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Abstract. On-line Backpropagation has become very popular and it
has been the subject of in-depth theoretical analyses and massive exper-
imentation. Yet, after almost three decades from its publication, it is still
surprisingly the source of tough theoretical questions and of experimen-
tal results that are somewhat shrouded in mystery. Although seriously
plagued by local minima, the batch-mode version of the algorithm is
clearly posed as an optimization problem while, in spite of its effective-
ness in many real-world problems, the on-line mode version has not been
given a clean formulation, yet. Using variational arguments, in this pa-
per, the on-line formulation is proposed as the minimization of a classic
functional that is inspired by the principle of minimal action in analytic
mechanics. The proposed approach clashes sharply with common inter-
pretations of on-line learning as an approximation of batch-mode, and
it suggests that processing data all at once might be just an artificial
formulation of learning that is hopeless in difficult real-world problems.

Keywords: on-line Backpropagation, principle of least action, regular-
ization, local minima, dissipative systems.

1 Introduction

In classical statistics, sum-minimization problems arise in least squares and
in maximum-likelihood estimation (for independent observations). The general
class of estimators that arise as minimizers of sums are called M-estimators.
Backpropagation [7] was proposed to efficiently compute the gradient of the cost
function associated with a supervised neural network. In spite of the plain nu-
merical computation of the gradient, in many cases, it makes it possible to break
the barrier that enables many application of neural networks to real-world prob-
lems. Unfortunately, the convergence of the algorithm is seriously plagued by
the presence of local minima in the error function [4]. In many cases, instead of
performing a classic gradient descent scheme, the gradient computation for sin-
gle examples (on-line mode) has been profitably used by updating directly the
parameters, without accumulating those contributions for all the training set.
The on-line scheme is especially adequate to real-world problems where the ex-
amples are streamed continuously in time. There is plenty of evidence that such
a stochastic gradient descent has been very effective in the case of large-scale
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Links with Analytic Mechanics

variable machine learning analytic mechanics

wi weight particle position

ẇi weight variation particle velocity

V loss temporal derivative potential energy

T temporal smoothness kinetic energy

L = T − V Cognitive Lagrangian Mechanical Lagrangian

S =
∫ te
0
L dt Cognitive Action Mechanical Action

Table 1. Links between machine learning and analytic mechanics.

problems [1]. Amongst others, the Backpropagation on-line training scheme is
often regarded as a way to get around shallow local minima of the cost function,
but like for the batch-mode scheme, it is quite hard to understand the conditions
of convergence, apart from relative simple cases [3].

After almost three decades from its publication, on-line Backpropagation is
still surprisingly the source of tough theoretical questions, and it has not received
a fully satisfactory formulation, yet. Using variational arguments, in this paper,
the on-line formulation is proposed as the minimization of a classic functional
that is inspired by the principle of least action in analytic mechanics. However,
the classic Lagrangian is replaced with a time-variant function that is responsi-
ble of a dissipative behavior that plays a major role in any learning process. We
prove that a “strong dissipation” transforms the continuous time differential law
coming from the Euler-Lagrange equation into the classic on-line Backpropaga-
tion with its stochastic gradient numerical computation. The proposed approach
clashes sharply with common interpretations of on-line learning as an approx-
imation of batch-mode. On the other hand, differently from what is generally
assumed, it suggests that processing data all at once might be just an artificial
formulation of learning that is hopeless in difficult real-world problems.

