Markov Logic Improves Protein (#-Partners Prediction

Marco Lippi
Paolo Frasconi

LIPPI@QDSI.UNIFI.IT
P-FQDSI.UNIFI.IT

Dipartimento di Sistemi e Informatica, Universita degli Studi di Firenze, Italy

Keywords: Protein structure, Markov logic networks, link prediction

Abstract

Protein [-partners prediction is an impor-
tant problem in protein structure that can
be naturally formulated as supervised link
prediction. We show that prediction perfor-
mance can be improved using a hybrid so-
lution based on Markov logic networks with
grounding-specific weights.

1. Introduction

Protein secondary structure is determined by hydro-
gen bonds between side-chain atoms. The two most
common structures are a-helices, where amino acids
are closely coiled, and -sheets, where two or more ex-
tended strands of the macro-molecule are arranged in
a flat conformation. Adjacent strands can either run
in the same (parallel) or in the opposite (anti-parallel)
direction. In most cases, each (-residue is linked by
hydrogen bonds to one or two (-residues in different
strands of the same chain, called its [-partners. An
example of a B-partnership graph is shown in Fig. 1a.

Prediction of g-partners from protein sequence is an
important task towards protein structure prediction
and can be naturally formulated as supervised link
prediction in a graph whose nodes are protein residues.
Baldi et al. (2000) started from amino acid sequences
and trained feedforward neural networks as binary
classifiers on residue pairs, with inputs consisting of
two windows of residues, each centered around one of
the target residues. A difficulty of casting link pre-
diction into a binary classification problem on pairs
is that the resulting data set will be highly imbal-
anced. For examples, Baldi et al. (2000) reported
37,000 positive examples and 44 million negative ex-
amples for a data set of 826 chains (the number of
non-partner pairs grows quadratically with the chain
length). Additionally, treating pairs of residues as
iid examples is prone to higher generalization error

Preliminary work. Under review by the International Work-
shop on Mining and Learning with Graphs (MLG). Do not
distribute.

since linkage between targets is not taken into account
in the learning process. Cheng and Baldi (2005) as-
sumed both the amino acid and the secondary struc-
ture sequences to be known; they employed a different
architecture called 2D-recursive neural network (2D-
RNN), in which local inputs are also pairs of profile
vectors and outputs associated to pairs of residues.
A 2D-RNN has the structure of a two-dimensional
grid and is trained with binary targets that corre-
spond to the adjacency matrix of the (-partnership
graph. Cheng and Baldi (2005) added a non-adaptive
post-processor that collectively reassigns 3 links by
means of an efficient graph matching algorithm enforc-
ing some physical constraints derived from background
knowledge. The resulting BetaPro predictor (Cheng &
Baldi, 2005) reaches state-of-the-art performance.

However, BetaPro predictions can still contradict
background knowledge and in some cases several errors
are introduced while attempting to satisfy generic con-
straints. An example is shown in Fig. 1b for PDB entry
1BIK, where a single misprediction from the BetaPro
first stage is amplified by the second stage resulting
in a completely wrong set of partner assignments be-
tween strands A and C, which are in facts spatially far
away. In order to further improve prediction accuracy
for this class of bioinformatics problems, we advocate
the use of statistical relational learning algorithms that
can be collectively trained and that enforce constraints
derived from background knowledge during learning.
In particular, we focus here on Markov logic.

2. Methods

Given a set of first-order formulas F, a Markov logic
network (MLN; see (Domingos et al., 2008) for a re-
view) defines a probability on each possible world. In
the case of discriminant learning we are interested in
here, we distinguish between evidence atoms (associ-
ated with predictive variables) and query atoms (as-
sociated with predictions). In this setting, an MLN is
a model for the conditional distribution of the set of
query atoms Y given the set of evidence atoms X, that

Markov Logic Improves Protein S-Partners Prediction

A\ T15— 516 — R17 — Y18 — F19 — Y20 — N21 C W — 2 — 10— N —» 175 — 506 — D

() B D
3200318730820 Rg 28 Bl c27 8 A26 N +— 3 +— 8 +— [—] «— B — [

A T15— 516 — R17 — Y18 —» F19 — Y20 — N21 Fa2

(b) --—-~—-~—-~—@~—-~— D77 +— 6 +— IS +— WA +— | -E-‘_-

D EB—EE—NE— EE— EE— -
T15— 516 —» R17 — Y18 — F19 — Y20 — N21 — Q72— L73 — W74 — A75 — F76 — D77
© | %] | |
B D
328 0310 F 30 R T29Rg 26 B c278eg A 26 3 — G +— [—[EB — i — B2 — R

Figure 1. (a) B-partnership graph of PDB entry 1BIK. (b)
(B-partners predicted by BetaPro. (c) refined prediction
obtained with Markov logic and grounding-specific weights
derived from BetaPro predictions. Node colors correspond
to strands.

can be conveniently expressed as a log-linear model:
rier, vt
1

- 1)
being w; a real-valued weight attached to formula Fj,
Fy the set of formulas that contain query atoms, and
n;(z,y) the total number of groundings of F; that are
satisfied in world (z,y).

