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ABSTRACT: Optical chemical structure recognition is the
problem of converting a bitmap image containing a chemical
structure formula into a standard structured representation of the
molecule. We introduce a novel approach to this problem based
on the pipelined integration of pattern recognition techniques
with probabilistic knowledge representation and reasoning. Basic
entities and relations (such as textual elements, points, lines, etc.)
are first extracted by a low-level processing module. A probabilistic
reasoning engine based on Markov logic, embodying chemical and
graphical knowledge, is subsequently used to refine these pieces of
information. An annotated connection table of atoms and bonds is
finally assembled and converted into a standard chemical exchange
format. We report a successful evaluation on two large image data
sets, showing that the method compares favorably with the current
state-of-the-art, especially on degraded low-resolution images. The system is available as a web server at http://mlocsr.dinfo.unifi.
it.

■ INTRODUCTION

In spite of the availability of a wide array of data exchange
formats, the vast majority of patent files and scientific papers in
chemistry and related disciplines (pharmaceutics, medicine,
biology, etc.) are still communicating information about small
molecules via structural diagrams, which are drawn with
specialized software and later embedded into electronic
documents in the form of bitmap images. These reports are
typically available online, but the information about compounds
is not machine-readable and lacks a structured representation to
enable effective indexing and searching.1,2

The problem of extracting a structured representation from
bitmap images of chemical formulas emerged in the early 1990s
when a number of software systems were developed by various
research groups.3−6 CLiDE6 developed into a commercial
product, while the IBM system described in ref 5 was granted a
US patent.7 More recent systems include refs 8−11. In
particular, OSRA10 is an open-source project. A new version
of CLiDE has been recently developed.12 AsteriX and OSRA
can also automatically analyze entire scientific articles in pdf
format and detect pictures representing chemical diagrams.
Although these systems have several distinct characteristics in

their implementation details, they follow a common design
strategy where some modules are designed to extract low-level
information from images and one or more higher level modules
are in charge of the interpretation of the extracted low-level
elements and their assembly into an annotated connection
table.

As for the low-level information extraction process, the
mentioned systems mainly differ in the algorithms which are
employed for the identification of connected components, lines,
characters, and other distinctive traits of chemical diagrams
such as solid/dashed wedges. OSRA10 performs a binarization
of the image and then applies a vectorization algorithm, by
employing the Potrace library [http://potrace.sourceforge.net/
] and several heuristic rules in order to retrieve nodes, bonds,
circles, and solid/dashed wedges, based on geometrical
properties empirically estimated. A peculiarity of OSRA is
that the test image is processed at three different scales, and
finally an empirical confidence estimation function is employed
in order to determine the best output among the three
candidates. CLiDE6,12 extracts approximation polygons from
the connected components founds in the vectorized image and
then identifies atoms and bonds starting from the end-points of
such polygon, treating as special cases more complex structures
such as dashed bonds. Even in CLiDE, the reconstruction of
the molecule is based on empirical hard-coded geometrical
rules. ChemReader9 first extracts connected components,
which are classified as either text or graphics: text is interpreted
by an optical character recognition (OCR) tool, while graphical
components are processed by a group of operators, such as
generalized Hough transform and corner detection. A simple
graph reconstruction algorithm finally assembles the found
atoms and edges into a molecule.
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Chemical background knowledge is mostly employed in the
higher level modules of these systems and, in particular, during
the graph reconstruction process. For example chemical
knowledge is used to fix valency errors (as in Kekule,́ OSRA,
and ChemReader), to interpret ambiguous situations regarding
crossing bonds, or to handle OCR mistakes (as in CLiDE and
OSRA).
One difficulty in the low-level processing phase is the

recognition of text characters. This is because most OCR
packages are designed to take advantage of dictionary lookup
and improve their accuracy by excluding clearly malformed
strings. In chemical diagrams, however, strings are often short
and subscripts are very frequent. To address this difficulty,
specialized OCR based on artificial neural network were
specifically designed in Kekule ́ and CLiDE. Another difficulty
concerns image resolution. Several parameters of the low-level
pipeline need to be adjusted to take into account the expected
size of the graphical primitives and the expected amount of
corruption due to spatial sampling. Moreover, in the case of
images found in scientific papers or patents, the resolution
expressed in dpi (dots per inch, which may be available in the
image file metadata) does not necessarily match the actual
amount of aliasing, often because molecules can be drawn at
different relative scales when pasted together with other
graphical diagrams within the same image.
In this paper, we introduce MLOCSR (for Markov logic

optical chemical structure recognizer), a method which also
follows a pipelined design strategy based on low-level and high-
level processing phases but is distinguished by several novel
algorithmic ideas. The low-level module is designed to be
resolution independent thus removing the need for an explicit
definition of the image resolution. This is achieved by
estimating the character size and the thickness of bonds and
then linking the parameters used for tuning the low-level
algorithms to these values. The character size is estimated with
a tight interplay between the OCR engine and several image
processing algorithms, designed to take into account specific
features of chemical structural diagrams.
The higher-level module is based on a Markov logic

network13,14 (MLN), used as a probabilistic first-order logic
inference engine. Chemical and graphical knowledge is
represented in our system as a collection of weighted first-
order logic formulas. Each chemical structure formula is
associated with one logical world. The output from the low-
level pipeline (for a given molecular diagram) is directly
mapped into a set of logical constants (i.e., object identifiers for
graphical elements such as points, lines, character boxes, etc.)
and a set of ground facts describing relations which hold true
on the low-level objects. Chemical primitives (atoms, bonds,

and their attributes) are finally obtained as the result of
probabilistic inference, namely by computing the most probable
world given the ground atoms extracted at the lower-level.
Performance evaluation on several public domain data sets
show that our system achieves state-of-the-art recognition
accuracy, both at the whole molecule level and at the individual
constituents (i.e., atoms and bonds) level.

