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Abstract. Nowadays, machine learning is playing a dominant role in most chal-
lenging computer vision problems. This paper advocates an extreme evolution of
this interplay, where visual agents continuously process videos and interact with
humans, just like children, exploiting life–long learning computational schemes.
This opens the challenge of en plein air visual agents, whose behavior is pro-
gressively monitored and evaluated by novel mechanisms, where dynamic man-
machine interaction plays a fundamental role. Going beyond classic benchmarks,
we argue that appropriate crowd-sourcing schemes are suitable for performance
evaluation of visual agents operating in this framework. We provide a proof of
concept of this novel view, by showing methods and concrete solutions for en
plein air visual agents. Crowdsourcing evaluation is reported, along with a life–
long experiment on “The Aristocats” cartoon. We expect that the proposed radi-
cally new framework will stimulate related approaches and solutions.

1 Introduction

Nowadays, most computer vision algorithms are designed to successfully tackle specific
tasks, such as image classification, object detection and localization, tracking, seman-
tic segmentation, scene parsing [22, 11, 12, 19, 20]. The remarkable scientific results
achieved in the last few years have fueled the diffusion of computer vision technologies
even in commercial devices such as cameras, tablets, or smartphones.

However, there seems to be a lack of general results when considering the capabil-
ity of an automatic agent to acquire and successfully exploit vision skills in unrestricted
video environments. In particular, the basic task of semantic labeling of pixels in a given
video stream has mostly been approached at the frame level, as the outcome of well-
established pattern recognition methods working on images. This modality is far from
the natural visual interaction experienced by humans with the surrounding environment.
The acquisition of visual concepts would have been more difficult if the human cogni-
tive processes had to analyze a stream of shuffled frames: the extraction of symbolic
information from images that are not frames of a temporally coherent visual stream
would have been extremely harder than in the natural visual experience. Pursuing this
idea, we propose studying agents which develop visual skills through a life–long learn-
ing process that takes place following a protocol inspired by a human-like communica-
tion scheme to deal with unrestricted video. A similar idea is tackled down by the NEIL
project [1], but working in the context of images only. In this scenario we propose an
in-depth re-thinking of the role of machine learning in computer vision. We argue that
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a new perspective should be followed facing the challenge of disclosing the computa-
tional basis of vision by regarding it as a truly learning field that needs to be attacked
by an appropriate vision learning theory. In particular, we think that the first step in
this direction is to move the target to unrestricted visual environments, and to consider
a human-like communication protocol, instead of focusing on brute–force learning on
massive labeled datasets of images. We refer to this learning protocol as learning to see
like children (L2SLC) to stress our view on how visual skills should be acquired. In this
framework, there is no neat distinction between learning and test sets, but there is just a
visual environment (a video stream) where the agent lives and receives its stimuli.

As pioneer examples of agents implementing the proposed protocol, we describe
Developmental Visual Agents (DVAs). In these agents, learning is driven by several
factors that can be unified under the general concept of constraint. The theory of learn-
ing from constraints [5, 2, 8, 18] allows to incorporate different rich contributions, such
as parsimony principles, external supervisions, and complex dependencies among the
developed concepts. In particular, we consider motion coherence as a fundamental con-
straint to reduce the complexity for learning visual skills [10, 7]. In fact, this constraint
imposes that any label attached to a moving pixel has to be the same during its mo-
tion, thus significantly extending the provided supervisions. This aspect is essentially
ignored in most machine learning approaches working on datasets of tagged images.
Moreover, DVAs undergo developmental stages, that very much resemble those fea-
tured in humans [6], by exploiting a life–long computational scheme4.

