
Constraint Detection in Natural Language Problem Descriptions

Zeynep Kiziltan and Marco Lippi and Paolo Torroni
Department of Computer Science and Engineering – DISI

University of Bologna, Italy
{zeynep.kiziltan, marco.lippi3, p.torroni}@unibo.it

Abstract

Modeling in constraint programming is a hard task
that requires considerable expertise. Automated
model reformulation aims at assisting a naive user
in modeling constraint problems. In this context,
formal specification languages have been devised
to express constraint problems in a manner simi-
lar to natural yet rigorous specifications that use a
mixture of natural language and discrete mathemat-
ics. Yet, a gap remains between such languages and
the natural language in which humans informally
describe problems. This work aims to alleviate
this issue by proposing a method for detecting con-
straints in natural language problem descriptions
using a structured-output classifier. To evaluate the
method, we develop an original annotated corpus
which gathers 110 problem descriptions from sev-
eral resources. Our results show significant accu-
racy with respect to metrics used in cognate tasks.

1 Introduction
Constraint programming (CP) provides a platform to model
and solve complex constraint satisfaction and optimization
problems and it is widely used in industry, for instance by
Oracle [Bagley, 2015]. However, it has long been recog-
nized that formulating an effective model requires consider-
able expertise, and efficiently solving it necessitates tailored
methods, which constitutes a bottleneck to the broader uptake
of CP technology. Automated modeling and solving aims at
addressing this issue and presents a major challenge for the
AI community [O’Sullivan, 2010].

An important aspect of automated modeling and solving is
automated model reformulation. It refers to generating con-
straint programs to solve a constraint problem starting from
its abstract specification. An abstract problem specification
is not the model that a constraint solver uses to solve a prob-
lem. It contains high-level, mathematical-like notations and
describes the problem above the level at which modeling de-
cisions are made. It is natural, that is, similar to the style
in which humans describe problems informally using natural
language (NL). This makes CP technology more accessible
to any problem-domain expert with a background in discrete

mathematics who is not necessarily an expert in CP tech-
nology. Examples of specification languages are ESSENCE
[Frisch et al., 2008] and Zinc [Marriott et al., 2008], which
are descendants of OPL [Van Hentenryck, 1999].

Yet, a gap remains between the NL informal description
of a constraint problem and its formal abstract specification.
Indeed, producing the latter from the former is challenging.
Different domain experts may produce different specifica-
tions. Moreover, a domain expert may not necessarily be a
discrete mathematics expert and vice versa. Currently, there
is no mechanism that validates that a formal specification
complies correctly and completely with its informal descrip-
tion. If we could bridge this gap with a system that trans-
forms the NL description of a constraint problem to its ab-
stract specification in a formal language, we would construct
machines that can solve constraint problems described in NL
in a fully automated way. Clearly, this is an ambitious vision
and certainly not the one we aim to fulfill within this work.
We believe, however, that initial, significant steps could be
made towards it by developing sub-systems able to isolate
significant parts of problem descriptions and map them onto
the corresponding entities used in formal specifications.

The focus of this work is thus on the development of a sys-
tem that automatically detects the parts of text that describe
constraints. The system takes as input the NL description of a
constraint problem, and outputs a highlighting of portions of
such text, identified as belonging to a constraint description.
For example, given this text:

Given a set of items, each with a weight and a value,
determine the number of each item to include in
a sack so that the total weight is at most a given
capacity and the total value is as large as possible.

the system’s goal is to automatically detect the underlined
problem constraint description. Such a system is the first
step towards fully automatizing constraint solving, and it can
aid a user in validating his formal constraint specification:
by looking at all highlighted text, he can be sure not to miss
any constraint description in the text (completeness) and that
he is looking at constraint descriptions (correctness). Such a
system also enables a better decoupling between the domain
expert (who should focus on providing clear NL problem de-
scriptions) and the discrete mathematics expert (who should
focus on producing precise specifications).

The underlying method combines machine learning (ML)

given cst, cap: int
letting item be new type of size cst
letting nat be domain int(1..)
given wgt, val: function (total) item → nat
find x: set of item
maximising Σ i : x . val(i)
such that (Σ i : x . wgt(i)) ≤ cap

Figure 1: The knapsack problem, given in ESSENCE.

and natural language processing (NLP) techniques to classify
each word in a sentence as belonging or not-belonging to a
constraint. In particular, it uses a structured-output classifier,
so as to naturally handle the sequentiality in the data, and
thus to exploit collective classification. We show that such a
method can detect constraints with significant accuracy, ac-
cording to the metrics used in cognate ML applications.