■ METHODS
System Overview. Our approach for reconstructing the

structure of a chemical compound is sketched in Figure 1 and
consists of three main modules: a low-level extractor of
graphical primitives (represented as logical entities and
relations), a probabilistic logical reasoning engine based on
Markov logic, and a final stage for assembling the output
molecular graph.
The low-level subsystem takes as input a bitmap image and

extracts graphical primitives represented as a set of logical
ground (i.e., variable free) atoms. Objects of interest are three
distinct types of graphical points:

C-points: detected as intersections between lines; they
typically represent carbon atoms.
D-points: detected as end points of lines in double and
triple bonds.
T-points: detected as end points of lines terminating in a
text box.

Examples of these three point types can be seen in Figure 2b.
Several binary and ternary relations are also extracted. Binary
relations are mostly associated with lines and include:

Carbon to Carbon Lines. LineBetweenCpoints(c1, c2) is
true if c1 and c2 are C-points and a line connecting them was
detected (for example the lines highlighted in red in Figure 2c).

Figure 1. Scheme of the formula recognition system.

Figure 2. (a) Fragment of a bitmap image after binarization and
smoothing. (b) Extracted points. C1, ..., C7 are C-points, D1, ..., D8
are D-points, and T1, ..., T4 are T-points. (c) Extracted relations.
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Carbon to Text Box Lines. LineBetweenCpointAndTpoint-
(c, t) is true if c is a C-point, t a T-point, and a line connecting
them was detected (for example the lines highlighted in cyan in
Figure 2c).
Double Lines. LineBetweDpoints(d1, d1) is true if d1 and

d2 are D-points and a line connecting them was detected (for
example the lines highlighted in violet in Figure 2c).
Double to Text Box Lines. LineBetweenDpointAndTpoint-

(d, t) is true if d is a D-point, t a T-point, and a line connecting
them was detected (for example the line highlighted in magenta
in Figure 2c).
Ternary relations are used to represent collinearity of points,

for example CollinearCCC(c1, c2, c3) is true if the three C-
points c1, c2, and c3 are detected to be collinear. Twenty-six
evidence predicates are defined in our system (a complete list is
available in the Markov logic network file, see the Supporting
Information).
The information extracted at this level is however noisy.

Spurious end-points or lines may be detected for example when
the formula structure contains wedge or weaved lines, or when
textual annotations (which are not part of the formula) are
present and too close to the formula itself. In order to cleanup
information while taking advantage of geometric and chemical
knowledge, we designed a probabilistic knowledge base using a
Markov logic network (MLN). The probabilistic reasoning
procedure takes the knowledge base and the information
extracted at the low level for a particular molecule, and
produces the most likely explanation as groundings of new
logical predicates. These groundings are then fed into the final
stage which is in charge of assembling the output molecular
structure in the form of an annotated graph which can finally be
saved as an MDL Molfile.
Extraction of Low Level Entities and Relations. Gray

level images are binarized with global thresholding, that is
appropriate when dealing with computer-generated structural
diagrams15 such as those appearing in the chemical literature.
Contours are smoothed by a morphological closing operator
performed with suitable structuring elements. Connected
components (CCs) are then found on the binarized image.
Each connected component c is described by its bounding box,
having width w(c) and height h(c), and by the number of black
pixels in the component (n(c)).

At this point, the image vectorization module identifies and
localizes two kinds of low-level entities: textual symbols (such
as chemical element symbols or superatoms [Superatoms are
strings representing chemical formulas, such as SO2, COOH, or
even simply elements, such as N.]) and graphical items (such as
lines and circles). Here we take advantage of a tight interplay
between an OCR engine and several image processing
algorithms which have been especially designed to take into
account some specific features of chemical structural diagrams.
The main steps are summarized in Figure 3. The Text

Processing section describes the upper part of Figure 3
providing details on text height estimation, connected
components filtering, text box identification, and removal.
The lower part of Figure 3 is described in the Image
Vectorization section that describes the stroke width estimation
and the identification of atoms, bond lines, and aromatic
groups.

Text Processing. Most graphics recognition methods
identify textual objects by looking for CCs whose dimensions
fall within a given interval. Acceptable components are
identified by taking into account thresholds that are either
fixed a-priori or computed from statistics of components in the
input image.16 In the case of chemical drawings, the number of
characters in each image is however too limited to produce
reliable frequency estimates. Therefore, it seems appropriate to
rely also on the recognition of CCs by means of an OCR
engine [We use the open source tesseract: https://code.google.
com/p/tesseract-ocr/.] to identify the text in the image.

Text Height Estimation. The set of connected
components whose width-to-height ratio is compatible with
potential characters (α1 < w(c)/h(c) < α2) is submitted to the
OCR engine for the purpose of estimating the text height T.

1. If nitrogen (N) or hydrogen (H) atoms are recognized,
the average height of the corresponding CCs is
computed and retained as first estimate of T. These
two atom names occur frequently in structural formulas
and are hardly confused with other graphical items.
Moreover, they never appear as subscripts or super-
scripts.

