
On–line Laplacian One–Class
Support Vector Machines

Nedo, Nodo, and Noccolo

Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche
list e-mail here

To Remove: focus on online learning, why one-class (modular among classes,
capable of managing class hierarchies as in KDDcup dataset), why laplacian
(typically many unsupervised data in an online setting). Brief review of existing
approaches (Goldberg).

Dataset description: MNIST and KDD. Experimental setup: different pruning
strategies (L0.5, L1, L2, sliding window); best pruning strategy with laplacian;
comparison with Goldberg. Advantages wrt Goldberg: no tuning of learning rate,
policy for pruning with Euclidean metric.

Abstract. We propose an on–line manifold regularization algorithm
that is able to work in scenario where the data arrives continuously
over time and is not possible to store it before to learn the classifier.
We present the On–line Laplacian One–Class SVM (OLapOCSVM) an
algorithm that learns from positive labeled and unlabeled data in on–
line fashion. The our approach is based on conjugate gradient descent
on RKHS and therefore it receives the theoretical properties of standard
convex programming technique. We present an efficient way to deal with
the continuous incoming data by means of a buffer which management
policy is based on the current estimate of the support of the input data
distribution.
The experimental results show that OLapOCSVM reaches a level of per-
formance comparable to batch algorithm LapOCSVM while it maintains
the ability to work in on–line scenarios. The approach can be extended
to the general semi–supervised learning setting and is an important step
in direction of long learning real–world applications.

Keywords: Online learning, One–Class SVM, RKHS, Manifold Regularization,
Semi–supervised learning.

1 Introduction

Nowadays, in many applications, ranging from computer vision (a moving robot
with a camera) to data mining (extract knowledge from a database), there is
a great availability of data. In particular, many scenarios are typically on–line
where the data arrives continuously during the time. The capabilities of the stan-
dard batch machine learning algorithms are limited by the available resources
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both in term of time and memory. For this reasons, a great attention is focused
on on–line machine learning algorithms that are able to work with never ending
learning scenario [9]. The classifier has to be continuously improved and there-
fore the training process must be efficient as possible and to be able to adapt to
change on the data distribution. Moreover, the real–world problems are naturally
semi–supervised where limited quantity of labeled data and abundant quantity
of unlabeled data are available [2]. In this direction has been proposed an online
approach for manifold regularization applied to SVM [6]: the authors extend the
idea of online SVM [9] to semi–supervised setting by exploiting the Laplacian
of the data. They propose different strategies to take into account the time and
memory requirements of the algorithm.
In many problems, in both supervised and semi–supervised setting, there is an
asymmetry in the data distribution: that is an examples may belong to several
classes and so can be labelled with different labels i.e. positive examples. At the
same time, given a certain class, each examples for which the label for the class
is not specified is considered as belonging to the rest of the classes (one or more
classes) i.e. negative examples. This is a well–known problem for the standard
SVM: one possible solution is the so called One–Class SVM (OCSVM) that is
a density estimation algorithm sometimes known as novelty detection algorithm
[14]. In this scenario, the algorithm tries to estimate the distribution from posi-
tive examples since that they are the unique available [11]. Moreover, the other
appealing property of OCSVM is its capability to model class hierarchies. Two
straightforward online extension of the density estimation algorithm are [9] and
[7].
In this paper is proposed an approach called Online Laplacian One–Class SVM
(OLapOCSVM) that exploits as baseline the Laplacian SVM (LapSVM) algo-
rithm [10] and in particular its One–Class extension in on–line fashion: in detail,
the continuous stream of data is faced by means a pruning strategy that decides
if the new example has to be added to the buffer depending on the current es-
timate of the support of the input data distribution. The theoretical properties
of convergence of the algorithm are guaranteed since that it exploits standard
convex programming technique (conjugate gradient descent) [10] instead online
convex programming technique (stochastic gradient descent) [4, 6].
Finally, the approach is not limited to the semi–supervised case analysed in this
paper i.e. manifold regularization, but it is more general and can be employed
with every semi–supervised learning algorithm.

2 Methods

The considered learning scenario consists in a stream of data for which supervi-
sions are given only for some examples belonging to a class of interest. Hence the
training algorithm goal is to develop the class model on–line while the data is
made available, taking advantage of both supervised and unsupervised records.
The first aspect to be taken into account is that only positive examples are
provided in the supervisions. OCSVM learning has been devised to approach
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this task when a batch of positive examples is available. The learning goal is
defined by the minimizing the following functional with respect to the function
f : X → IR in a given RKHS H and the bias b ∈ IR,

Eoc[f ] = λr ‖f‖H +
1

|L+|
∑

xs∈L+

max (0, 1− f(xs)− b) + b− 1 (1)

where L+ is the set of supervised positive examples. Once the function f is
estimated, an input example x ∈ X is assigned to the modeled class if f(x)+b ≥
1− ξ, where ξ ∈ [0, 1] is a tolerance parameter.