We focus on the detection of constraints because their de-
scriptions provide linguistic cues and features that are more
easily identifiable by NLP systems. Identification of other
useful elements for formal problem specifications, such as
abstract variables, would be possible only after the text has
been understood. Indeed, we expect that to be a harder task,
as variables are often not explicitly spelled out in the text, but
we also believe that such a task can greatly benefit from the
insights gained thanks to the work presented here.

Being the first ones to tackle constraint detection, we had
to construct a dataset, that is, a corpus of NL problem descrip-
tions where the parts of text containing problem constraints
are annotated. Therefore, another significant contribution of
this work is the corpus itself, together with the definition of a
protocol to produce coherent and sound annotations.

2 Background
Here we first show an example of constraint problem spec-
ification language and the corresponding automated model
reformulation system, then we provide some background in
information extraction from text.

2.1 Constraint Problem Specification and
Automated Model Reformulation

Consider again the knapsack problem. It can be specified in
the ESSENCE language as shown in Figure 1. ESSENCE pro-
vides abstract decision variables with types such as set, multi-
set, relation and function, as well as nested types, such as set
of sets. Constraint solvers, by contrast, typically support vari-
ables with atomic types, such as integer or Boolean, and pro-
vide limited support for more complex types like sets or mul-
tisets. This feature of ESSENCE enables the problem structure
to be captured concisely. The users can specify problems in a
manner similar to natural yet rigorous specifications that use a
mixture of NL and discrete mathematics, without committing
to any modeling decisions.

An ESSENCE specification identifies the input parameters
of the problem class (given) whose values define a problem
instance, the abstract variables (find), and the constraints to
be satisfied (such that). In addition, an objective func-
tion may be specified (minimizing/maximizing), and
identifiers declared (letting). Starting from an ESSENCE
specification, it is possible to automatically obtain several

NL DESCRIPTIONS & FORMAL SPECIFICATIONS

DATASET

labeling

NL DESCRIPTION
OF PROBLEM P

LABELLED NL
DESCRIPTION OF P

training

input output

problem gathering

RESOURCES

SYSTEM

CONSTRAINT
DETECTION

Figure 2: Methodology.

constraint programs, each tailored for the intended constraint
solver [Akgun et al., 2011; Nightingale et al., 2014] .

2.2 Information Extraction from Text
Extracting information from textual documents is an appeal-
ing AI application [Grishman, 2003]. By employing meth-
ods from ML and NLP, a variety of tasks can be addressed,
such as text classification, document retrieval, sentiment anal-
ysis, document clustering, and lexical and semantic analy-
sis. Based on the application domain and the task to be ad-
dressed, a large number of algorithms and techniques have
been proposed [Sebastiani, 2002; Miner, 2012]. The task
addressed in this work can easily be formalized as a clas-
sification task. Classification methods typically rely on an
ML system trained on a set of supervised examples (cor-
pus, or dataset). Examples provide both some representa-
tion of the textual information (e.g., features) and an asso-
ciated class (or label). A predictive model is built, using a
training procedure, which can then be used to perform pre-
dictions on previously unseen text. Depending on the task,
text classification can be performed at different granularity
levels, i.e., it is possible to classify the entire document,
sentences, or just single words. The design of appropriate
features to represent textual information has been the sub-
ject of years of ML and NLP research [Sebastiani, 2002;
Miner, 2012]. Features capturing the grammatical structure
of text (e.g., part-of-speech tags, constituency parse trees),
as well as features trying to exploit linguistic and semantic
knowledge (e.g., thesauri, ontologies) are frequently used.

3 Constraint Detection System
Here we explain the design of our constraint detection sys-
tem: we present the methodology we used, the document se-
lection and annotation process that lead to the construction of
the dataset, and the ML methods present in the system.

3.1 Methodology
Our methodology is depicted in Figure 2. Thick arrows, top
to bottom, indicate the main steps of the process that leads to
the constraint detection system which is in fact the predictive
model, marked with a dotted frame. Thin arrows, left to right,
represent the input and output of the system.

