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Abstract. Feature extraction is a crucial phase in complex computer
vision systems. Mainly two different approaches have been proposed so
far. A quite common solution is the design of appropriate filters and fea-
tures based on image processing techniques, such as the SIFT descrip-
tors. On the other hand, machine learning techniques can be applied,
relying on their capabilities to automatically develop optimal process-
ing schemes from a significant set of training examples. Recently, deep
neural networks and convolutional neural networks have been shown to
yield promising results in many computer vision tasks, such as object
detection and recognition. This paper introduces a new computer vision
deep architecture model for the hierarchical extraction of pixel–based
features, that naturally embed scale and rotation invariances. Hence,
the proposed feature extraction process combines the two mentioned
approaches, by merging design criteria derived from image processing
tools with a learning algorithm able to extract structured feature rep-
resentations from data. In particular, the learning algorithm is based
on information-theoretic principles and it is able to develop invariant
features from unsupervised examples. Preliminary experimental results
on image classification support this new challenging research direction,
when compared with other deep architectures models.

1 Introduction

Nowadays, deep architectures are receiving a growing attention in the areas of
machine learning and computer vision [1–3]. In this paper, we propose a new
challenging approach to computer vision, which is inspired by the literature on
deep architectures [4]. Like for low–level vision, it is a truly pixel–based model,
which carries out unsupervised feature extraction by information-theoretic learn-
ing principles. This hierarchical model is named a Developmental Visual Agent
(DVA). While the proposed learning algorithm is formulated in an unsupervised
setting, future directions of research will also include the possibility of enforcing
supervisions and other types of semantic constraints coming from prior knowl-
edge of the problem.

The focus of this paper is on hierarchical feature extraction, a fundamental
task of computer vision where DVA can represent a sound and valuable alter-
native to classic deep architecture models, such as Deep Belief Networks [1] and



II

Convolutional Neural Networks [5]. Although deep architectures have long been
introduced in the nineties, recent years have seen a second birth of this research
direction, due both to the massive increase of the available computational re-
sources, and to the connections with biological models of the visual cortex [6].
Unlike these well–known models which are nowadays widely employed in many
tasks, our approach naturally incorporates classic properties of computer vision,
such as scale and rotation invariance, by relying on computational units which
are connected to pixel–centered receptive fields at each layer in the hierarchy. In
so doing, moving to upper layers, each computational unit will process a growing
portion of the input image, therefore being able to construct more sophisticated
features. The proposed learning scheme could also be naturally adapted to man-
aging input videos or streams by extending the receptive fields to consider the
time dimension. At each level of the hierarchy, a set of discrete–value features is
developed while processing the input image stream by an unsupervised learning
algorithm based on information–theoretic criteria. The algorithm both estimates
the local invariance parameters for each pixel (i.e. the local scale and eventually
the rotation) and adapts the behavior of the computational units on a long–term
horizon.

The paper is organized as follows. The next section presents the DVA deep
architecture describing the computational units and how scale and rotation in-
variance is embedded into the model. Then, Section 3 introduces the learning al-
gorithm, that is based on unsupervised criteria defined by information–theoretic
principles. In Section 4 some preliminary results are presented, showing how
invariant features are developed and comparing the proposed architecture with
Deep–Belief networks on a multi–class image classification benchmark. Finally,
Section 5 draws the conclusions and describes the future research directions.

2 The DVA deep architecture

In the DVA architecture, the feature extraction is performed by a layered deep
network, that hierarchically computes a set of features associated to each pixel
x of a given N ×M input image (see Fig. 1). Each layer l in the deep architec-
ture (l = 1, . . . , L) computes a set of probability distributions for Cl features,
pc,l(sc,h|x,vl−1), c = 1, . . . , Cl, over sets of dc,l discrete symbols for each pixel.
In particular, pc,l(sc,h|x,vl−1) denotes the probability of the h–th symbol sc,h
for the c–th feature of layer l, computed for the pixel x, given the input vl−1

