithm is faster
than A∗.

al. 2009; Felner et al. 2010), each having 32×32 rooms of
size 7×7 and random paths that connect the rooms. In this
domain IDA∗ would be inefficient due to many cycles and
to the varying costs: for the same reason our hybrid algo-
rithm is also inefficient in this domain. We concentrate on
the variants that keep an OPEN-list.

We performed two kinds of experiments, always using the
octile heuristic. The first setting is the one adopted by (Fel-
ner et al. 2010), where a cardinal move costs 1 and a diago-
nal move costs

√
2. In the second setting (“random-weight”

room maps) we modified the map to better simulate real
world scenarios where there are more than just two possible
discrete values (1 or

√
2) for each move cost. In real sce-

narios the cost of each path depends on many details, such
as road steepness, vehicle speed or the presence of obsta-
cles, and it is therefore very unlikely to have exactly equal
costs for many different edges. To simulate this, for each
edge (i, j) we added a small random constant wij (where
wij ∈ [0, 10−2], small enough not to reduce the information
of the octile heuristic) to the cost of move i → j. In both
settings we used 500 random start/goal pairs (100 for each
room map). Results are shown in Table 4.

The first setting presents a huge number of duplicate
nodes mostly sharing the same g-value which makes the
lite version of eSBS-A∗ not suitable, since, without using
a CLOSED list, it cannot perform duplicate detection of
nodes. Basic SBS-A∗ performs extremely worse than A∗ and
eSBS-A∗, visiting a huge number of nodes, which confirms
the results obtained in (Felner et al. 2010). This happens be-
cause the room maps domain suffers of the tasks-vs-nodes
blowup (see (Felner et al. 2010)), a condition which only
marginally affects our eSBS-A∗ algorithm which uses the
best-g-pruning technique. eSBS-A∗ overcomes this prob-
lem: it runs slightly faster than A∗ on 275 configurations
out of 500 (55%), even if it is slower on average (70.0 vs.
74.9 ms).

In the second setting, again SBS-A∗ performs worse due
the the blow-up problem. However, best-g pruning is much
more effective in this setting (since there are less ties for



g-values) and eSBS-A∗ lite outperforms A∗, running faster
on 481 configurations (96%) and reducing average execution
time by a factor of almost 2 (42.2 vs. 70.9 ms). In this setting
the memory load of eSBS-A∗ gains scalability, and strong
speed benefits derive from pruning and caching.

Moreover, it can be noticed that, in both settings, using the
BF policy produces weak results, similarly to what happened
in (Felner et al. 2010). This can be explained with the fact
that, in the room maps, states with a low branching factor
correspond to points close to walls in the map, and therefore
they should not be preferred for expansion.

Summary and conclusions
Single-frontier Bidirectional Search (SBS) was recently in-
troduced as an efficient front-to-front bidirectional search
framework. In this paper we presented an enhanced version
of the SBS search paradigm, which we called eSBS, by in-
troducing the idea of state referencing within nodes, which
heads to efficient techniques for pruning nodes and caching
state successors. As a result, eSBS-A∗ overcomes many of
the limitations of SBS-A∗ . The lite version has further po-
tential to reduce the memory and the CPU time. Experi-
mental results conducted over a range of different domains
showed the great advantage of the eSBS-A∗ variants over
the previous SBS-A∗.

A second contribution of this paper was to present a new
search algorithm, named eSBS-H, which is a hybrid be-
tween eSBS-A∗ and SBS-IDA∗: when coupling the iterative
deepening approach of IDA∗ with the eSBS framework, we
obtained a very smart compromise between computational
complexity and memory needs, which resulted to be an ex-
tremely efficient solution in all the tested domains. In partic-
ular, eSBS-H has a memory complexity which is the square
root of A∗ and eSBS-A∗

Future work will further investigate these algorithms with
other jumping policies and will come up with more SBS
variants.

Acknowledgments
We would like to thank Giovanni Soda and Carlos Linarez-
Lopes for fruitful discussions and comments on an early ver-
sion of this paper.

References
Felner, A.; Moldenhauer, C.; Sturtevant, N.; and Schaeffer,
J. 2010. Single-frontier bidirectional search. In AAAI.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N. R.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. Artif. Intell. 175(9-10):1570–1603.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In SoCS 2010. AAAI Press.
Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic
search reconsidered. Journal of Artificial Intelligence Re-
search 7:283–317.
Korf, R. 1985. Depth-first iterative-deepening: an optimal
admissible tree search. Artificial Intelligence 27(1):97–109.

Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. In AAAI, 609–614.
Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008.
Duality in permutation state spaces and the dual search al-
gorithm. Artif. Intell. 172(4-5):514–540.