The first step is to gather problems from a variety of re-
sources. The result is a set of problems each defined in terms
of its NL description (text) and its formal specification. The
second step is to produce a set of annotations that highlight
the constraint descriptions in each NL description. This pro-
cess, called labeling, is done by hand on the text and relies on
the information contained in the formal specifications. All the
NL descriptions and corresponding annotations together form
the supervised dataset. These are both crucial and nontrivial
steps, as they have a direct impact on the performance of the
system. The last step is training. The result is the system con-
sisting of a predictive model, produced by using ML methods
trained on the supervised dataset. The specifics of training
are given in the Experiments section, since the choices made
there are in a sense orthogonal to the methodology explained
here. The system takes as input a new NL constraint problem
description and produces the corresponding annotations that
highlight where the constraint descriptions are.

3.2 Problem Gathering
To gather problems, we explored four different resources:
CSPLib1, the ESSENCE catalog2, the MiniZinc benchmarks3

and the OPL examples of IBM R© ILOG R© CPLEX R© Opti-
mization Studio v.12.6.0.4 In order to avoid repetition, when-
ever two problems were identical or too similar, we took only
one of them. For reasons that will become clear in the next
subsection, it was essential to include in the corpus only prob-
lems for which a formal specification and a complete NL de-
scription were both available. Whenever either of them was
missing for a particular problem, we searched for a suitable
description or specification in the scientific literature. We did
the same for NL descriptions that were either too brief, or
citing an external source, or about a particular model rather
than about a problem. We dropped the problems for which
our literature search did not yield a satisfactory result.

We excluded certain puzzles, games, planning and diag-
nosis problems whose description did not contain any rec-
ognizable constraints. To encompass as many problems as
possible, in a few cases (less than 5% of the problems in the
dataset) we slightly edited the text so as to obtain a complete
description. However, we did that only if the description was
almost-complete and the required editing was insubstantial.

Special attention had to be paid to parts of NL descriptions
containing supplementary information or elements other than
text. Below we list such situations and explain how we sys-
tematically dealt with them by hand. We shall remark that this
process does not hinder our system’s usability. Indeed, our in-
put text was collected from resources prepared independently
of our research. In the future we could impose an input NL
format and/or automate the text modification process.

• Tables. We dropped tables that were unnecessary or long

1http://www.csplib.org
2http://conjure.cs.st-andrews.ac.uk/

EssenceCatalog
3MiniZinc is a simplified version of Zinc, see https://

github.com/MiniZinc/minizinc-benchmarks
4Documentation available via http://www-03.ibm.com/

software/products/en/ibmilogcpleoptistud/

to summarize while keeping references to the table in the
text. In all other cases, we converted the table into text.
• Mathematical formulas. We translated mathematical

formulas into LATEX, and treated them as regular text.
• Descriptions of special cases, variants, or generaliza-

tions of the problem. We dropped such descriptions, as
they did not change anything from the classifier’s point
of view.
• Exemplifications. We kept only meaningful exemplifica-

tions in the text.
In the end, our collection consisted of 110 problems: 46 from
CSPLib, 21 from ESSENCE, 8 from MiniZinc and 35 from
OPL examples. Each problem has an acceptable NL descrip-
tion and a formal specification, with the descriptions being
quite lengthy in many cases. Specifications are formalized in
ESSENCE, MiniZinc or OPL, or via a mathematical formula,
or via a mathematical program model.

3.3 Labeling Issues
Labeling turned out to be a nontrivial task. Consider for in-
stance the labeled description of the open shop scheduling
problem where the labeled constraints are underlined:

A finite set of operations has to be processed on a
given set of machines. Each operation has a spe-
cific processing time during which it may not be
interrupted. Operations are grouped in jobs, so that
each operation belongs to exactly one job. Fur-
thermore, each operation requires exactly one ma-
chine for processing. The objective of the prob-
lem is to determine the start time of the operations
so as to minimize the maximum completion time
(makespan) given the additional constraints that:
operations which belong to the same job and oper-
ations which use the same machine cannot be pro-
cessed simultaneously.

While the last three constraints are rather easy to catch due
to the keywords “so that,” “requires” and “additional con-
straints,” the first one might be overlooked.

Another example is in the following fragments of the de-
scriptions of the ACC basketball scheduling and the mystery
shopper problems taken from CSPLib: “The schedule is to be
played over 18 dates.” and “Each sales person will be visited
by 4 different shoppers”. While both sentences refer to the
future, giving the feeling of a constraint to be satisfied, only
the second one describes a problem constraint. The first one
simply describes an input parameter.

The presence of a formal specification is thus essential to
a sound labeling because it permits to double-check that the
produced labeling is correct (no text wrongly tagged as part
of a constraint) and complete (no missed constraints).