2 On-line Backpropagation revisited

We consider a feedforward neural network as a function which transforms a given
input x ∈ IRd into a real number, that is f : (x,w) ∈ X ×W → IR, being w the
vector of weights and x the input. The analysis carried out in this paper does
not make any hypothesis on the network structure and, consequently, on f(x,w),
but we like to think of it in terms of feedforward networks mostly because of
their universal approximation capabilities and their biological inspiration [6].

potential energy
Now we introduce the loss function V (f, y), along with the set of supervised pairs

P = {(xκ, yκ)}`κ=1. For example, V (f, y) can be the hinge function – typical for
classification – or the quadratic function (f(xκ) − yκ)2 – typical of regression.
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Let ζ be a mollifier. As an example, we can choose

ζε(τ) =

{
Zε · exp

(
1− ε2/(ε2 − τ2)

)
if |τ | < ε

0 if |τ | ≥ ε,

where Zε is taken in such a way that
∫ +∞
−∞ ζ(τ)dτ = 1. A nice property of

mollifiers is their weak convergence to the Dirac distribution, that is

lim
ε→0

ζ(τ) = δ(τ).

Let [0, te] be the time interval, t0 = 0 with te > 01. Now, let tκ be the time
instant at which the pair (xk, yk) becomes available, let tκ < te be, and consider
the functional

V(w) =

∫ te

0

ψ(t)V (w(t))dt

where

V (w(t)) =
∑̀
κ=1

ζ(t− tκ) · V (f(x(t), w(t)), y(t))).

and ψ ∈ C∞([0, te], IR
+) is a monotone increasing function which, in this paper,

is chosen as ψ(t) = eβt. As it will be shown later, this is related to energy
dissipation and plays a crucial role for the establishment of the learning process.
Basically, it prescribes a growing weight of the loss as time evolves. Now, let
us assume w ∈ IRm. We start to regard it as the Lagrangian coordinates of a
virtual mechanical system. The learning problem defined by the supervised pairs
P, for a given choice of weights w(t) at time t, defines a function V (w(t)) that,
throughout this paper, is referred to as the potential energy of the system (neural
network) defined by Lagrangian coordinates w. In machine learning, we look for
trajectories w(t) that possibly lead to configurations with small potential energy.
The classic supervised learning is given a more adequate interpretation as ε →
0, which leads to replace the mollifiers with correspondent Dirac distributions
δ(t− tκ). When choosing the quadratic loss, we get

V (w(t)) =
∑̀
κ=1

δ(t− tκ) · (y(t)− f(x(t), w(t)))
2
.

The learning process in this case is only expected to reduce the error cor-
responding to the supervision points. For binary classification problems with
y(t) ∈ {−1, 1}, however, if we adopt the hinge function

V (w(t)) =
∑̀
κ=1

δ(t− tκ) ·max {γ − y(t) · f(x(t), w(t)), 0}

1 It is of interest to consider also the case in which te =∞.



4

being γ > 0 a proper threshold, we can promptly see that the learning process
can led to the perfect match (zero loss) on some of the examples of the training
set.

Now, following the duality with mechanics, we introduce the kinetic energy.

kinetic energy
Let µi > 0 be the mass of each particle defined by the position wi(t) and velocity
ẇi. Then, let us consider the kinetic energy

T (t) =
1

2

m∑
i=1

µiẇ
2
i (t). (1)

It gives a glimpse of the converge of the process of learning, since its end corre-
sponds with T = 0. Like for the potential energy, in this paper we are interested
in the accumulation

∫ te
0
eβtT (t)dt over [0, te], which reflects the smoothness of

the velocities of the particles. Moreover, also for the kinetic energy, we provide
a growing account as time evolves which, as already stated, will be shown to be
the basis of a dissipative behavior. The introduction of the exponential factor in
both the potential and kinetic energy has been proposed in analytic mechanics
as a way of introducing dissipation processes that are not present within the
pure Hamiltonian framework [5].

variational formulation of learning
Let us introduce the Lagrangian

L := T − V

The problem of online learning can be formulated as that of finding

w? = arg min
w∈W

∫ te

0

eβtL(w(t))dt (2)

3 Backprop from Euler-Lagrange equations

The solution of the online learning problem can be obtained by finding stationary
points of (2).

Theorem 1. The solution of online learning stated by (2) satisfies

ẅ?i + βẇ?i +
1

µi
V ′wi = 0, (3)

where V ′wi =
∑`
κ=1 V

′
wi δ(t− tκ).