In the L2SLC scenario, the assessment of visual agents by classical benchmark ap-
proaches5 seems unnatural, and, hence, we propose to explore a different experimental
validation that seems to resonate perfectly with the considered life–long learning proto-
col. DVAs are to be tested in unrestricted environments and contexts during their lives.
An evaluation scheme based on crowdsourcing is proposed, named En plein air. In this
open on-line lab, any subscribed user is able to monitor and rate the performance of
the currently deployed visual agents. In this paper we show two possible scenarios of
assessment: an explicit rating of the performances of different agents in given envi-
ronments, and the possibility to monitor a set of agents during their learning process.
A prototype of our crowdsourcing initiative, our implementation of DVAs, and their
outcome in several visual world are collected at http://dva.diism.unisi.it.

2 Learning Protocol

We consider visual agents performing scene semantic labeling on a video stream. Given
a set T of semantic categories (tags), the agent labels each pixel in a video frame with
a subset of T (i.e. it performs multi-tag prediction). Pixel tagging is performed contin-
uously by the visual agent as time flows. The tag set is created by a human supervisor
in an incremental way, so that new tags can be added in any moment of the agent’s life.
The supervisor also provides supervisions to specific patterns in the observed scenes and

4 The acronym DVA was introduced in [9, 17] in the context of low-level feature extraction and
image classification. Here we are extending those agents to the life-long learning processing
of video streams, performing semantic labeling.

5 The risk of biases in vision benchmarks, always recognized, was explicitly pointed out in [23].
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Fig. 1. Interaction of a supervisor with a running visual agent. A semantic label is provided for a
region of pixels (highlighted in pink). (“The Aristocats” cartoon, c© The Walt Disney Company).

possibly also semantic constraints among the defined tags. Hence, at each time step a
tag set Tt = {t1, . . . , tkt} is given, along with a set of constraints Ct = {C1, . . . , Cct}
defined on the elements of Tt, possibly depending on the environment configuration
(i.e. spatio-temporal variables in the video stream). We do not assume any particular
requirement on the nature of constraints, except that they can be specified with a given
mathematical formalism. For instance, using First Order Logic we can express ontolog-
ical constraints among tags, such as the relationship between categories modeled by the
is-a predicate. Motion coherence can instead constrain the tags assigned to correspond-
ing pixels, given the perceived motion, in a sequence of consecutive frames.

Once the agent is born, it starts analyzing the input video stream and to develop its
internal model of the experienced environment. Learning begins as soon as the agent is
deployed, initially following the constraints imposed by its own architecture and by a
set of basic behaviors, such as those deriving from parsimony principles and motion co-
herence. The learning protocol assumes supervisors to intervene at the symbolic level,
by attaching tags to visual patterns in a given frame. Supervisions can be provided at
any time step and they are managed asynchronously by the agent as it continues to out-
put predictions on the incoming frames. We consider two different kinds of supervisions
to be fed to the agent: (i) strong, that specify one or more tags for a specific (group of)
pixel(s) in a certain frame, and (ii) weak, that express the presence of an object, regard-
less of its specific location in the frame. Figure 1 shows such alternatives in the current
version of our interface: the tag Duchess can be associated with strong supervision by
selecting a region (here is Duchess), whereas weak supervision is provided at frame
level (in this frame there is Duchess). Clearly, weak supervisions require the agent to
detect the object to be supervised, and thus they are effective only after enough strong
supervisions have been provided, as a reinforcement of visual concepts in their initial
stages. Weak supervisions can be useful in real-time scenarios, for example if users
provide spoken supervisions through a microphone. Visual agents are also expected to
take the initiative by asking for supervision, thus exploiting an active learning scheme.