P(Y=y|X=2) =&

It is often useful to declare formulae with constant-
specific weights. This can be done for example in the
Alchemy system (http://alchemy.cs.washington.
edu/) on a per-variable basis, simply by macro ex-
panding formulae containing variable names prefixed
by the plus sign. In our application (like several other
in bioinformatics), accurate predictions need a non-
linear combination of several features obtained from
windows of amino acids. One of the key formulae in
this case would be

Window(i,wi) A Window(j,wj) — Partners(i,j) (2)
where variables wi and wj represent the two win-
dows of amino acids centered around positions ¢ and
j, respectively. Unfortunately, associating constant-
specific weights to variables whose configurations take
values on a large set is not practical. In (2) this would
lead to a number of parameters growing exponentially
with the windows size. Splitting the above formula
into separate formulae for each residue position would
reduce the number of weights but effectively gener-
ate a linear model in the amino acid features, while
nonlinear combinations are known to be important for
achieving high accuracy. In addition, performance is
known to increase by replacing amino acid symbols in
the window with real vectors encoding evolutionary
information (e.g. in the form of multiple alignment
profiles), but constant-specific weights cannot be im-
mediately associated with real-valued variables.

We propose here to re-parameterize the MLN by com-
puting each weight as a function of the specific ground-

ing of selected variables in the formula:
ZFiefy Zj wi(eij,0)ni;(z,y)
PY=y|X=2x)= Z (3)

where c;; is the j-th ground Conﬁguration of the se-
lected variables in the i-th formula, w; a parameterized
function returning the weight attached to each ground
formula where the selected variables are replaced by
c;j, and n;;(z,y) is the number of true groundings in
(z,y) matching c;;. Function w; can be implemented
in many ways, for example as a kernel machine or as
multilayered perceptron with input c;; and weights 0;.
Standard MLN are recovered when w; is the constant
function. In this formulation, the number of free pa-
rameters can be small even if the number of distinct
configurations c;; grows exponentially. Also, dealing
with real-valued variables becomes straightforward.

(&

Inference and learning algorithms are similar to those
used for standard MLN. In particular, the MC-SAT
algorithm can be applied for computing conditional
probabilities and the (lazy) MaxWalkSAT algorithm
for MAP inference (Domingos et al., 2008). When
w;(+) is realized by a multi-layered perceptron, it is pos-
sible to develop a learning procedure by first comput-
ing the gradient of the log-likelihood with respect to
formula weights (as the difference between counts and
expected counts of true groundings) and then propa-
gating this gradient backward through the neural net-
work. In the case of MAP inference, truth assignments
rather than probabilities are computed. Therefore,
only cases where the truth values of groundings in the
data and in the inference are different contribute non-
zero gradients. Interestingly, when applied to formu-
las that emulate the behavior of a traditional proposi-
tional learner as in (2), this setting can be interpreted
as a form of active learning where MAP inference ef-
fectively selects training examples at each iteration.

In our experiments, we took the even simpler and prag-
matic approach of using grounding-specific weights de-
rived from BetaPro first stage (the 2D-RNN), which
returns for each pair (4,5) a number p;; € [0,1] in-
terpreted as the Bernoulli conditional probability of
partnership between residues 7 and j given the cor-
responding profile windows. In order to avoid over-
predictions, BetaPro assigns a link whenever p;; > 7
with 7 < 0.5. We therefore rescaled p;; by mapping
the interval [0, 7] to [0,0.5] and [r, 1] to [0.5,1], and
then applying the logit function to the result to ob-
tain the weight in (2). Although BetaPro was trained
independently and not taking into account other rela-
tional constraints such as those developed below, it is
a highly engineered system producing state-of-the-art
predictions. Our present aim is therefore to demon-
strate how these predictions can be better exploited

Markov Logic Improves Protein S-Partners Prediction

in a statistical relational learning setting, leaving for
future work the complete integration between the two
systems with joint training.