provided by the previous layer. The input image is fed to the first layer as v0,
that is a d0 × N × M tensor, where d0 is the number of image channels (i.e.
d0 = 1 for grayscale images, d0 = 3 for color images). The probability distribu-
tion for each feature is a histogram with dc,l entries that can be collected into
the vector pc,l(x,vl−1). The output of the l-th layer is a dl × N × M tensor

vl, where dl =
∑Cl

c=1 dc,l, and it is obtained by the concatenation of the pc,l

histograms over all the input pixels, i.e. vl = {pc,l(xij ,vl−1) | c = 1, . . . , Cl; i =
1, . . . , N ; j = 1, . . . ,M}. The tensor vl is fed as input to the (l + 1)-th layer.
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Fig. 1. An example of DVA deep architecture. The forward step extracts the pixel-
based features for the input image, while the backward step exploits the gradient
computation.

Each probability distribution is associated to a feature extractor that is ba-
sically an adaptive filter fh,cl(x,vl−1|σl(x),νl(x),αh,cl) depending on a set of
parameters: (1) the local scale σl(x) ∈ IR+ and (2) the local rotation versor
νl(x) ∈ [0, 1]2 are computed for each pixel in order to provide scale and rotation
invariance for the features, while (3) the filter parameters αh,cl are learned in or-
der to develop an optimal set of features for layer l. As highlighted in Fig. 1, each
feature detector considers a receptive field around each pixel x. The extension of
such area depends of the value of the local scale σl(x), while the local rotation
νl(x) determines its orientation. The output of the filters fh,cl is computed as

fh,cl(x,vl−1|σl(x),νl(x),αh,cl) =

mcl∑
q=1

∑
ij

πq,cl(vl−1[xij ])·


|Nl|∑
k=1

αhqk,cle
−‖σl(x)Rl(x)x̂k,l+x−[i,j]′‖2

2µlσl(x)2


 ,

(1)

where πq,cl(vl−1[xij ]) is a projection of the input vl−1 of layer l onto a subspace
with mcl dimensions, that favors the development of distinct features. In fact, a
different projection π·,cl is exploited for each feature c of layer l. For instance,
a random projection can be employed trying to reduce the dependences among
the inputs processed by each feature function f·,cl. Given the input tensor, each
component πq,cl(vl−1[xij ]) is spatially convoluted with a kernel (the term in
square bracket in Eq. 1) defined as a mixture of gaussians centered in a predefined
set of sample points around the local origin, Nl = {x̂k,l} (see Fig. 2 for an
example). The convolutional kernel is scaled and rotated by optimally setting
the values σl(x) and Rl(x), that is the rotation matrix induced by the versor
νl(x). The parameter µl is predefined and allows the tuning of the gaussian
widths with respect to the position of their centers in the sample set Nl, for
a given reference scale, i.e. σl(x) = 1. The filter equation can be rewritten by
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(a) (b) (c)

Fig. 2. Example of a filter layout. The filter detects a cross (a) with a 3 × 3 grid of
gaussians. The resulting convolutional kernel is shown in (b) and (c) for a reference
scale and rotation. The scale and rotation parameters modify the filter pattern to yield
invariance in the detection of the cross pattern.

introducing the variables ξqk,cl(x, σl(x),νl(x)) defined as

ξqk,cl(x, σl(x),νl(x)) =
∑
ij

πq,cl(vl−1[xij ])e
−‖σl(x)Rl(x)x̂k,l+x−[i,j]′‖2

2µlσl(x)2 , (2)

such that

fh,cl(x,vl−1|σl(x),νl(x),αh,cl) =

mcl∑
q=1

|Nl|∑
k=1

αhqk,cl ξqk,cl(x, σl(x),νl(x)) . (3)

The equation shows that the filter implements a linear function parametrized
by the coefficients αhqk,cl given the input variables ξqk,cl(x, σl(x),νl(x)), that
depend on the local scale and rotation parameters. This formulation allows a
more efficient computation and delineates some alternative approaches both for
the optimization of the invariance parameters, that actually affect the distribu-
tion of the ξqk,cl variables, and for the implementation of the feature detectors,
that can be realized also by non–linear adaptive functions depending on the
ξqk,cl inputs (e.g. SVMs can be employed). These directions are currently under
investigation.