Proof. We have

d

dt

∂

∂ẇi

(
eβtL

)
=

d

dt

∂

∂ẇi

(
eβtT

)
= µi

d

dt

(
eβtẇi

)
= µi

(
eβtẅi + βeβtẇi

)
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and
∂

∂wi

(
eβtL

)
= −eβt ∂V

∂wi
= −eβtV ′wi .

Then the thesis follows when applying the Euler-Lagrange equation of (2).
QED.

Notice that, since this theorem comes from the Euler-Lagrange equations, like for
the action in analytic mechanics, the solution of the equations is not necessarily
the absolute minimum. In general, it is a stationary point which is typically a
saddle point. Interestingly, as shown in Section 4, like for other physical laws,
this stationary point has nice minimization properties on the potential energy,
which is exactly what we look for also in learning. Now let us assume that the
system evolve from null Cauchy’s conditions wi(0) = ẇi(0) = 0 and let us use

the notation gi,κ := V
′
wi(wi(tκ)). The following theorem holds true

Theorem 2. The evolution from null Cauchy’s condition follows the differential
equation

dw?i
dt

+ βw?i = − 1

µi

∑̀
κ=1

gi,κ · 1(t− tκ). (4)

Proof. From Theorem 1 we have

∫ t

0

d

dθ

(
dw?i
dθ

+ βw?i

)
dθ = − 1

µi

∑̀
κ=1

∫ t

0

V
′
wi · δ(θ − tκ) dθ

= − 1

µi

∑̀
κ=1

gi,κ · 1(t− tκ).

Now, the thesis follows when considering that w?i (0) = 0 and ẇ?i (0) = 0.
QED.

Now, let us consider the answer to the first stimulus (supervised pair) coming
at t = t1 from the initial conditions wi(0) = ẇi(0) = 0. We have

dw?i
dt

+ βw?i = −gi,1
µi

.

If wi(0) = 0 then

w?i (t) =
−gi,1
βµi

(
1− e−β(t−t1)

)
,

which indicates an asymptotic evolution to

w?i = lim
t→∞

w?i (t) =
−gi,1
βµi
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Now we have |w?i (5/β) − w?i |/|w?i | < 0.01, which means that with large values
of β – or equivalently, small time constant 1/β – the weights are updated2 from
w?i (0) = w?i |0 = 0 to w?i (1) = w?i |1 by

w?i (1) ' w?i |1 = −ηi · gi,1 = − 1

βµi
gi,1,

where ηi := 1/(βµi) is the classic learning rate. From now on, the notation '
is used to indicate the above stated approximation of the asymptotic value w?i .
Interestingly, the required high value for β corresponds with small learning rate,
which is also kept small when considering particles with large mass µi. Beginning
from this remark, now we establish the connection between the formulated con-
tinuous framework of learning with the classic on-line Backpropation algorithm.

Theorem 3. Given P = {xκ, yκ}`κ=1, where the supervised pairs (xκ, yκ) comes
at t = tκ, let us β such that ∀κ = 1, . . . , ` we have

τ := 10/β ≤ tκ − tκ−1. (5)

Then
w?i (tk + τ) ' w?i (tκ − τ)− ηigi,κ, (6)

which corresponds with the discrete counterpart

w?i |κ ' w?i |κ−1 − ηigi,κ, (7)

commonly referred to as the on-line Backpropagation algorithm.

Proof. We have∫ tκ+τ

tk−τ

d

dθ

(
dw?i
dθ

+ βw?i

)
dθ = − 1

µi

∑̀
κ=1

∫ tκ+τ

tk−τ
V
′
wi(w(t)) · δ(θ − tκ)dθ,

from which we derive(
dw?i
dθ

+ βw?i

)
tκ+τ

−
(
dw?i
dθ

+ βw?i

)
tκ−τ

= − 1

µi
1(t− tκ)gi,κ.