In some cases, we had to take a decision on how to label.
We did so systematically and uniformly throughout the la-
beling process. Below we list the decisions we took in such
cases, which together defined our labeling protocol.
• Whenever a verb referred to more than one constraint in

the same sentence, we labeled the whole sentence as one
constraint.

• Whenever a given constraint appeared more than once in
the description, we labeled each instance separately. We
did not label, however, duplicates that were too unclear.

• Whenever a constraint was split into several consecutive
sentences, we labeled all the sentences together as one
single constraint.

• Sometimes a problem constraint description was spelled
out in the NL but it did not appear as such as a prob-
lem constraint in the specification. This happened, for
instance, when the specification included partitions, per-
mutations, injective functions, or allowed/forbidden as-
signments on the variables, which were implicitly en-
forced in the variable and/or domain definitions of the
specification. Our decision was to label those as con-
straints, independently of how they were enforced in the
specification. The reason is that different specification
languages may have different expressive powers. We
plan to use such constraints also for abstract variable and
domain detection in our future work.

3.4 Labeling Process
The corpus was labeled by three annotators with expertise in
constraint modeling. An initial labeling protocol was given to
the annotators based on a first analysis of the dataset. The an-
notators used the BRAT software5 for producing and sharing
the annotations. They repeatedly discussed their analysis, re-
vised the protocol, and finally agreed on the version reported
above. Consensus was mostly easy to reach, thanks to the
formal specifications provided together with the NL descrip-
tions. Disagreement situations were rare and insubstantial,
mostly due to fine-grained constraint boundaries. The final
dataset6 contains 1,075 sentences, for a total of 25,317 words,
among which 6,724 are labeled as belonging to a constraint.

3.5 Constraint Detection
From an ML point of view, the task of detecting constraints
within an NL problem description can be formulated as a se-
quence labeling problem. Given a sentence as a sequence of
N words w1, w2, . . . , wN , the goal is to predict a sequence of
labels `1, . . . , `N , each associated to the corresponding word.
Each label `i takes its value from a pre-defined set of m pos-
sible classes y = {y1, . . . , ym} whose semantics depends
on the task to be addressed. We use two classes to indicate
whether a certain word belongs to a constraint (y1 = C) or it
does not (y2 = N). In future work, we plan to introduce fur-
ther classes to detect other components of the problem speci-
fication, such as abstract variables or objective functions. Fig-
ure 3 shows an example of sequence labeling applied to the
NL description of the knapsack problem.

Sequence labeling problems are widely known in ML.
With respect to classical classification problems, where the
examples to be classified are assumed to be independent, pre-
dictions in sequence labeling tasks have to take into account
the order of the elements to be classified, so that relations be-
tween consecutive (or close) elements can be exploited. To

5http://brat.nlplab.org/
6http://nlp4cp.disi.unibo.it

this end, a collective classification is usually performed, by
jointly tagging all the elements of a given input sequence, so
that the most probable configuration of target elements is re-
turned as a structured output prediction.

Among the existing ML methods for sequence labeling,
here we consider an approach that currently represents the
state-of-the-art for many tasks: Structured Support Vector
Machines, and in particular their combination with Hidden
Markov Models, named SVM-HMM [Tsochantaridis et al.,
2005]. In [Nguyen and Guo, 2007], several sequence la-
belling algorithms across different domains are compared,
showing that SVM-STRUCT (of which SVM-HMM is an
instantiation) performs the best. This was confirmed by
our initial experiments conducted with Conditional Random
Fields (CRFs), which gave poor results. This is explained
by the fact that SVM-HMM can be tuned rather easily to
deal with imbalanced data, while the same cannot be said for
CRFs [De Lannoy et al., 2012].

Given an observed input sequence x = x1, . . . , xK , where
xj is the feature vector encoding the information regarding
the j-th element in the sequence, SVM-HMM produces a la-
beling sequence ŷ = ŷ1, . . . , ŷK as a result of the maximiza-
tion problem:

ŷ = arg max
y

βT Φ(x, y) (1)

β being the vector of parameters to be learned, and Φ a joint
feature map between input and output spaces. With respect
to the traditional SVMs, the structured version considers the
inner structure of the examples, as function Φ can encode
also the dependencies between output classes. To solve the
problem in Eq. 1, a dynamic programming approach can be
carried out, by employing a modified instance of the Viterbi
algorithm for standard HMMs.