2. If neither N nor H atoms are found, then T is computed
on a subset of the CCs analyzed by the OCR engine. In

Figure 3. Scheme of low level processing.
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particular, we ignore CCs that are unlikely to correspond
to characters because they are too thin (n(c)/a(c) < β1),
too dark (n(c)/a(c) > β2), too small (a(c) < γ or h(c) <
δ), or very large (h(c) > H/3 or w(c) > W/3). Here a(c)
= w(c)·h(c) is the area of c and H, W are the height and
width of the input image, respectively. The absolute
thresholds used to filter the CCs are not too critical since
the purpose here is to identify a few CCs that most likely
correspond to characters and can be used to compute T
without requiring to find all the characters in the input
image.

Subsequently, the current T value is refined taking into
account the CCs recognized as oxygen (O) with dimensions
compatible with the current value of T. This check is required
to exclude CCs corresponding to aromatic rings from the T
computation, without missing actual oxygen atoms. If no textual
characters are recognized, T is not computed and the text
processing step is terminated.
Filtering Connected Components. In this step, we refine the

set of CCs to be submitted to the OCR engine, in this case for
the purpose of character recognition. First, we remove from a
component c if

ε| − | >T h c
T h c

( )
max{ , ( )} (1)

Here the main assumption is that all characters (except
subscripts and superscripts, which are not removed by eq 1)
have the same font size, so that the estimated T can be used for
all CCs.
Second, we add to components that likely correspond to

thin characters such as uppercase I, lowercase l, and 1. As
addressed also by other systems (e.g.16,17) disambiguation of
these thin characters with respect to dashes or single bonds is
essential. To this purpose, for every CC c previously discarded
because of a low width-to-height ratio, let S(c) denote the
square region with side h(c) centered on c (see red squares in
Figure 4). We consider the following three cases:

• If S(c) and a CC ′ ∈c overlap, then c is added to .
The rationale is that a CC close to a text box is likely to
contain a character, as shown in Figure 4a.

• Else, if S(c) overlaps only with a CC ′ ∉c , then we
count the number of pixels n̅(c′) that belong to c′ and fall
within S(c). If n̅(c′) < 0.5n(c), then c is added to . For
example the right vertical line in Figure 4b would not be
considered as a text candidate.

• The last case is when S(c) does not overlap with any
other CC. This is handled as a special case: c is added to

but is subsequently accepted as a character only if
recognized as I (corresponding to a Iodine atom), as in
Figure 4c. In the example shown in Figure 4d, the line
inside the red square would not be accepted as a

character (unless the OCR engine misrecognizes the line
as an I).

At this point the OCR engine is invoked separately on each
element of . Results are interpreted in the following step.

Text Box Identification and Removal. Identification of
character strings is a classical problem in document image
analysis and has been addressed by several authors. Chemical
drawings, however, are rather special in this respect because text
strings are typically very short. For example, methods based on
the Hough transform of connected components,16,18 which
assume relatively long sequences of characters of the same
height, are not applicable. Our approach is more closely related
to methods that iteratively merge together characters and
update the thresholds when building text strings (see, e.g., ref
19). In particular, iterative grouping of characters into strings
that allows us to easily identify subscripts and superscripts. As a
major difference with respect to Su and Cai,19 grouping in our
case relies on geometric rules whose thresholds are adapted as a
function of the T value, allowing us to achieve resolution
independence. The same grouping strategy is followed for both
horizontally and vertically aligned text. Following a common
approach in graphics recognition systems (see, e.g., ref 20), we
finally remove all the CCs in recognized as text and feed the
filtered image to the subsequent graphical modules that extract
graphical entities.

Image Vectorization. The vectorization step follows the
identification and removal of text components and aims at
extracting the low-level graphical entities, such as straight
segments, from the bit-map image. The most important substep
is the identification of lines (that in chemical diagrams
correspond to bonds) from the image. According to ref 20
three main approaches can be considered for finding the lines
from the image:

1. Methods based on parametric model fitting use a line
model to detect the lines. The most used technique is the
Hough transform that is a global transformation of the
image that allows to find straight lines also in the
presence of noise (such as broken lines). Even if the
Hough transform has been used to vectorize chemical
diagrams9 it does not guarantee that close segments with
different slope would not be mixed together20 and can
provide inaccurate locations of extrema points.

2. The most widely used approach in the vectorization of
line segments is based on the extraction of the line
skeleton and its subsequent processing. Despite their
wide adoption, skeleton-based methods can generate
wrong junction points, in particular when dealing with
noisy images or low resolution ones where segments can
have a thickness of a few pixels.20

3. The last approach is based on the extraction of the
contours of the graphical objects in the image and the
subsequent matching of opposite contours.20,21 These
methods position the junction points more accurately
also in the presence of low resolution images, but are
sometimes too much dependent on thresholds and
parameters that should be hand-tuned.

The technique described in this paper adopts a contour-based
processing where the parameters depend on the estimated
stroke width (S), similarly to the text processing that is based
on the estimated text height T.

Stroke Width Estimation. S is estimated by first identifying
the strokes of the bonds with three steps.

Figure 4. Disambiguation of short bonds and thin characters.
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• Edges of graphical objects are extracted with the Canny
algorithm and potential segments are identified by
applying the Hough transform on the edge image.

• Potential segments are verified by counting the black
pixels in the segment. Segments with less than 75% black
pixels are discarded as false positives (Figure 1 left).

• Each segment is inspected at regularly spaced positions
and the number of contiguous black pixels in lines

orthogonal to the segment is used to compute S (Figure
5 right).