A trick that we found useful to speedup the train-
ing procedure is the use of stochastic gradient ascent,
where formula weights are updated after computing
the gradient on the mini-batch of groundings corre-
sponding to an individual protein chain (note that
chains are independent in this application).

The query predicates of our inference process are both
residue-level partnership and strand-level partnership,
distinguishing the latter in two predicates one for par-
allel and one for anti-parallel strands. Both hard
and soft constraints were integrated in the MLN used
in the experiments. Hard constraints include simple
properties of the Partners query predicate, like anti-
reflexivity and symmetry. In addition, we forbade
bonds between two residues in the same strand, and
between a residue and two different residues belonging
to same other strand. We finally prevented crossing
edges: if (1,j) and (i +1,j+ 1) are partner pairs,
then (i +2,j — 1) is not.

Soft rules include some more specific properties of (-
sheet structures. Adjacency rules assert that if i and
j are partners, then also i +1 and j+1 [i+1 and
j — 1] are likely to be partners in parallel [anti-parallel]
strands. The rule for the frequent (-hairpin pattern
asserts that two strands separated by less than six
residues (one of which is glycine or proline) are likely
to be anti-parallel partners. Another rule is derived
from the (-a-0 pattern: if two strands surround a he-
lix, then they are likely to be parallel.

3. Results and Discussion

We used the same data set as in (Cheng & Baldi, 2005)
which consists of 916 protein chains, containing a total
number of 48,996 (-residues participating in 31,638 in-
terstrand residue pairs. The assignment of residues to
secondary structure classes is given as evidence in this
data set. The data set is already split in ten folds, so
we could reproduce the same experiments described
in (Cheng & Baldi, 2005). By re-training BetaPro,
we could retrieve its predicted conditional probabili-
ties and then use them as grounding-specific weights
for training our MLN. We used a modified version of
Alchemy with discriminative learning, and chose 3/n?
as learning rate, being n the number of 3 residues.

In Table 1 we report a paired 10-fold cross validation
comparison between the MLN and BetaPro. We re-
port precision (P), recall (R) and Fy = 2PR/(P + R)
for B-partner assignments at the residue level. The

Table 1. Results of 10-fold cross validation.

BetaPro MLN
P 38.03 £0.02 48.03 +0.03
R 44.18 £0.02 38.87 +0.02
F 40.87 £0.02 42.96 £+ 0.03
Cio | 46.6 £0.04% 54.8 £0.07%
Coo | 84.3+£0.03% 87.34+0.03%
Cso 100% 100%

difference between the F; measures is significant with
p < 0.01. The F; measure of BetaPro is essentially
identical to that of its first stage (the 2D-RNN only).
The second stage of BetaPro significantly improves the
perfect strand matches (PSM; i.e. the number of (-
strand pairs for which all the (-partnership predic-
tions are correct), from F; = 16.34 to F; = 30.91.
In this case, the denominator of precision is the num-
ber of strand pairs linked by at least one predicted (-
partnership. The MLN also significantly improves the
PSM of the underlying 2D-RNN, achieving F} = 28.18,
but is outperformed in this task by the second stage
of BetaPro. We finally measured the quality of the
coarse partnership prediction at the strand level. The
measure C, in Table 1 represents the percentage of
protein chains for which less than 2% errors are made
in the prediction of coarse links. Focusing on the high
quality predition range (error less than 10%), the MLN
correctly predicts about 8% more chains than BetaPro.

While encouraging, these results still do not fully take
advantage of the potentials of the method. An ongo-
ing line of investigation is the implementation of a hy-
brid model where multi-layered perceptrons are used
to compute the grounding-specific weights. Another
interesting direction is the implementation of a multi-
task learning scheme where S-partners are jointly pre-
dicted together with other structural properties of pro-
teins like secondary structure and solvent accessibility.

References

Baldi, P., Pollastri, G., Andersen, C. A., & Brunak,
S. (2000). Matching protein beta-sheet partners by
feedforward and recurrent neural networks. Proc Int
Conf Intell Syst Mol Biol, 8, 25-36.

Cheng, J., & Baldi, P. (2005). Three-stage predic-
tion of protein beta-sheets by neural networks, align-
ments and graph algorithms. Bioinformatics, 21
Suppl 1, 175-84.

Domingos, P., Kok, S., Lowd, D., Poon, H., Richard-
son, M., & Singla, P. (2008). Markov logic. In
L. D. Raedt, P. Frasconi, K. Kersting and S. Mug-
gleton (Eds.), Probabilistic inductive logic program-
ming, 92-117. New York: Springer.