The representation of the input space (the NL description)
within a feature vector x associated to each word clearly plays
a crucial role for the performance of the algorithm, and dif-
ferent solutions can be designed. In the next section we detail
the features we employed.

We stress that the constraint detection task has unique char-
acteristics with respect to classical sequence labeling prob-
lems, as the problem descriptions and the phrasing of con-
straints are very heterogeneous. These characteristics make
constraint detection a particularly challenging task.

4 Experiments
We performed experiments on our dataset following the
leave-one-problem-out (LOO) procedure. This is a standard
ML methodology, where each problem in turn is selected as
test set while the remaining ones form the training set. In
addition, we conducted a case study so as to detect the con-
straints of a previously unseen external problem. Our sys-
tem together with all the reported predictions are available at:
http://nlp4cp.disi.unibo.it

4.1 Features
A crucial choice is how to represent the input space (the NL
description) through a set of features to be used by a statis-
tical classifier. In our sequence labeling setting, the feature

Given a set of items, each with a weight and a value, determine the number of each item to include in a sack
 N N N N N N N N N N N N N N N N N N N N N N N

so that the total weight is at most a given capacity and the total value is as large as possible.
 N N C C C C C C C C C N N N N N N N N N

Figure 3: Sequence labeling applied to the NL description of the knapsack problem. Class C stands for constraint, N for none.

vector xj has to encode the information of the j-th word in
the sentence. We rely on a set of features describing the word
itself, but also the surrounding words, considering a window
of a certain diameter D. More specifically, for each word wj

we keep the original (unchanged) term, and we also extract
the part-of-speech and the stemmed word, both obtained with
the Stanford CoreNLP library7. To improve generalization
over mathematical formulas, we transformed each word in
the formula into a special token. Then, we build bag-of-words
representations [Sebastiani, 2002] for each of these three ele-
ments, and we do the same for all the words within a diame-
ter D centered around wj . Finally, we also add the following
bag-of-trigrams both for words and for part-of-speech tags:
[wj−2wj−1wj], [wj−1wjwj+1], [wjwj+1wj+2]. We thus em-
ploy a standard, straightforward feature set for NLP which, as
we show later, achieves good performance.

4.2 Performance measurements
The predictions of sequence labeling classifiers can be as-
sessed both by the classical ML performance metrics and
by problem-specific evaluation measurements which take into
account the sequential nature of the input data. Here, we deal
with two classes, but the employed measurements can easily
be extended to the multi-class problem with multiple possi-
ble tags (e.g., for the detection of abstract variables or input
parameters in addition to the constraints).

A typical metric in sequence labeling is the Average Loss
per Sequence (ALS), that is the average number of wrongly
predicted labels per sequence [Nguyen and Guo, 2007]:
ALS =

∑Nseq

i=1

∑ni

j=1 I(`ij 6= ˆ̀
ij), where the indicator func-

tion I(x) = 1 if x holds true, and 0 otherwise. An additional
pair of indicators, which better capture the sequential nature
of data, are the true-positive hit rateHT and the false-positive
hit rateHF . These have been used in similar structured output
tasks before [Passerini et al., 2012]. HT is the ratio of con-
straints (in the sense of consecutive “tag blocks”) correctly
detected for at least one word: a measure of system com-
pleteness (the higher, the better). HF is the ratio of predicted
tag blocks that are totally disjoint from the ground truth (no
word in common with any labeled constraint): a measure of
system correctness (the lower, the better). Since we adopt
a LOO setting, we report the arithmetic macro-average [Se-
bastiani, 2002] over all the problems in the dataset for all the
measurements.

4.3 Results
Table 1 reports the results obtained on our dataset by different
classifiers, as a function of the diameter D used to build con-

7
http://nlp.stanford.edu/software/corenlp.shtml

textual features for each word. Overall, the different perfor-
mance measurements show that the proposed methodology is
effective in finding constraints in NL descriptions. Around
80% of the constraints are retrieved for at least one word
(HT), with the hit rate increasing as D grows.

These are good figures sharing similar accuracy levels with
most existing information extraction applications [Nguyen
and Guo, 2007]. With larger contexts for features, though, the
system tends to overpredict constraints, as the false-positive
hit rate (HF) also grows. Notice that the true-positive hit rate
HT remains high even if one counts as correct only those
constraints detected for at least half of their words. For ex-
ample, with D = 5, we would correctly predict 74% of the
constraints (such results are not shown in Table 1). The last
row shows the performance of a Random Baseline (RB) clas-
sifier, for which a higherHT is to be expected, since it is easy
to make a hit by selecting random strings of text. The tricky
part is to exclude irrelevant text, thus the poor RB figures in
correctness (HF) and overall performance (ALS). Moreover,
if we count as correct only the strings that include at least half
of the relevant words, the RB HT goes down to a mere 19%.