It is important to remark that the search made with the
Hough transform can be inaccurate. However, false positive
segments are identified and discarded in the second step while
false negative ones are not critical since in this step we do not
aim at identifying all the segments. On the other hand the
inaccurate identification of the slope and extrema of the
segments has little influence on the S computation performed
in the third step.
Atom Identification. In this step, both C-points and simple

D-points are identified. Each contour, with at least 2·S pixels, is
approximated with a polygon using the Douglas-Peucker
algorithm.22 This algorithm iteratively adds new polygonaliza-
tion points until all the contour points have a distance to the
approximating polygon lower than a predefined precision value.
In the proposed system the precision is fixed considering S
according to the following equation:

= Sprecision 2 max(2, ) (2)

In structural diagrams the contours can correspond to simple
bonds (straight segments) or to more complex items that
comprise more bonds.
Simple bonds are identified by analyzing the polygonalization

and checking all the triangles that can be defined considering
the polygonalization points. The contour corresponds to one
single bond if there is no triangle with all the sides longer than
S. The farthest approximation points in these contours are
identified and labeled as end points that could be C-points or
B-points.
Contours not recognized as simple bonds are analyzed to

look for C-points that implicitly represent Carbon atoms. For
each polygonalization point three cases can occur:

• The point can be merged with one C-point. In this case
the C-point position is updated as the average of the two
points.

• If there is a text box closer than η·T to the point, the text
is added to the list of superatoms and the point is labeled
as T-point.

• Otherwise the point is added to the list of C-point.

In some cases multiple instances of the same atom are found
in a given image. Disambiguation will be later performed by the
Markov logic network.

Bond Line Identification. Each pair of end points belonging
to the same contour that are farther than σ·S pixels is checked
to verify whether there is one segment linking the two points.
To this purpose the density of black pixels in the rectangle that
connects the points and with width equal to S is computed. If
this density is higher than a threshold, the two points are
connected with a bond line. At the end of this step collinear
touching segments are merged together.
To represent the three-dimensional arrangement of atoms

three special bonds are used, in addition to solid lines that
describe planar bonds.

Wedges. represent bonds that point out of the planar
compound toward the observer or in the opposite direction.
[What we call here wedges are sometimes in the literature also
indicated as black wedges. Conversely, what we call hash bonds
are sometimes named dashed-wedged or simply dashed. We
shorten the nomenclature in order to improve the readability of
the paper.] One wedge can be found if there are three C-points
belonging to the same contour that are linked together and
such that the area comprised in the triangle defined by these
points is mostly black. the cases with two C-points and a single
T-point, or two T-points and a single C-point are considered as
well.

Dashed Lines. represent bonds that point in the opposite
direction with respect to wedges. Dashed lines can be found by
looking for small connected components having only two end
points. These segments are then grouped together on the basis
of their distance.

Wavy Lines . are another type of three-dimensional bond
and are identified with a suitable analysis of polygonalization
points of a given contour. The details are omitted in this paper,
but the technique is similar to the approach described in ref 17.

Aromatic Group Identification. Aromatic groups are
identified by looking for circles inside polygons. The circles
are identified by looking for connected components with a
square bounding box where all the carbon points have roughly
the same distance from the square center. A new object that
corresponds to the center of the aromatic ring is then created
within the Markov logic domain.

Parameters and Thresholds Estimation. The parameters
and thresholds which are used by the low-level modules are
listed in Table 1, together with the value chosen within our
system. A cross-validation estimation of such a large number of
parameters is practically unfeasible, and therefore we relied on
tuning their values using a small subset of chemical images from
different data sets.

Figure 5. (left) Checking potential segments. (right) Computing S.

Table 1. Parameters and Thresholds Employed by the Low-
Level Modules

name value description

α1, α2 0.4, 1.75 lower/upper bound for character width-to-height ratio
β1, β2 0.1, 0.8 lower/upper bound for character pixels-to-area ratio
γ 17 minimum area for textual connected component
δ 8 minimum height for textual connected component
ε 0.33 relative height of a component for OCR submission
η 0.75 threshold for connecting text boxes to points
σ 6 multiplicative coefficient for S for identifying bonds
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Using Markov Logic to Refine Entities and Relations.
In order to reconstruct the molecular graphs, the graphical
entities extracted in the image processing stages (in particular
lines, points and text boxes) need to be mapped into the
chemical entities of interest (in particular atoms and bonds). It
is rather natural to describe this mapping by means of a set of
logical rules and constraints. However, the inherent presence of
noise makes it difficult to use classical logical inference
techniques: if noises creates contradictions, inferred con-
sequences would be meaningless. For this reason we employ
Markov logic the process of reconstruction of the molecular
graph necessitates to disambiguate atoms and bonds. The
information collected by the image processing stages can be
easily coded into a set of logic predicates, while atoms and
bonds have to follow rules and constraints, which can be
described in a natural way through probabilistic logic formulas:
Markov logic therefore represents the ideal framework for this
task.
A Markov logic network (MLN; see refs 13 and 14 for

details) defines a probability distribution over logical worlds [A
logical world, is a mapping from symbols to objects, functions,
and relations. It assigns a truth value to every ground (i.e.,
variable free) atom that can be constructed from the available
predicates and constant symbols.] in first-order logic. In
general, a (nonprobabilistic) first-order logic knowledge base
can be seen as a set of hard constraints over possible worlds: if a
world violates even only one formula, then it is impossible. In
Markov logic, violations are allowed: a world violating a formula
will be less probable, but not impossible. Every formula Fi in the
knowledge base is associated with a real-valued weight wi
expressing the strength of the constraint. The probability
distribution defined by an MLN is specified by the following
log-linear model