In the on–line setting data is incrementally made available in time and the
classifier should be able to provide its predictions at each time step. Hence, the
learning algorithm should be designed to provide an optimal solution at each
time step t, given the data seen up to that instant. However, since in general
the horizon is infinite, it is unfeasible to collect all data up to t and to train the
classifier on them. In fact, this approach would require an unbounded amount of
memory and increasingly long training times for the classifier. Finally, retaining
all the data history may degrade the performances in these cases in which there
is a drift in the data distribution. Therefore, a classical approach to on–line
learning is to exploit a finite size buffer that collects only part of the incoming
data [9, 6]. This technique requires to define an appropriate policy to manage
the buffer overflow. For the specific task, when a new example has to be added
to the buffer different criteria can be taken into account, especially when the
buffer is full and the new example should eventually replace a memorized one.
In case of replacement, a simple criterion is to remove the oldest memorized
example, thus implementing a sliding window of the input stream. A better
solution is to consider also the significance of the examples for the classifier.
For instance, a good strategy is to give priority to supervised examples with
respect to unsupervised ones [6]. More advanced methods try to estimate the
contribution of the new point or of the example to be removed to the accuracy
of the estimated classifier [12]. In particular, the proposed method is based on
a pruning strategy that decides if the new example is to be added to the buffer
depending on the current estimate of the support of the input data distribution.
Given a tolerance ε > 0, the example at time t, xt, is added to the buffer Bt only
if the condition

∀(xb ∈ Bt−1) : ‖xt − xb‖p > ε (2)

is satisfied, otherwise Bt = Bt−1. The norm used to compute the data similarity
can be chosen give the specific characteristics of the input space X (e.g. for
high–dimensional spaces p ≤ 1 may be considered instead of the Euclidean
norm with p = 2 [1]). This solution allow us to provide a stable coverage of
the support of the input data distribution with a given resolution depending
on the parameter ε. Clearly, a better approximation of the support is obtained
for smaller values of ε, at the cost of a larger amount of needed memory space.
The pruning technique can be combined with replacement criteria as those listed
before, when a maximum buffer size is set. In the experimental settings, we will
consider two different configurations: a buffer with a fixed maximum size with a
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replacement policy in case of overflow based on the example age, with priority
for supervised examples, referred to as on–line buffer to remove; a buffer whose
insertions are managed by the pruning technique defined by the rule of eq. (2),
referred to as on–line pruning.

Finally, also unsupervised examples available in the input stream can be
exploited to provide additional information on the data distribution. By following
the Laplacian SVM approach [2, 10] we can add a manifold regularization term
to the objective function. First, given a set of unsupervised points xu ∈ U we
build the Laplacian graph L = D −W associated to the set S = L+ ∪ U : the
W is the adjacency matrix of the data graph, which entry in position i, j is
wij , and D is the diagonal matrix with the degree of each node i.e. the element
dii =

∑n
j=1 wij . Hence, the manifold regularization term is defined as

Eg[f ] = ‖f‖2M =
∑

(i,j)∈M(U)

wi,j (f(xi)− f(xj))
2
. (3)

Note that, in general, several choice of ‖f‖2M are possible and that in the
case of exponential weights for the adjacency matrix Eg[f ] = fTLf [2].
The learning objective is to minimize the following functional with respect to f
and b:

E = Eoc[f ] + Eg[f ]. (4)

If we consider the batch case, there are two fundamental differences between the
Laplacian SVM approach and the proposed Laplacian OCSVM approach. The
first is that the our approach make use only of positive examples and therefore
the graph Laplacian will have a connections only among these examples and
the unsupervised ones that are similar. A relevant quantity of unsupervised
points that are similar to negative examples will have no connections on the
Laplacian graph. The second is related to the computation of the adjacency
matrix of the data graphW : the Laplacian SVM approach employs the k–Nearest
Neighbour rule to evaluate the k examples xj , j = 1, ..., k that are more similar
to the given example xi and then computes the corresponding edges in the

graph as RBF kernel wij = exp
(
−‖xi−xj‖p

2σL

)
where ‖xi − xj‖p is a distance

between xi and xj and σL is an hyper parameter [2]. The proposed approach
decides that an example xj is similar to a given example xi if their distance
‖xi − xj‖p is under a predefined tolerance εL and computes the corresponding