A qualitative analysis of the results also enabled us to iden-
tify classes of errors which might be reduced by a more com-
prehensive classification task. For instance, one of the clas-
sifier’s frequent mistakes is to consider a problem’s input pa-
rameter as a problem constraint, as illustrated by the dotted-
underlined text in the following sentence:

We assume that . . .allvehiclesareidentical.andhave
. . .the.same.capacity. . .D.

Our guess is that by the time input parameters are also labeled
in the dataset, it will become easier for our system to distin-
guish them from constraints, yielding an even lower HF .

To illustrate the quality of the output produced by our sys-
tem, we report here below the description of the wood cutting
problem. Solid-underlined sentences are correctly detected
constraints, while dashed-underlined sentences are false neg-
atives (constraints that go undetected) and dotted-underlined
sentences are false positives.

A wood factory machine cuts stands (processed
portions of log) into chips. Each stand has a cer-
tain length, diameter, and specie. The machine can
cut a limited number of stands at a time with some
restriction on the sum of the diameters that it can
accept. Only one species can be processed simul-
taneously. Finally, each stand has fixed delivery
dates and a processing status being either standard
or rush. Any delay on rush stand will cost a penalty.
The objective is to minimize the total cost of operat-
ing and delaywhilemeeting . . .the.systemconstraints:
1) the truck fleet that carry stands to machines for

Table 1: Results on our dataset, as a function of diameter D
for feature context. Performance measurements are macro-
averaged on an LOO evaluation. For each column, bold re-
sults indicate the best system.

HT HF ALS
D = 1 62.2 34.8 21.5
D = 3 72.4 33.4 20.2
D = 5 77.2 32.1 19.5
D = 7 80.1 31.4 19.9
D = 9 79.2 32.2 20.1
D = 11 79.9 32.0 20.6

RB 90.3 68.1 36.8

processing is limited; 2) the machine is a discrete
resource with capacity specified in terms of the
sum of stands capacity that can be cut at the same
time; 3) beside the diameter constraint, only limited
number of stands can be loaded at the same time;
4) to express that only one type of species can be
cut at the same time a state resource is used. At any
given time, this resource indicates the state in terms
of available to cut.

All the constraints except one are detected. The only false-
positive sentence is not a misleading one. For some well-
known problems like (temporal) knapsack, round robin tour-
naments, traveling tournament, job-shop scheduling, flow-
shop scheduling, multi-machine assignment scheduling, as-
sembly scheduling, social golfers, balanced incomplete block
design, steel mill slab design, warehouse location, traveling
salesman, Golomb rulers, and covering arrays, all the con-
straints are detected with zero or one false positive.

As a case study, we considered the torpedo schedul-
ing problem. This is an industrial problem proposed for
the 2016 ACP challenge http://cp2016.a4cp.org/
program/acp-challenge/. Considering that the data
source is completely different from our dataset, the results
are encouraging, with only 7 false negatives out of the 22 la-
beled constraints and no false positives (although in this case
we do not yet have a formal specification/model to be used as
ground truth, because the challenge is still open).

5 Related Work
The bottleneck caused by the expertise required in model-
ing led to constraint acquisition [Bessiere et al., 2015], the
task of acquiring constraints from a set of examples. It
relies on the expertise of a user who already solved sev-
eral instances of a given problem without the help of the
solver and knows how to classify an example as a (non-
)solution. Similarly, techniques were devised for discover-
ing constraints for inductive process modeling [Todorovski et
al., 2012] and to aid the search for appropriate constraints in
the global constraints catalog [Beldiceanu and Simonis, 2011;
2012]. None of these works aims to identify constraints in
NL. To the best of our knowledge, ours is the first attempt.