Now, because of the strong damping hypothesis (5)(
dw?i
dθ

)
tκ−τ

' 0 and w?i (tκ − τ) ' w?i |κ−1

and, therefore, for t > tκ we get

dw?i
dθ
|tκ+τ + βw?i |tκ+τ − βw?i |κ−1 ' −

1

µi
gi,κ.

Finally, the thesis follows when invoking again the strong damping hypothe-
sis (5).
QED.

2 We use the notation w?
i |t to indicate the corresponding discrete updating that are

used in the on-line Backpropagation algorithm.
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4 Learning as a dissipative Hamiltonian process

Now we can establish a conservation principles that is related to dissipative
systems3. From Theorem 1, if we multiply by ẇi and accumulate over the weights,
we get

m∑
i=1

µi
(
ẇiẅi + βẇ2

i

)
+
∑̀
κ=1

m∑
i=1

V
′
wi(wi(t)) ẇi δ(t− tκ) = 0.

Now we have
dV (w(θ))

dθ
=

m∑
i=1

V
′
wi(wi(t)) ẇi.

If we accumulate over [ta, tb] we get∫ tb

ta

d

dθ

(
1

2

m∑
i=1

µiẇ
2
i

)
dθ +

∫ tb

ta

dV (w(θ))

dθ
·
∑̀
κ=1

δ(θ − tκ) dθ +

∫ tb

ta

β

m∑
i=1

µiẇ
2
i dθ = 0.

Now, if we define

D(t) :=

∫ t

0

β

m∑
i=1

µiẇ
2
i dθ =

1

ηi

m∑
i=1

∫ t

0

ẇ2
i dθ,

then, we get ∫ tb

ta

d

dθ

(
T + V

∑̀
κ=1

δ(θ − tκ) +D

)
dθ = 0.

Now, we use a notation overloading to denote by T (t) the kinetic energy at t
and we assume that q ≤ ` supervised examples have been presented in [0, t],
begin t ∈ [ta, tb]. If 6 ∃κ = 1, . . . , ` : tκ ∈ [ta, tb] the above equation turns into the
conservation equation

E(t) = T (t) + V

q∑
κ=1

1(t− tκ) +D(t) = c (8)

being c the constant energy of the extremes of the interval [ta, tb]. The overall en-
ergy E(t) is conserved in all intervals in which there is no supervision. Whenever
a supervised example is presented in the interval, the energy increases by

V

q∑
κ=1

(1(tκ)− 1(tκ−1)) .

It turns out that the energy is injected by any supervised pairs, which yield
new potential energy that is partly transformed into kinetic energy and partly
dissipated. It is in fact the strong dissipation hypothesis given in terms of β
which is responsible of producing stochastic gradient descent and which ensures
the convergence of the learning process.

3 For the sake of simplicity, in the following we drop the symbol ?.
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5 Conclusions

This paper gives a clean foundation of on-line Backpropagation in a variational
framework with strong connections with analytic mechanics. This approach can
be thought of as the temporal counterpart of the study on regularization in
the feature space given in [2]. It is shown that learning is in fact a dissipative
process and that if the damping parameter β is large enough then we end up
in the classic stochastic gradient descent scheme of on-line Backpropagation.
This formulation might be of interest for exploring the new frontiers of lifelong
learning models, in which we abandon learning processes based on training sets
and consider intelligent agents living in their own environments. To this purpose,
we have given natural laws expressed by second-order differential equations that
obey an intriguing principle of energy conservation.

While all this quenches the desire of giving Backpropagation a formulation
that resembles that of classic laws of Nature, the most attracting picture emerges
when forcing small values of β, namely small dissipation in the learning process.
In so doing we depart significantly from stochastic gradient descent and our
preliminary connections with Statistical Mechanics indicate that when learning
with small dissipation we can gain more chance to get optimal solutions with
respect to the traps of gradient descent. Intuitively, this is quite simple; the
weights become particles whose behavior is that of a damping oscillation system,
which is very well-suited to escape from local minima traps. Further research is
needed to provide theoretical and experimental evidence of this intuition.
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