edges in the graph as RBF kernel wij = exp
(
−‖xi−xj‖p

2σL

)
. In the batch case,

this criteria is theoretically motivated by the fact that we want avoid to use the
k–Nearest Neighbour rule as it is well–known that in high dimensional space
suffers of several problems [3, 13]. If we consider the online case, the crucial issue
is the efficiency of the computation of the Laplacian graph: the proposed criteria
allows to compute incrementally the adjacency matrix W each time t that the
buffer Bt is updated. The k–Nearest Neighbour does not permit the incremental
computation of the adjacency matrix. Moreover, since that we use the same
distance ‖·‖p for the policy of management of the buffer, the RBF kernel and for
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the Laplacian graph, the method remains efficient avoiding a lot of duplicated
computations.

3 Experiments

We provide results on two data sets: MNIST1 and NSL-KDD2.

The MNIST is a very well-known digit classification dataset. Here we consider
the same tasks as in [6], which employed two binary classification problems (digit
0 vs. 1 and 1 vs. 2): the key difference is that we only consider the positive class
to train our one-class algorithm (that is, digit 0 for 0 vs. 1, and digit 1 for 1 vs.
2). For all our experiments we used the original training set and test set without
any preprocessing except the normalization of the gray-level value of each pixel.

The NSL-KDD is an anomaly detection data set, built upon the original
KDD Cup 1999 data set, but developed in order to solve several problems in
the original data (e.g., see [15] for a detailed analysis). The NSL-KDD data
set consists of examples describing network traffic in different timestamps, each
one labelled with one of following classes: DoS, R2L, U2R, probing and normal
(no attack). In our experiments we discarded the R2L class as it contains too
few examples (0.07% on training set and 0.37% on the set). Each continuous
attribute in the NSL-KDD data set was discretized into 10 bins, by selecting
the quantization thresholds using a maximum entropy principle (each bin has to
contain roughly the same number of examples).

For both data sets, the hyper parameters of the algorithms are selected by
means of cross validation (1). The first 10% of the original training set has been
split in two part: the first part, that consists of 66% of examples of which 10%
are supervised, has been used for training while the second part, that consists
of the remaining 34% of examples, is used for validation.

Dataset Hyper parameter Range Meaning

MNIST

σkernel (3, ..., 21), in 3 steps The width of the RBF kernel
λr (10−1, ..., 10−6), in 10−1 steps The regularization parameter
λm (0, 1, ..., 10−4), in 10−1 steps The manifold regularization parameter

σLaplacian (3, ..., 12) in 3 steps The width of RBF kernel for edge weighting for adjacency matrix of the Laplacian
εL (3, ..., 12) in 3 steps The tolerance parameter used for computing the adjacency matrix of the Laplacian graph

KDD

σkernel (3, ..., 21), in 3 steps The width of the RBF kernel
λr (10−1, ..., 10−6), in 10−1 steps The regularization parameter
λm (0, 1, ..., 10−4), in 10−1 steps The manifold regularization parameter

σLaplacian (0.5, 1, 1.5, 2, 3) The width of RBF kernel for edge weighting for adjacency matrix of the Laplacian
εL (0.5, 1, 1.5, 2, 3) The tolerance parameter used for computing the adjacency matrix of the Laplacian graph

Table 1. The table reports the hyper parameters, their range and meaning for MNIST
and KDD dataset.

1 http://yann.lecun.com/exdb/mnist/
2 http://iscx.ca/NSL-KDD/
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Then, the algorithms has been trained on the second part of the original
training set (90%) and evaluated on the original test set. In general, hyper pa-
rameters are hard to adjust when only positive labeled examples are available in
the training set. In these situations is possible to compute only the true positive
rate and therefore is not possible to compute the F1 score. In these cases dif-
ferent measure of performance evaluation have to be taken into account [11]. In
our case this is not a problem since that the training set contains both positive
and negative labeled samples: we use the one–vs–all approach for training the
algorithm on both dataset.

Summarizing the three step procedure used is the following:

– Hyper parameter selection. In this step, the hyper parameters of the classifier
are tuned on the validation dataset as describe before.

– Classifier training. Using the optimal set of hyper parameters found in the
previous step, the final classifier is trained using all the available labeled and
unlabeled examples in the training set.

– Classifier testing. The trained classifier is used to predict the test set, the
confusion matrix is computed and the performance are measured by F1 score.