Machine understanding of user’s needs by way of NLP has
been a long standing vision and challenge in software engi-

neering, especially in requirements engineering (RE) [Ryan,
1993]. The challenge is still open [Mich et al., 2004]. Work
in this domain has enabled (limited) automated support in
some specific tasks such as ontology extraction [Kof, 2005;
Sadoun et al., 2013] using a combination of lexical, syntacti-
cal and semantic methods, and semantic annotation [Körner
and Landhäußer, 2010] using part-of-speech tagging, statis-
tical parsing and named entity recognition. None of these
works uses SVM-HMM. Moreover, the tasks are different
from ours. Apart from RE, work has been done also in the
business process modeling (BPM) domain to support the de-
velopment of executable models from NL descriptions. In
particular, [Bajwa et al., 2010; 2011; Njonko and Abed,
2012] addressed automatic translation of business rules writ-
ten in NL into UML/OCL constraints. Although the concept
of constraint in BPM is related to that in CP, we remark that
these business constraints do not need to be identified in the
text. They instead have to be translated and formalized to
produce executable models. This task is complementary to
the one we tackle, as in the mapping process from NL de-
scriptions to formal specifications, translation is possible only
after constraint detection.

Finally, if we widen our scope to include information
extraction from non-technical documents, a task related to
constraint detection is claim detection [Levy et al., 2014;
Lippi and Torroni, 2015] whose purpose is to identify por-
tions of text containing claims. However, the datasets, genres
and techniques used there are quite different from ours.

6 Conclusions and Future Work

We focused on the gap between NL descriptions and formal
specifications of constraint problems, and proposed a method
for constraint detection: a task that had never been attempted
before. The task is nontrivial even for human experts. We
constructed a system using a sophisticated sequence labeling
technique and trained it with an original, carefully built cor-
pus, achieving over 80% hit rate while keeping false-positive
hit rate below 35%. Our work is intended to alleviate the well-
known constraint modeling bottleneck, by enabling a better
decoupling between experts, and by helping producing for-
mal specifications that comply correctly and completely with
their informal descriptions. It is also a step towards the grand
vision of machines that can solve problems described in NL.

Work done on the construction of the corpus, including the
definition of the labeling protocol, paves the way to the de-
tection of other elements useful for formal problem specifi-
cations, such as abstract variables, input parameters, objec-
tive functions, for some of which the same sequence labeling
techniques could deliver comparably accurate results. We ex-
pect that a combined classification task where different types
of information are considered together will improve the per-
formance of each individual task.

We are now in the process of analysing and classifying
the constraints detected by our system, with the objective of
developing a method for mapping the information obtained
from the text onto the corresponding entities in the formal
specifications.

References
[Akgun et al., 2011] O. Akgun, I. Miguel, C. Jefferson,

A. M. Frisch, and B. Hnich. Extensible automated con-
straint modelling. In Proc. AAAI Conf. Artif. Intell., 4–11.
AAAI Press, 2011.

[Bagley, 2015] C. Bagley. Constraint-based problems and
solutions in the global enterprise, 2015. Invited talk, Int.
Conf. Principles Practice of Constraint Programming.

[Bajwa et al., 2010] I. Sarwar Bajwa, B. Bordbar, and
Mark G. Lee. OCL constraints generation from natural
language specification. In Proc. Int. Enterprise Distrib.
Object Comput. Conf., 204–213. IEEE Comp. Soc., 2010.

[Bajwa et al., 2011] I. Sarwar Bajwa, M. G. Lee, and B. Bor-
dbar. SBVR business rules generation from natural lan-
guage specification. In Proc. AAAI Spring Symp. on AI for
Business Agility, Tech. Rep. SS-11-03. AAAI, 2011.

[Beldiceanu and Simonis, 2011] N. Beldiceanu and H. Si-
monis. A constraint seeker: Finding and ranking global
constraints from examples. In Proc. Int. Conf. Principles
and Practice of Constraint Programming, LNCS 6876, 12–
26. Springer, 2011.

[Beldiceanu and Simonis, 2012] N. Beldiceanu and H. Si-
monis. A model seeker: Extracting global constraint mod-
els from positive examples. In Proc. Int. Conf. Principles
and Practice of Constraint Programming, LNCS 7514,
141–157. Springer, 2012.

[Bessiere et al., 2015] C. Bessiere, F. Koriche, N. Lazaar,
and B. O’Sullivan. Constraint acquisition. Artif. Intell.,
2015. Online preprint.

[De Lannoy et al., 2012] G. De Lannoy, D. François, J. Del-
beke, and M. Verleysen. Weighted conditional random
fields for supervised interpatient heartbeat classification.
IEEE Trans. Biomed. Eng., 59(1):241–247, 2012.

[Frisch et al., 2008] A. M. Frisch, W. Harvey, C. Jefferson,
B. Martı́nez Hernández, and I. Miguel. Essence : A con-
straint language for specifying combinatorial problems.
Constraints, 13(3):268–306, 2008.