The probability distribution over the set of values for the c-th feature of layer
l is simply computed via the softmax function

pc,l(sc,h|x,vl−1) =
efh,cl(x,vl−1|σl(x),νl(x),αh,cl)

∑dc,l

k=1 e
fk,cl(x,vl−1|σl(x),νl(x),αk,cl)

.

The feature development process is driven by the optimization of an objective
function, which in principle can incorporate both supervised and unsupervised



V

criteria at each layer. Although the use of supervisions and geometrical/semantic
constraints will be at the basis of the future development of DVA models, in this
paper we focus on unsupervised feature extraction.

At each layer l and for each feature c, the objective function is designed
to favor the development of a discriminative value for each pixel, while trying
to exploit the whole available codebook (i.e., all the dc,l symbols). The first
condition can be met by minimizing the entropy of the probability distribution
for the values of the feature c at each pixel, while the second can be obtained by
maximizing the entropy of the overall distribution of codes for the feature c on
the processed pixels. The two contributions will be referred to as average local
entropy and global entropy, respectively [7]. We employed the Rényi entropy
to carry out both measures, but the objective functions can be reformulated
using other similar information–theoretic criteria. The average local entropy of
the values for each feature c of layer l is computed as

Hp(
{
pc,l(xij ,vl−1(t))

}
) = − 1

TNM

∑
t

∑
ij

log




dc,l∑
k=1

pc,l(sc,k|xij ,vl−1(t))
2




for a batch of T input images v0(t), t = 1, . . . , T . On the other hand, the global
entropy of the codebook for the feature c in layer l is computed as

HP (
{
pc,l(xij ,vl−1(t))

}
) = − log




dc,l∑
k=1


 1

TNM

∑
t

∑
ij

pc,l(sc,k|xij ,vl−1(t))




2

 .

A regularization term Nc,l is included in the objective function as well, to
favor smooth solutions on the image plane,

Nc,l =
1

2TNMdc,l

∑
t

∑
h

∑
ij

‖∇xfh,cl(xij ,vl−1(t))‖2 ,

where we considered the gradient as differential operator, which can be analyti-
cally computed given the definition of the functions fh,cl.

These three contributions are combined to obtain the unsupervised objective
function driving the learning algorithm for the feature c of layer l, as

Uc,l = ηHp(
{
pc,l(xij ,vl−1(t))

}
) + (η − 1)HP (

{
pc,l(xij ,vl−1(t))

}
) + λNc,l (4)

where η ∈ [0, 1] and λ > 0 are used to weigh the contributions of each term.
Note that the sign of the combination coefficients, η > 0 and η− 1 < 0, requires
to minimize Hp and to maximize HP , as described above. The minimization of
these functions for each feature c and layer l yields the optimal feature detector
parameters αh,cl, h = 1, . . . , dc,l, c = 1, . . . , Cl, l = 1, . . . , L.

3 Entropy-based learning

The DVA model described in the previous section can be trained following dif-
ferent strategies, according to the scenarios where the agent operates. A layer–
by–layer procedure can be simply employed, similarly to most deep architecture
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systems, where each layer l is trained independently from the others, starting
from the bottom. A different learning strategy, which is currently under investi-
gation and is beyond the goals of this paper, is to jointly learn the parameters
of all the layers, possibly in a supervised setting, similarly to what happens in
the fine-tuning phase of deep belief networks [1].

Within a single layer l of the DVA architecture, the learning algorithm has to
optimize two distinct sets of parameters: (1) the feature detector convolutional
kernel coefficients αh,cl for each feature c and (2) the local scale, σl(x), and rota-
tion, νl(x), fields. There is a key difference between these two sets of parameters.
While the αh,cl coefficients have to model a pool of adaptive feature–extractor
filters and are, therefore, developed through a long–term learning procedure,
the invariance parameters have to be locally adapted for each pixel of each im-
age, even if their optimal values will depend on the current configuration of the
convolutional kernel coefficients.