The proposed learning protocol is mainly inspired by the observation that children
can learn to recognize objects and actions from a few supervised examples, whereas
nowadays machine learning approaches strive to achieve this task without the availabil-
ity of massive labeled datasets. This difference seems to be deeply rooted in the com-
munication protocol at the basis of the acquisition of visual skills in children and ma-
chines. For this reason we refer to the proposed protocol as learning to see like children
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(L2SLC). The visual agent lives in its learning environment (its specific video stream),
experiencing a life–long learning process that involves the exploitation of both natural
constraints and externally provided teaching signals. Among the natural constraints it
seems to be important to include parsimony principles, that constrain the complexity of
the solution to be as low as possible, and the need to take coherent decisions with re-
spect to the perceived motion of the pixels in the video stream. The linguistic process of
attaching symbols to objects takes place at a later stage of children development, when
they have already developed strong pattern regularities. We conjecture that, regardless
of biology, the enforcement of the motion coherence constraint is a high level compu-
tational principle that plays the fundamental role for discovering pattern regularities.

3 En Plein Air Assessment

The impressive progress of computer vision has strongly benefited from the massive
diffusion of benchmarks which, by and large, are regarded as fundamental tools for
performance evaluation. Nowadays, the majority of researchers assume to have access
to huge collections of labeled data to evaluate their algorithms, and, when they are not
available, they are created from scratch. Despite their apparent indisputable dominant
role in the advancements in computer vision, some criticisms have been recently raised
[23]. Moreover, this methodology may not always be applicable to the setting of Sec-
tion 2, at least not in a straightforward way, or it would require overwhelming efforts.

As a matter of fact, the proposed learning protocol involves visual agents operating
in dynamic environments. Differently from the case of classical batch data sets, there
is no clear distinction between training set and test set. This situation raises a very im-
portant question: which is the right method to evaluate these visual agents? It is clearly
impossible to give a definitive answer, but the previous considerations suggest that the
time has come to open the mind towards new approaches. The benchmark–oriented at-
titude, nowadays dominating the computer vision community, bears some resemblance
to the influential testing movement in psychology which has its roots in the turn-of-the-
century work of Alfred Binet on IQ tests (see e.g. [21]). Both cases consist in attempts
to provide a rigorous way of assessing the performance or the aptitude of a (biological
or artificial) system, by agreeing on a set of standardized tests which, from that mo-
ment onward, become the ultimate criterion for validity. The IQ testing movement has
been severely criticized not only for the social and ethical implications deriving from
the idea of ranking human beings on a numerical scale but also, more technically, on
the grounds that, irrespective of the care with which such tests are designed, they are
inherently unable to capture the multifaceted nature of real-world phenomena. Related
concerns were given in the seminal paper by David McClelland [15], that sets the stage
for the modern competency movement in the U.S. Motivated by analogous concerns,
we maintain that the time is ripe for the computer vision community to adopt a simi-
lar grade-in-life attitude towards the evaluation of its systems and algorithms. Clearly,
we do not intend to diminish the importance of benchmarks, as they are indeed invalu-
able tools for the progress of the field. The recently proposed “Visual Turing Tests” [4,
13] share similar ideas, by proposing to assess whether machines can perform scene
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Fig. 2. The pipeline of a Developmental Visual Agent.

understanding as well as humans, for example by answering a list of yes/no questions
regarding a given image (i.e., is the boy with the red hat drinking?).

It is clear that the skills of any visual agent can be quickly evaluated and promptly
judged by humans, simply by observing its behavior. Thus, we propose a crowdsourcing
performance evaluation scheme where registered people can inspect and assess the per-
formance of software agents. We use the term en plein air (“in the open air”), mimick-
ing the French Impressionist painters of the 19th-century and, more generally, the act of
painting outdoors. This term suggests that visual agents should be evaluated by allowing
people to see them in action, virtually opening the doors of research labs. A prototype of
such evaluation scheme can be experimented at http://dva.diism.unisi.it.
Registered users can observe the quality of visual agent predictions, and rate them (from
0 up to 5). Scores are then averaged over all the users. Clearly, this kind of mechanism
does make sense when the judges have access to the setting in which the agent operates,
to better evaluate the difficulty of the task and the impact of the presented results. For
this reason, each agent comes with a short description of the experimental setting. This
evaluation procedure also allows the users to monitor sets of agents during their life,
verifying their progresses in the learning process. This is well-suited for the life–long
learning protocol of Section 2, and the first case study will be described in Section 5.