∑=
=

P x
Z

wn x( )
1

exp( ( ))
i

n

i i
1 (3)

where x denotes a world, ni(x) is the number of groundings of
formula Fi which are true in x, and the partition function Z acts
as a normalization factor ensuring that P is a valid distribution.
The higher wi, the more a world which violates Fi is unlikely.
MAP (maximum-a-posteriori) inference is then the problem of
determining the maximizer of eq 3, a #-P complete problem for
which however several approximate algorithms exist.
In many applications of MLNs it is convenient to split

predicates into evidence predicates (which are assumed to be
known at inference time) and query predicates (corresponding
to predictions). MAP inference in this case becomes the
problem of finding the most probable truth assignment to
query groundings, y*, given the available evidence x, i.e.
computing

∑* = | =
∈

y P y x
Z

wn x yarg max ( ) arg max
1

exp( ( , ))
y y x i

i i
y

where y are the formulas which contain query predicates.
In MLOCSR, we employ a function-free fragment of Markov

logic. The truth value of evidence predicates is determined by
the low-level pipeline described above. Evidence predicates
describe the following:

• Presence of C-points, D-points, T-points, and lines
connecting them;

• Presence of circles representing aromatic bonds;

• Distance-based geometrical properties, in particular to
describe whether the distance between two extracted C-,
D-, or T-points is below a certain threshold;

• Collinearity of three extracted C-, D-, or T-points;
• Chemical information describing the text recognized by

the OCR (e.g., if a string is recognized as OH, then it is a
hydroxyl group).

Query predicates (whose truth value is inferred by the MLN)
are used for the following:

• Atom resolution, i.e. deciding whether two geometric

points are associated with the same atom;
• Bond type identification (e.g., single, double, stereo).

In the following, we provide some details on the knowledge
base used in MLOCSR. We break down the presentation into
rules related to the geometrical properties of the low-level
extracted entities and rules embedding chemical knowledge.
The complete knowledge base (which has over 100 formulas) is
available in the Supporting Information.

Geometric Rules. These rules are mainly used for atom
resolution (i.e., recognizing C-, D-, or T-points associated with
the same atom) and bond dype identification. For example, if
two points extracted by the low-level processing stage are very
close each other, then they likely correspond to the same atom.
This rule can be translated into logic as

⇒VeryCloseCpoints(c1, c2) SameCarbon(c1, c2) (4)

In the above formula, c1 and c2 represent logical variables
(which stand for objects). In this sections, for the sake of
simplicity, we omit the quantifier ∀ meaning that all variables
are universally quantified. By adding a positive but not large
weight to the formula, we allow worlds which violate the rule
but those worlds which satisfy the rule will receive a higher
probability.
Another set of geometric constraints was designed to

reconstruct chemical bonds. For example, a double bond
between two carbon atoms is likely to exist if we identified two
C-points and two D-points arranged like C1, C7, D1, and D2 in
Figure 2b. In logic this is written as

∧

∧

∧

⇒

VeryCloseDpointAndCpoint(d1, c1)

VeryCloseDpointAndCpoint(d2, c2)

LineBetweenDpoints(d1, d2)

LineBetweenCpoints(c1, c2)

DoubleBondBetweenCpoints(c1, c2) (5)

Similar rules were designed to predict double bonds between
C-points and T-points.
Within this group of rules which are used to correctly infer

the chemical bonds within the molecule, a crucial role is played
by the analysis of collinear points. For example, if three C-
points c1, c2, and c3, which are not very close in the molecular
graph, are (almost) collinear in such order, then c1 and c3
cannot be bonded:
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∧ ¬

∧ ¬

∧

∧

⇒ ¬

CollinearCCC(c1, c2, c3)

VeryCloseCarbons(c1, c2)

VeryCloseCarbons(c2, c3)

CarbonLine(c1, c2)

CarbonLine(c2, c3)

AreCarbonsBonded(c1, c3) (6)

This rule helps correct those errors introduced in the low-level
processing, where two consecutive lines are interpreted as a
single line, in which case both an atom and a bond would be
missed. Figure 6 illustrates this example for C-points c1, c2, and
c3. An extension of eq 6 (with four variables) is used to handle
the case of broken lines.

Detection of wedge and hash bonds requires ad-hoc rules
and relies on evidence predicates which indicate the presence of
black-triangles (wedge bond) or dashed-lines. For example, the
following rule is used to encourage the prediction of a wedge
bond such as the one depicted in Figure 7, which connects a C-
point (c1) and two T-points (t2 and t3):

∧

⇒

BlackTriangleCTT(c1, t2, t3)

VeryCloseTpoints(t2, t3)

WedgeBondBetweenCpointAndTpoint(c1, t2) (7)

Chemical Rules. The powerful formalism of first-order logic
allows to include in the knowledge base of the model also some
chemical properties. An example in this sense is given by
valence rules, which regulate the number of chemical bonds
which an atom of a certain element can engage. For example,
the hydroxyl group (OH), when connected to a carbon point,

typically forms a single bond, whereas an oxygen atom is
typically involved in a double bond. Therefore, rules like the
following one can be easily conceived:

∧

⇒ ¬

IsHydroxyl(t) LineBetweenCpointAndTpoint(c, t)

DoubleBondBetweenCpointAndTpoint(c, t)
(8)

where predicate IsHydroxyl(t) indicates that T-point t contains
a hydroxyl group. In some cases, the chemical knowledge is
used in combination with geometric predicates, in order to
disambiguate more complex situations:

∧

∧

∧

⇒

IsOxygen(t1) LineBetweenCpointAndTpoint(c1, t1)

VeryCloseCpoints(c1, c2)

VeryCloseTpoints(t1, t2)

DoubleBondBetweenCpointAndTpoint(c2, t1)
(9)

where predicate IsOxygen(t) indicates whether T-point t
contains an oxygen atom. Figure 8 shows an example where
the formula in eq 9 is applicable.