The αh,cl parameters are optimized with respect to the objective functions
Uc,l defined in Eq. 4, following a gradient descent procedure over a batch of T
training images. More precisely, for each image in the training set a forward and
a backward step are performed, following a backpropagation–like schema (see
Fig. 1). During the forward phase on the input image v0(t), the scale parameters
σl(x, t) are first adjusted, using the current values of the coefficients αh,cl. Since
the scale is a local property, its values are optimized with respect to the local
entropy for all the features c in the layer1 computed at each pixel x as

Hl =
1

Cl

Cl∑
c=1

Hp({pc,l(x,vl−1(t))}) . (5)

In this way, the scale is estimated in order to yield the most discriminative con-
figuration for the values of the features, given the current αh,cl values. This
solution reduces the complexity of the architecture since the scale is indepen-
dent on the specific feature. This choice favors the development of features that
depend on input patterns that cover a similar area around the considered pixel
at a given layer. Basically, all the Cl features at layer l will detect configurations
at the same scale. In general, it is possible to consider a different local scale for
each feature by a straightforward extension of the optimization algorithm, but
we preferred not to adopt this solution to reduce the number of parameters. After
adjusting the scale, the forward step is completed by computing the value of the
objective functions Uc,l, using the computed σl(x). During the backward phase,
the evaluation of the partial gradient of the functions Uc,l for a given input im-
age follows a back–propagation like scheme. When the gradient computation is
completed, the parameters αh,cl are updated using a gradient descent technique.
In the implementation, we employed a version of the Resilient Backpropagation
(RPROP) algorithm [8].

1 For efficiency reasons, since the scale values are quantized, we exploited a grid search
to find the optimal parameters of σl(x), rather than computing the gradient of the
local entropy.
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Finally, given the scale σl(x), the local rotation versor νl(x) is computed
by considering the (weighted) average gradient over the receptive field. At the
first layer (l = 1), νl(x) is chosen as the local average of the gradients for each
channel in v0. At the other layers (l > 1), an appropriate norm of pc,l(x,vl−1)
is selected, due to the probabilistic nature of such vector, such that

νl(x) =
1

Z

∑
ij

∇x‖vl−1‖r|[i,j]′e
‖x−[i,j]′‖2
2γσ(x)2

where Z is the normalization factor, γ > 0 is a parameter that affects the
extension of the average area with respect the local scale, and r is the index of
the exploited norm (in the experiments we used r = 2).

Developing appropriate and discriminant feature detectors is a learning pro-
cess requiring several iterations. In order to facilitate such process, a procedure
based on a set of developmental stages can be designed, so that the agent can
focus on easier tasks first, and therefore developing low-level features. We are
currently investigating possible strategies to implement this stage-based learn-
ing procedure. One possibility is to progressively widen the scale range, starting
with large constant scales, corresponding to feeding the agent with blurred in-
put images, in order to first learn features at a coarse level, while focusing, in
a second stage, on the development of features related to small scale details.
Within this context, other possible research directions include the progressive
introduction of external knowledge within the learning process, for example in
the form of logic rules, constraints or simply supervisions.

4 Experiments

We trained DVAs by setting µl =
1
9 for all layers, so that for integer values of the

scale σl(x) we get receptive fields defined on (2σl(x)+ 1)× (2σl(x)+ 1) patches
(±3 standard deviations from the mean). The x̂k points are placed on the vertices
of the 3 × 3 grid centered in [0,0], while the νl(x) versor was discretized along
16 different angle directions.