The en plein air proposal allows others to test our algorithms and to contribute to
this evaluation method by providing their own data, their own results, or the compar-
isons with their own algorithms. Our web site hosts a software package with a graphical
interface which can be used to interact with the agents that we will be describing shortly
(Section 4), by providing supervisions and observing the resulting predictions.

4 Pioneer Visual Agents

The learning protocol and the en plein air framework allow us to define a general variety
of visual agents, designed so as to perform scene understanding in unrestricted domains,
following a life–long learning paradigm. Here we introduce a first implementation of
pioneer agents within this context, named Developmental Visual Agents (DVAs) [9,
17]. The DVA architecture is hierarchically organized, starting with feature extraction
from input visual streams, up to symbolic layers where user interaction occurs. Figure 2
depicts the system pipeline. The learning principles of DVAs are rooted in the theory
of learning from constraints [5], that allows us to model the interaction of intelligent
agents with the environment by means of constraints on the tasks to be learned, and
gives foundations and algorithms to discover tasks that are consistent with the given
constraints and minimize a parsimony index. The notion of constraint is well-suited to
express both visual and linguistic granules of knowledge. Visual constraints can just
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encode supervisions on a labeled pixel, but the same formalism can represent also mo-
tion coherence, or complex dependencies on real-valued functions, including abstract
logic formalisms [2]. While this is an ideal view to embrace different visual constraints
in the same mathematical and algorithmic framework, we also consider life–long learn-
ing computational schemes where the system adapts gradually to the incoming visual
stream.

Let V be a video stream, and Vt the frame processed at time t. DVA first extracts
a stack of L layers of hierarchical scale- and rotation-invariant features, that are de-
veloped following the ideas described in [9, 17]. Basically, for each pixel x, the goal
is to learn a code of d` features (for the `-th layer) by fulfilling a constraint driven by
information-theoretic principles, that aims at maximizing the mutual information of the
code with respect to the observed input, with no interactions with external supervisors.
Features are computed over a neighborhood of x at the different levels of the hierarchy,
by modeling a receptive field of x with a set ofN Gaussians gk, k = 1, . . . ,N , located
nearby the pixel. Thus, higher layers in the hierarchy virtually observe larger input por-
tions. The features of each layer are encoded with probability scores, and the L feature
codes are stacked into a single descriptor for pixel x. While in [9, 17] feature extraction
injects invariance to geometric transformations by processing image sets, here we fol-
low the strategy of [7] to handle on-line video streams: the data covered by the receptive
fields, also referred to as receptive inputs, are compared with an internal (geometrically
invariant) representation of the video receptive inputs up to time t. This induces a pixel-
wise motion estimation, a strong basis over which DVAs can learn invariant features.

On top of this unsupervised feature extraction process, DVAs partition the input
frame into homogeneous superpixels (regions) to reduce the computational burden of
pixel-based tagging. We extend the graph-based region-growing algorithm in [3] by
progressively merging pixels according to a dissimilarity score based both on color sim-
ilarity (as in [3]) and on motion coherence. The dissimilarity is decreased (increased)
for those pixels whose estimated motion is (is not) coherent, so that neighbor pixels
locally moving in the same direction will more likely belong to the same region. The
partitioning obtained for frame Vt contains a set of Rt regions which correspond to
visual patterns that users can tag. Region r ∈ Rt is described with a histogram zr, ex-
ploiting average feature pooling on the pixels belonging to it. During the agent’s life,
descriptors are progressively accumulated as vertices (nodes) of a graph, named Devel-
opmental Object Graph (DOG). We indicate with Vt the set of vertices at time t. To
avoid storing duplicate nodes in the DOG, and also to meet practical memory budget
requirements, a user-defined tolerance τ between vertices is employed. In detail, after
having computed the descriptor zr, its nearest-neighbor within the current set of DOG
vertices is retrieved by the χ2 distance dχ2 : if dχ2 > τ then a new vertex is added to the
DOG, otherwise zr is mapped to (or “hits”) its nearest-neighboring vertex. Thus, each
region r ∈ Rt is associated to a node, while the same node can be associated to mul-
tiple regions over the video. To meet real-time requirements, we exploit search space
partitioning and we allow sub-optimal solutions to speed up nearest-neighbor search.