Assembling Molecular Graphs. Given the inferred truth
values of the query predicates, it is finally necessary to assemble
the atom and bond entities in order to create the molecular
graph, and produce a machine-readable file.
Small molecules may be formally represented as annotated

underacted graphs, where nodes are atoms and edges represent
chemical bonds. A large variety of data formats exist for
exchanging the structural information on compounds. The
most immediate approach is perhaps to represent the graph
directly via a “connection table” (a list of atoms and a list of
annotated bonds) which may be stored as an ASCII file, as it
happens with several widespread formats such as the MDL
Molfile23 or the Chemical markup language24 (CML). A
second approach is to serialize the graph into a string.
SMILES25 for example use depth-first search and a number
of simple conventions to obtain a string which is easily parsable
by humans. InChI26 is an alternative serial representation which
is based on the McCay algorithm27 to obtain a canonical
ordering of the atoms (to address the graph isomorphism issue)
and is guaranteed to create a unique identifier for each
compound. Public domain tools exist that convert among
existing formats28 while preserving the essential information
about a compound.
Our system produces as output an MDL Molfile, and

therefore it is necessary to produce the connection table (atoms
and bonds) describing the molecule, starting from the output of
Markov Logic inference.
In order to determine the atoms in the molecule, the

transitive closure of the SameCarbon predicate is simply
applied, and then a carbon atom is inserted into the molecular
graph for each representative in such closure set. As for text-
boxes elements, the text recognized by the OCR will be used

Figure 6. Example of a chemical drawing containing collinear carbon
points: in this case, C1 and C3 should not be predicted as bonded.

Figure 7. Example of a chemical drawing containing a wedge bond,
which is predicted if a black-triangle pattern between three points is
observed.

Figure 8. Example of a chemical drawing containing a text box with a
single oxygen atom: in this case a double bond with a carbon atom
should receive high probability.
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for the atom label, after checking for typical spelling errors (e.g.,
CooH is corrected into COOH), as it happens also for OSRA.
It is worth remarking that, at this point, two possible behaviors
can be adopted within the recognition process: (1) the string
returned by the OCR module is simply inserted “as is” into the
MOL file as a superatom, with no further manipulation; (2) the
recognized string is compared against a list of superatoms, that
is a list of known molecular groups (such as CH2, COOH,
MeO, and so on) for which the expansion in the SMILE format
is known: if the string corresponds to one of such superatoms,
all the atoms and bonds produced by the expansion are
automatically inserted into the MOL file. These two
recognition modes will be subject of deep analysis in the
experimental section.
Concerning the introduction of bonds within the molecular

graph, a bond is created between two atoms if at least one bond
between two points representing such atoms is predicted by the
inference process. The cardinality of the predicted bond is
chosen according to a priority between bond types: first
aromatic bonds are checked, followed by triple, double, and
finally by single ones. If a single bond is predicted,
stereochemistry is then also checked, by observing the truth
values of the corresponding WedgeBond and HashBond
predicates: in such cases, the wedge/hash bit is accordingly
set within the produced MOL file.

■ EXPERIMENTAL RESULTS

Data Sets. We tested our system on some benchmark data
sets, and we compared against OSRA10 (version 1.4.0). A first
data set can be downloaded directly from OSRA Web site
[http://cactus.nci.nih.gov/osra/uspto-validation-updated.zip]
and it consists of 5719 images produced by the US Patent
Office Complex Work Units (each image has the corresponding
ground truth file in MOL format). Such data set is very
redundant, as it contains groups of almost identical images/
molecules: the performance of the tested predictors could
therefore be ill-conditioned by this data distribution. For this
reason, we constructed a second data set, by clustering images

and taking one representative for each cluster [The spectral
clustering algorithm was used to this aim.]: following this
approach, we obtained a nonredundant subset of 937 molecules
(the list is provided as Supporting Information). The third data
set employed in our experiments is ChemInfty,29 a publicly
available [http://www.iapr-tc11.org/mediawiki/index.php/
Chem-Infty_Dataset:_A_ground-truthed_dataset_of_
Chemical_Structure_Images] collection of 869 molecules
extracted from Japanese patent applications published in 2008.

Performance Analysis Procedures. Recognition quality
may be evaluated by comparing reconstructed structures against
the corresponding ground truth. Two approaches have been
used in the literature for this purpose: InChI match and
Tanimoto similarity. The InChI string is an identifier of a
chemical compound, i.e. two strings are identical if and only if
the two structures are chemically indistinguishable. However, a
higher number of perfectly recognized structures does not
necessarily imply a better effectiveness of a chemical OCR
system: if a compound is not perfectly recognized, it may
contain just one error or several errors. To obtain a less crude
measure of performance, some authors have proposed the use
of the Tanimoto similarity,9,10 which we briefly explain here.
The f ingerprint of a molecule is a bit vector of length obtained
by hashing certain features or substructures of the molecule
(e.g., paths obtained by depth-first traversal of the molecular
graph).30 The Tanimoto similarity between two molecules (m1
and m2) is then defined as the Jaccard index between the two
sets described by the two fingerprints (fp(m1), fp(m1)), i.e.