Norm MNIST 0vs.1 MNIST 1vs.2 KDD
N ε N ε N ε

Online setting 1 (15% examples)
L2 1712 (5.5) 1735 (6.3) 11195 (0.075)
L1 1620 (55) 1699 (64) 11049 (0.12)
L0.5 1679 (7700) 1775 (9000) 11087 (0.35)

Online setting 2 (10% examples)
L2 1105 (6) 1133 (6.7) 8000 (0.15)
L1 1165 (60) 1127 (70) 7723 (0.25)
L0.5 1089 (9000) 1114 (10500) 7987 (0.75)

Online setting 3 (5% examples)
L2 533 (6.7) 584 (7.3) 3850 (1)
L1 569 (70) 559 (80) 3920 (1.25)
L0.5 574 (11000) 529 (13000) 3837 (5)

Table 2. The table reports the tolerance parameter ε and the corresponding number
of examples N for each norm (L2,L1 and L0.5) on MNIST and KDD datasets.

Three online setting are determined by varying the tolerance ε in such a way
different number of examples N of the original training set is maintained (table
2). In particular, the table shows that L1 and L0.5 norms need of a high values
of the tolerance parameter to produce the same number of examples of the L2

norm. This is motivated by the fact that the data results more sparse as long as
the p of Lp decreases [1].
On MNIST, the performance of the proposed approach OLapOCSVM are good
in all three online setting (table 3): in particular, there is not great difference
w.r.t. the batch LapOCSVM that uses the entire dataset. Similar results are
achieved on KDD dataset (table 4): note that in this case is not possible to train
the batch LapOCSVM a due to the dimension of the entire dataset. The results



On–line Laplacian One–Class Support Vector Machines 7

do not show a norm that is better to the others: although the L2 norm seems
to perform better on the MNIST dataset while the L1 norm seems to perform
better on the KDD dataset. These results are in contrast with [1] since that the
motivate it.
We have tried to replicate the approach [6] since that no code is available and we
get not encouraging results: in detail, we were not able to reproduce the perfor-
mance reported on the paper on MNIST dataset. The main problem is related
on adjusting the value of the learning rate: their approach is based on stochastic
gradient descent which performance are highly dependent on this parameter [4].
The main advantage of the our approach is its capability to treat big dataset,
as KDD, with reasonable time and memory requirements and with good level
of performance. Moreover, it does not require the tuning of the learning rate
parameter [10] as the approach of [6]. One drawback of the our approach is on
determining the tolerance parameter ε in such a way it gives good compromise
between performance and resource requirements.

Norm 0vs.1 1vs.2

Original dataset
L2 0.998 0.950
L1 0.943 0.992
L0.5 0.648 0.990

Online setting 1 (15% examples)
L2 0.980 0.981
L1 0.954 0.987
L0.5 0.642 0.991

Online setting 2 (10% examples)
L2 0.973 0.980
L1 0.933 0.989
L0.5 0.895 0.984

Online setting 3 (5% examples)
L2 0.975 0.977
L1 0.965 0.974
L0.5 0.716 0.965

Table 3. The table reports the performance, for each norm (L2,L1 and L0.5), in term
of F1 score for the OLapOCSVM algorithm on MNIST dataset.

4 Conclusions

We present the Online Laplacian One–Class SVM that is a manifold learning
algorithm based on convex optimization on RKHS. The presented policy of man-
agement of the buffer allows to make practical the usage of the algorithm in
on–line scenarios where the data flow is continuous and in batch scenarios where
huge quantity of data is available. The results show promising performance on
two popular dataset MNIST and KDD.
Future work will be carried on two directions. On theoretical side, we will study
how to apply the key properties of the OLOCSVM to the general online semi–
supervised learning algorithms like standard S3VM [8] and SBRS [5]. On empir-
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Norm DOS U2R probing Attack

Online setting 1 (15% examples)
L2 0.929 0.361 0.692 0.883
L1 0.923 0.353 0.716 0.883
L0.5 0.910 0.398 0.716 0.883

Online setting 2 (10% examples)
L2 0.929 0.361 0.687 0.883
L1 0.924 0.564 0.713 0.883
L0.5 0.913 0.391 0.720 0.883

Online setting 3 (5% examples)
L2 0.933 0.361 0.669 0.883
L1 0.930 0.413 0.712 0.883
L0.5 0.918 0.353 0.718 0.883

Table 4. The table reports the performance, for each norm (L2,L1 and L0.5), in term
of F1 score for the OLapOCSVM algorithm on KDD dataset.

ical side, we will perform a deep analyses on the ability of the algorithm to adapt
to real–world application: in particular, we are interested on investigating the
performance on computer vision application as a moving robot with a camera.
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