Two vertices vi and vj can be linked by two categories of edges, if one of the fol-
lowing conditions occurs: (i) they are spatially similar; (ii) the agent collected evidence
that motion estimation is connecting them. For the first condition, we link nodes whose
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distance is smaller than a pre-defined threshold γs. The spatial weight of an edge is
computed as wsij = exp(−χ2(vi, vj)/2σ

2
τ ). The second condition involves two consec-

utive frames Vt−1 and Vt. If a region belonging to Vt−1 and a similar-sized region of
Vt are such that most of their pixels are connected by the motion estimation procedure,
then the motion-based weight wmij between their associated vertices (vi and vj) should
be increased. We ignore cases where the number of connected pixels is too small (given
a threshold γm) with respect to region sizes. During the agent’s life, we update wmij as
long as we accumulate new evidence of motion-based connections between vi and vj6.

The last computational block of Figure 2 involves the symbolic decision mecha-
nism. Labels can be attached by users to the visual patterns stored in the DOG as classic
supervisions. For each new semantic tag tk introduced by a supervisor, a new function
fk(vj) is created, operating on the space of DOG vertices (we hereby discard the time
index, for the sake of simplicity). These functions are defined within the framework of
learning from constraints [5], which is based on the notion of constraint, to model inter-
actions with the environment, and on the parsimony principle. The degree of parsimony
of f = [f1, . . . , ftk ] is defined by means of a given norm ‖f‖ [5]. Functions fk(vj) have
to satisfy coherence constraints defined over the spatio-temporal manifold induced by
the DOG structure, as well as supervision constraints. We indicate the penalty asso-
ciated to supervision constraints with µ(1)

S , and that of coherence constraints as µ(2)
M .

Thus, the problem of learning f from (soft) constraints can be formulated as:

f∗ = argmin
f

{
‖f‖2 + µ

(1)
S (f) + µ

(2)
M (f)

}
. (1)

It is possible to prove a representer theorem which extends the classical kernel-based
representation of traditional learning from examples, leading to the so-called Support
Constraint Machine (SCM) [5]. The solution of eq. 1 is then: f∗k =

∑N
i=1 ζikK(xi, ·),

being K(·, ·) the kernel associated with the selected norm (exponential χ2 kernel) and
ζik the parameters to be optimized. Being Sk = {(vi, yi,k), i = 1, . . . , lk} the set of
supervised DOG nodes for function fk, and being yi,k ∈ {−1,+1} the label attached
to some node vi ∈ V for function fk, the supervision constraint can be expressed as:

µ
(1)
S (f) =

tk∑
k=1

∑
(vi,yi,k)∈Sk

βikmax(0, 1− yi,kfk(vi))2 .

where tk is the number of classes for which the agent has received supervisions until
time t, and the scalar βik > 0 is the belief [5] of each point-wise constraint. When a
new constraint is added, its belief is set to a fixed initial value. Then, βik is increased as
the same constraint is provided multiple times, while decreased in case of mismatching
supervisions, keeping

∑
i βik = 1. This mechanism allows the agent to better focus on

frequently-provided supervisions, and to give less weight to noisy and incoherent labels.
Coherence constraints instead enforce smooth decisions over DOG nodes connected by
any kind of edges, leading to an instance of classic manifold regularization [16]:

µ
(2)
M (f) =

tk∑
k=1

|V |∑
i=1

|V |∑
j=i+1

wij(fk(vi)− fk(vj))2 ,

6 wm
ij is averaged over all the accumulated evidences.
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Fig. 3. DVA sample predictions on four visual worlds (left-to-right). Only regions with confidence
greater than zero are highlighted (best viewed in colors) and labeled with the most-confident class.