τ =
| ∩ |
| ∪ |

m m
m m
m m

( , )
fp( ) fp( )
fp( ) fp( )1 2

1 2

1 2

Neglecting the fact that features may collide due to hashing, the
Tanimoto similarity is large when two molecules share many
common features. However, when using paths as features,
similarity may significantly depend on the position of the errors
in the chemical graph, and not on the number of errors, as
illustrated in Figure 9. As conceded in ref 10, using other kinds
of fingerprints does not provide better accuracy measures. We

Figure 9. Tanimoto similarity does not necessarily reflect recognition accuracy. In this example m1 is the ground truth and m2, m3, and m4 are
possible predictions. When using path fingerprints, τ(m1, m2) = 0.42 although the difference between the two structures is just one atom (the central
nitrogen). The large similarity drop is due to the fact that the error is in a node touched by several paths. Interestingly, m3 and m1 also differ by a
single atom but τ(m1, m3) = 0.88. The fourth molecule m4 has two errors, but τ(m1, m4) = 0.61 is still better than τ(m1, m2).
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therefore propose a third approach to measure recognition
accuracy, inspired from information retrieval. First, we match
vertices in the predicted structure to atoms in the ground truth.
To compute the match we form a bipartite graph whose
vertices are true and predicted atoms or superatoms and whose
edges connect predicted and true vertices and weighted by the
Euclidean distance between the 2D coordinates. We then
compute a minimum-weight bipartite matching31 to match
every ground truth vertex to a prediction vertex. This approach
is only feasible if the system outputs a connection table where
superatoms are left unexpanded: in fact, if superatoms are
expanded, the 2D atom coordinates needs to be computed by a
layout algorithm which does not necessarily adhere to the
layout in the ground truth. Occasionally, we found cases in the
available data sets where the 2D layout in the ground truth is
not perfectly congruent with the layout in the original image.
To address this problem, we transformed the 2D coordinates
according to the homography found by the RANSAC
algorithm.32 The matching between the true molecular graphs
(V, E) and the prediction (V′, E′) is a function m: V → V′ ∪
{v} where conventionally m(v) = ν if v is not matched. The
number of correctly recognized (super)atoms is defined as

∑ λ λ= =
∈

v m vTP 1{ ( ) ( ( ))}a

v V (10)

where 1{e} is the indicator of a Boolean expression e and λ(v) is
the label of vertex v, with λ(ν) = nil. For our purposes, the label

v( ) is an an element symbol (such as N, O, Cu, etc.) if v is an
atom, and a string of element symbols or abbreviations, possibly
with subscripts/superscripts and/or parentheses (e.g., N-
(CH2CH3)2, MeO2SO, Ph2P, OBoc, etc.), if v is a superatom.
Precision, recall, and F1 measures may be then defined as usual:

=
| ′|

=
| |

=
+

P
V

R
V

F
P R

P R

TP

TP

2

a
a

a
a

a
a a

a a1 (11)

Similar quantities may be defined for the edges (chemical
bonds) using the following definition of “true positive” bonds:

∑ λ λ λ λ

μ μ

= = · =

· =

∈
u m u v m v

u v m u m v

TP 1{ ( ) ( ( ))} 1{ ( ) ( ( ))}

1{ ({ , }) ({ ( ), ( )})}

b

u v E{ , }

(12)

where μ({u, v}) is the label of edge {u, v}. Note that in some
circumstances F1

a or F1
b may be smaller than 1 when applied to

pairs of molecules that have the same InChI, as the matching
between the two molecular graph might not be perfect (see
Figure 10). The precision, recall, and F1 measures should be
seen as complementary to the traditional performance measures
based on InChI and Tanimoto. The latter put emphasis on
chemical faithfulness of the predicted structure while the

former put emphasis on the graphical faithfulness and quantify
more precisely the human effort that would be required to
manually correct wrong predictions. In order to measure
precision, recall and F1, we manually created ad-hoc MDL
ground truth files where superatom are not expanded and
reflect the image contents (see the Supporting Information).

■ RESULTS AND DISCUSSION
We performed experiments in two distinct settings, depending
on whether the two algorithms (both OSRA and MLOCSR)
were allowed to expand superatoms or not. In the first case, the
InChI measure could be used to measure the performance of
the predictors, while in the second case no InChI generation is
possible, and therefore, the measurements on the recognition of
atoms and bonds presented in the previous section were
employed. When disabling the expansion of superatoms, the
ground truth MOL files had to be accordingly rearranged: for
this reason, this setting was employed only on the cluster
representatives of the USPTO data set and on the ChemInfty
data sets, being the adaptation of the whole USPTO data set
too time-consuming.
An MLN consisting of 128 first-order logic rules was

employed in our experiments, using the Alchemy software
package developed at the University of Washington [http://
alchemy.cs.washington.edu]. MaxWalkSAT33 with 3 different
tries and 1 000 000 steps for each try was used as the MAP
inference algorithm.
OSRA by default processes the input image at three different

resolutions, choosing the best output by employing a quite
complex empirical confidence function10 which counts the
number of atoms, rings, fragments, and other objects in the
predicted molecule. Since OSRA expands the superatoms by
default, in order not to treat unfairly the system, in our
experimental setting which does not perform superatom
expansion we forced OSRA to use the resolution chosen as
the best one according to the standard expanding version.
Results measuring the accuracy in the geometric reconstruc-

tion of the molecular diagrams are shown in Table 2, within the

setting in which superatoms are not expanded. Table 3 reports
instead results in the expanded setting, where the quality of the
predictions can be analyzed with chemical performance
measurements.
In the first setting, it is clear that MLOCSR is more accurate

than OSRA in correctly identifying the atoms and bonds in the
molecule, both on the clustered version of the USPO data set,
and on the ChemInfty data set, perfectly recognizing 6.5% and
8.8% more of the molecules exactly reconstructed by OSRA in
the two cases, respectively. Note that, for most molecules,
predictions are affected by a small number of errors (one or
two atoms or edges). This is the case for both MLOCSR andFigure 10. Graphically distinct but chemically equivalent structures.