[Grishman, 2003] R. Grishman. Information extraction. In
The Handbook of Computational Linguistics and Natural
Language Processing, 515–530. Wiley-Blackwell, 2003.

[Kof, 2005] L. Kof. Natural language processing: Mature
enough for requirements documents analysis? In Proc.
Int. Conf. Applic. of Nat. Lang. to Inf. Sys., LNCS 3513,
91–102. Springer, 2005.

[Körner and Landhäußer, 2010] S. J. Körner and
M. Landhäußer. Semantic enriching of natural lan-
guage texts with automatic thematic role annotation. In
Proc. Int. Conf. Applic. of Nat. Lang. to Inf. Sys., LNCS
6177, 92–99. Springer, 2010.

[Levy et al., 2014] R. Levy, Y. Bilu, D. Hershcovich, E. Aha-
roni, and N. Slonim. Context dependent claim detection.
In Proc. Int. Conf. Comput. Ling., 1489–1500. ACL, 2014.

[Lippi and Torroni, 2015] M. Lippi and P. Torroni. Context-
independent claim detection for argument mining. In Proc.
Int. Joint Conf. Artif. Intell., 185–191. AAAI Press, 2015.

[Marriott et al., 2008] K. Marriott, N. Nethercote, R. Rafeh,
P. J. Stuckey, M. G. de la Banda, and M. Wallace. The
design of the zinc modelling language. Constraints,
13(3):229–267, 2008.

[Mich et al., 2004] L. Mich, M. Franch, and P. Novi Inver-
ardi. Erratum: Market research for requirements analysis
using linguistic tools. Requir. Eng., 9(2):151, 2004.

[Miner, 2012] G. Miner. Practical Text Mining and Statis-
tical Analysis for Non-structured Text Data Applications.
Academic Press, 2012.

[Nguyen and Guo, 2007] N. Nguyen and Y. Guo. Compar-
isons of sequence labeling algorithms and extensions. In
Proc. Int. Conf. Machine Learning, ICML 2007, 681–688.
ACM, 2007.

[Nightingale et al., 2014] P. Nightingale, O. Akgun, I. P.
Gent, C. Jefferson, and I. Miguel. Automatically improv-
ing constraint models in savile row through associative-
commutative common subexpression elimination. In Proc.
Int. Conf. Principles and Practice of Constraint Program-
ming, LNCS 8656, 590–605. Springer, 2014.

[Njonko and Abed, 2012] P. B. Feuto Njonko and W. El
Abed. From natural language business requirements to ex-
ecutable models via SBVR. In Proc. Int. Conf. Systems
and Informatics, 2453–2457. IEEE, 2012.

[O’Sullivan, 2010] B. O’Sullivan. Automated modelling and
solving in constraint programming. In Proc. AAAI Conf.
Artif. Intell., 1493–1497. AAAI Press, 2010.

[Passerini et al., 2012] A. Passerini, M. Lippi, and P. Fras-
coni. Predicting metal-binding sites from protein se-
quence. IEEE/ACM Trans. Comput. Biol. Bioinf.,
9(1):203–213, 2012.

[Ryan, 1993] K. Ryan. The role of natural language in re-
quirements engineering. In Proc. Int. Symp. Requir. Eng.,
240–242. IEEE, 1993.

[Sadoun et al., 2013] D. Sadoun, C. Dubois, Y. Ghamri-
Doudane, and B. Grau. From natural language require-
ments to formal specification using an ontology. In Proc.
Int. Conf. Tools with Artif. Intell., 755–760. IEEE Com-
puter Society, 2013.

[Sebastiani, 2002] F. Sebastiani. Machine learning in auto-
mated text categorization. ACM Comput. Surv., 34(1):1–
47, 2002.

[Todorovski et al., 2012] L. Todorovski, W. Bridewell, and
P. Langley. Discovering constraints for inductive process
modeling. In Proc. AAAI Conf. Artif. Intell., 256–262.
AAAI Press, 2012.

[Tsochantaridis et al., 2005] I. Tsochantaridis, T. Joachims,
T. Hofmann, and Y. Altun. Large margin methods for
structured and interdependent output variables. Journal
of Machine Learning Research, 6:1453–1484, 2005.

[Van Hentenryck, 1999] P. Van Hentenryck. The OPL Opti-
mization Programming Language.. The MIT Press, 1999.