The belief of each coherence constraint is a linear combination of edge weights: wij =
λM

(
αM · wsij + (1− αM) · wmij

)
, where λM > 0 is the global weight of the coher-

ence constraints, and αM ∈ [0, 1] balances spatial/motion-based contributions.
As DVAs are expected to react and make predictions at any time, while learning

evolves asynchronously, we assume f to operate in a transductive environment on the
space of DOG nodes7. The life–long learning procedure operates by caching values
fk(vh) over each vh ∈ V after each update of ζik: in this way agents can continuously
make predictions, while the underlying optimization process is still ongoing. To avoid
abrupt changes of f , parameters ζik associated with newly introduced representatives
are set to zero. As memory restrictions are clearly imposed, we must define both a
memory budget and a removal policy when the DOG is full: we chose to remove vertices
with a small number of hits over a time window. Node hits are also used as frequency
indicators for visual patterns, to select vertices upon which ask users for supervision.

5 Case Studies

We now describe two different case studies where visual agents that follow the learning
protocol of Section 2 are evaluated in the en plein air framework described in Section 3.
We employ DVAs, but we remark that our proposal can be extended to other instances
of visual agents, encouraging other laboratories to promote their own implementations
and evaluate them using the principles addressed in this work.

In the first experiment, we aim to compare five DVAs on a set of videos taken from
four different visual worlds: a Donald Duck cartoon, a Pink Panther cartoon, a set of
(merged) clips from the movie “Get Shorty” (taken from the HoHA2 database [14])
and another real-world video recorded with a fixed webcam in our lab (all of them
processed at 240 × 180 resolution, 25 fps). We chose four heterogenous videos, but
DVAs can process any kind of video source. We defined 4–6 semantic classes (from
frequently observed objects) for each world8, and we provided the four DVAs very few
supervisions for each class (from 5 up to 10, only positive). Only a first portion (≈ 2
minutes) of each sequence was used to provide supervisions, while the remaining parts
(≈ 1 minute) were used to assess the generalization capability of each agent. We asked
users to rate each agent on each possible world (independently) with a score in the range

7 Note that this happens also for feature functions [7].
8 Donald Duck: {hat, coat, paw, pluto, collar, beak}; Pink Panther: {pink panther, pillow, blan-

ket, blue bird, cuckoo clock}; Get Shorty: {face1, face2, face3, face4}; Webcam: {face1, mon-
itor1, journal, bottle, poster1}. Classes ending with a digit refer to specific instances.
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Table 1. Results obtained by the crowdsourcing evaluation process on five DVAs, averaged on all
rates (from 0 up to 5) obtained in all four worlds, rescaled as percentages in the last column.

Agent Description Rate Rate %

A1 BA (Base Architecture) 3.16 63.2%
A2 BA without motion constraints, i.e., αM = 1 (see Section 4) 2.55 51.0%
A3 BA with a larger DOG, storing up to 20,000 nodes 2.47 49.4%
A4 BA with double amount of supervisions for each class 3.26 65.2%
A5 BA which processed a ∼2x longer sequence 3.36 67.2%

Fig. 4. Sample prediction on two frames without (left) or with (right) motion constraints.

0–5, by evaluating the ability of the system to identify and tag elements in the video
stream. Currently, over 40 users, including AI/CV researchers and Computer Science
students, were involved in the rating process, but anyone can register on the website
and contribute. Figure 3 shows samples of DVA predictions for the four worlds, as
shown to the subscribed users: each region was labeled with the most-confident class,
highlighting only those regions over which the confidence was greater that zero.