Table 2. Results Measuring the Geometric Quality of the
Reconstructiona

method F1 atoms F1 bonds perfect F1

USPTO cluster MLOCSR 99.1 98.8 84.1
OSRA 97.5 97.8 77.6

ChemInfty MLOCSR 94.2 94.2 54.0
OSRA 85.3 88.4 45.2

aIn this setting, superatoms are not expanded. Perfect F1 indicates the
percentage of molecules where the predictor achieve a value of F1
equal to 100 for both atoms and bonds.
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OSRA predictions. Since the total number of atoms ranges
from a few dozens to one hundred or more and even a single
error implies F1 < 100 for that molecule, the perfect F1 measure,
which counts the number of molecules having F1 = 100 for
both atoms and bonds, is much lower than the F1 measure on
atoms or bonds.
In the second setting, we considered the percentage of

molecules with perfect InChI and the Tanimoto index as the
performance measurement. We counted both the number of
molecules for which the InChI was correct except for the
stereochemistry level (InChI basic) and the number of
molecules having the full InChI correctly predicted (InChI
full). Table 3 shows that the performance of MLOCSR is
superior to that of OSRA for InChI basic (except for
ChemInfty) and for the Tanimoto index. On InChI full, on
the other hand, OSRA has a slightly advantage over MLOCSR,
which indicates that our system has still margins of improve-
ment in the recognition of stereo bonds.
We also conceived an additional experiment in order to

assess the performance of the predictors when the quality of the
input images degrades: we resampled the images in the USPTO
clustered data set at three different levels, which we will call
high degradation (HD), medium degradation (MD) and low
degradation (LD). [Using ImageMagick software, such three
levels correspond to image resampling using three different
parameters r, specifically r = 210 (HD), 240 (MD), and 270
(LD).] Results in Table 4 show the performance of MLOCSR

and OSRA in this setting, showing the advantage of our
approach even in this scenario. Here we report only geometric
measurements in the not-expanded setting: the task being
extremely challenging, measuring the percentage of correct
InChI would produce too low results for both systems.

4. CONCLUSIONS
We have introduced a new method for optical recognition of
chemical diagrams. The main novelty in our approach is the use
of Markov logic to incorporate chemical and graphical
knowledge in the form of soft first order logic formulas
involving low-level graphical primitives. Our system achieves
state-of-the-art recognition accuracy and compares favorably to
existing approaches. The advantages are more evident in the
more difficult data sets containing lower quality images,
showing the benefit of a sound probabilistic reasoning engine
over hand-coded deterministic heuristics.
In this paper we have also suggested alternative approaches

for measuring recognition performance which can complement
the widespread use of correct InChI and Tanimoto index. In
particular, the use of the F1 measure for atoms, bonds and full
molecules can provide a better estimation of the recognition
quality as it is directly related to the amount of work that would
be necessary to manually correct mistakes.
One obvious direction for further improving this research is

the use of learning algorithms to fine-tune Markov logic weights
or even to learn new formulas from data by using structure
learning algorithms such as those described in ref 34−36. The
application of supervised learning techniques in this context is
however not straightforward: the available background knowl-
edge simply consists of molecular connection tables with no
information about the graphical elements which are extracted at
the lower level. This means that the truth state of query
predicates for Markov logic are not directly observed but need
to be reconstructed (possibly in a semiautomatic fashion)
starting from graphical primitives and the available MDL files.
While our system is able to handle a vast set of formulas,

there remains several directions for further improvement,
addressing specific cases which are not currently handled.
These include some graphical ambiguities due to touching and
broken characters, or characters touching lines; Markush
features such as substituent replacement in R-groups, link
nodes, or repeating units; recognition of chemical tables or
reactions.
Our contributions shows that Markov logic is a viable

approach to reason about the information extracted by the low-
level image processing modules. Such an approach is not
necessarily specific to the low-level modules we have developed
and, in principle, an MLN could be used in other related
systems such as OSRA.10 An actual implementation in this
direction, however, is not straightforward due to the tighter
integration between the low-level feature extractors and higher-
level chemical knowledge in OSRA.
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Table 3. Results Measuring the Quality of Reconstruction
from a Chemical Point of Viewa

method InChI basic InChI full Tanimoto

USPTO MLOCSR 86.1 79.4 0.948
OSRA 85.2 81.4 0.940

USPTO cluster MLOCSR 79.1 71.9 0.929
OSRA 77.5 74.0 0.917

ChemInfty MLOCSR 35.1 35.0 0.776
OSRA 36.9 36.0 0.740

aIn this setting superatoms are expanded. InChI basic does not
consider the stereochemistry level, which is included in the InChI
(full) measurement.

Table 4. Results with Images Having Degrading Quality,
Obtained by Resampling the Original USPTO Clustered
Data Seta

method F1 atoms F1 bonds perfect F1

LD MLOCSR 96.0 97.0 45.3
OSRA 89.5 93.4 14.1

MD MLOCSR 88.3 90.8 13.8
OSRA 82.2 89.5 2.2

HD MLOCSR 80.3 83.8 2.3
OSRA 76.0 81.5 1.4

aWe employ the setting in which superatoms are not expanded.
Perfect F1 indicates the percentage of molecules where the predictor
achieve a value of F1 equal to 100 for both atoms and bonds.
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