We first present some insights on the low-level (L = 1) feature extraction.
In order to show how DVA models can exploit scale and rotation invariance, we
considered three pictures at the same resolution, representing the same object
at different scales/angles. Fig. 3 shows the case of three teapots, out of which a
DVA has extracted a feature (C1 = 1) with 3 different values using a variable
scale (σ1(x) ∈ [1, 5]). Comparing the corresponding feature maps (each column
of Fig. 3), it can be noticed that the DVA has learned the same features from
all the images, exploiting the invariance properties with respect to rotation and
scale changes. The rightmost graph of Fig. 3 depicts the scale of each pixel:
smaller scales are found along the borders of the teapot as well as in more
detailed internal regions. Moving from larger to smaller teapots, some details
are lost due to the size reduction/subsampling.

Image Classification. With the aim of investigating the impact of a multi–
layer feature extraction mechanism, compared to a single–layer architecture, we
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Fig. 3. Three images of the same teapot represented at different orientations/scales.
DVA extracts similar features for the three pictures. The scale for each pixel is variable
(σ1(x) ∈ [1, 5]) and it is reported in the rightmost graph (vertical axis). Smaller scales
are used to capture the details of the internal pattern of the teapot. Some of them are
lost in the bottom image due to the size reduction/subsampling.

considered a classic image classification task. Since DVAs are general purpose
agents performing pixel–based feature extraction, in order to perform image
classification the information extracted at the higher level is to be aggregated
by a pooling stage. In particular, the average of the feature histograms at the
top layer was computed and used as input for a linear Support Vector Machine
(SVM) classifier. We selected the data from the Caltech 101 collection [9], com-
posed of several real–world images grouped into 101 categories. We considered
10 random classes2 and a variable number D of training images (D ∈ {1, 5} per
class) converted to grayscale and scaled to 151× 143 (preserving proportions).
We trained a shallow (L = 1) and deep (L = 3) DVA with one feature per layer
(Cl = 1, l = 1, 2, 3) with 15 and 5, 10, 15 feature values at each layer, respectively.
The accuracy was compared with the performance of classic 3–layer Deep Belief
Networks (DBNs) [1]. We tuned the parameters of all the models by performing
a 5–fold cross–validation (or using an additional example per class when D = 1),
and the accuracy was measured on 200 test instances (20 examples per class).
Results are averaged on multiple random splits of the training data. For DBNs,
during model selection we selected the number nh of hidden units for each layer,

2 They are: airplanes, car side, crocodile, dollar bill, elephant, panda, pizza, scissors,
soccer ball, umbrella.
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with nh ∈ {200, 500, 1000, 5000}, while early stopping on the validation set was
used in order to select the best model to be used at prediction time. For DVAs,
we used η = 0.7 and λ = 0.001 to weigh the contributions of the global entropy
and the regularizer.

Table 1. Average accuracy (and std) on the test dataset from Caltech 101 data. A
Shallow DVA is composed of 1 layer, whereas DBN and Deep DVA are composed of 3
layers.

Training Images 10 50

DBN 21.67 (2.08) 25.83 (1.61)

DVA (Shallow) 26.33 (3.88) 32.83 (5.01)

DVA (Deep) 27.50 (6.00) 33.50 (5.41)

The results in Table 1 indicate a good quality of the features learned by both
DVA models in comparison with DBNs. Increasing the number of layers, the ex-
tracted features show better discrimination capabilities. Although research along
this direction is still at an early stage, these results are strongly encouraging.
Future work will include the use of supervised learning algorithms at the upper
layers in the hierarchy, while pixel–wise feature extraction might naturally be
applied to object detection tasks.

5 Conclusions

The paper presents a deep architecture for computer vision that develops pixel–
based features, while incorporating crucial rotation and scale invariances. The
learning algorithm is based on unsupervised criteria derived from principles of
information theory. The proposed algorithm has been evaluated in a multi–layer
setting and it compared favorably with classic deep architectures on a multi–
class benchmark. Future work includes the expansion of several aspects of the
feature extraction process, in order to allow the algorithm to naturally embed
pixel–wise supervisions as well as different kind of knowledge expressed by means
of constraints on the feature extractors.
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