While all the agents share the same settings on the low-level feature extractors9,
they were diversified by high-level characteristics. The first agent (A1) exploits a Base
Architecture (BA) designed to store up to 10,000 nodes in the DOG, including spatial
and motion-based connections. The settings of the other agents, described in the second
column of Table 1, were chosen to evaluate the impact of some specific DVA compo-
nents: the effect of motion constraints (A2), the use of a larger DOG (A3), a higher
number of supervisions (A4), and a longer duration of the agent’s life (A5). Table 1
reports the votes collected with this first crowdsourcing evaluation, averaged on all the
rates obtained in the four considered worlds. Motion constraint results to be crucial
to improve the quality of the agents (A1 vs. A2), as motion constraints can propagate
supervisions over DOG nodes connected by motion links. This happens both for mov-
ing instances, but also for static objects undergoing small changes in appearance due
to illumination or occlusions (see Figure 4). Not surprisingly, also more supervisions
(A4) improve the performance, whereas doubling the DOG size (A3) was badly rated.
A possible explanation is that a more densely sampled DOG would require appropriate
parameter adjustments (e.g., kernel width, spatial/motion constraints weights). Process-
ing longer sequences (A5) also yields better DVAs, because motion links become more
stable with time and noisy DOG nodes are filtered out by the long–term removal policy.

9 The model settings were chosen to fulfill real-time processing on an ordinary multicore CPU:
5 × 5 receptive fields, 1 layer/feature-category, spatial scales in {1, 1.5}, 8 in-plane rotation
angles, 800 features. See [17, 9] for a detailed description of each parameter.
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Fig. 5. Sample predictions by DEVA on the same scene at different life stages (top to bottom: 1
day old, 5 days old). Better skills are acquired as long as the agent “grows up”.

The second experiment we present is inspired by life–long learning principles and
guided by the protocol of Section 2. In this case, the so called agent DEVA was devel-
oped, by continuously processing10 the cartoon “The Aristocats” ( c© The Walt Disney
Company), and by receiving every day new supervisions from a set of selected super-
visors. The outcome of DEVA processing can be monitored online for each day in its
life (http://dva.diism.unisi.it/demo_aristocats.html), to check its
evolution, its improvements and common mistakes11. A web interface allows to select
the day, the semantic classes to visualize, and the agent’s sensitivity. Figure 5 shows a
result extrapolated from this experiment, where DEVA was tested on the same video
sequence at different life stages (1 vs. 5 days old). Despite some errors (Toulouse and
O’Malley, both reddish, and Duchess and Marie, both white, are easy to confuse) we
can clearly appreciate how DEVA progressively acquires better visual skills during its
life. This experiment addresses two distinct issues: (1) we publicly share results on a
life–long experiment monitoring the gradual development of an agent; (2) we present
a dynamic scenario where the number of classes incrementally grows over time, while
existing classes keep receiving supervisions. The experiment lasted about three months.

6 Conclusions

This paper introduced a new perspective in the design and evaluation of agents that
acquire visual skills simply by living in their own visual environment and by interact-
ing with humans. A crowd-sourcing based evaluation scheme is proposed that can be
instantiated by exploiting different human interaction modalities. En plein air visual
agents open the doors of research labs all over the world, by allowing any subscribed
user to monitor and rate the performance of the currently deployed visual agents. De-
velopmental Visual Agents turn out to be a proof of concept of the general principles
outlined in this paper. DEVA, one of these agents, has been watching “The Aristocats”
cartoon for months, interacting with humans who provided supervision. Future releases
will include the possibility to supervise DEVA by registered users. While this paper
reports the first attempt of pioneering the proposed idea, this general scheme is likely
to be exploited in other labs by different approaches.
10 DEVA actually processes a few minutes of video per day, to allow performance analysis.
11 Processing at 320×240, 25fps, 20k DOG nodes, low-levels as in crowdsourcing experiments.
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