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Abstract. In this paper we promote the idea of using pixel-based mod-
els not only for low level vision, but also to extract high level symbolic
representations. We use a deep architecture which has the distinctive
property of relying on computational units that incorporate classic com-
puter vision invariances and, especially, the scale invariance. The learning
algorithm that is proposed, which is based on information theory prin-
ciples, develops the parameters of the computational units and, at the
same time, makes it possible to detect the optimal scale for each pixel.
We give experimental evidence of the mechanism of feature extraction at
the first level of the hierarchy, which is very much related to SIFT-like
features. The comparison shows clearly that, whenever we can rely on
the massive availability of training data, the proposed model leads to
better performances with respect to SIFT.

1 Introduction

The research in computer vision is still looking for unifying mechanisms to han-
dle low level computations, as well as the extraction of symbolic representations.
Convolutional learning of hierarchical features is a research topic that has re-
ceived an increasing interest from the machine learning and computer vision
communities in the last few years [1–5] and that offers intriguing insights on
bridging low and high level vision computations. Even though its roots can be
traced back to more than a decade ago (Convolutional Neural Networks, [6]),
the growing availability of computer resources have encouraged the research on
deep convolutional architectures, showing several improvements and interesting
results [1–3]. These architectures are able to extract high level semantics, and
they are not restricted to the description of low level features like, for instance,
the popular Scale Invariant Feature Transform (SIFT) [7].

Following the research guidelines of convolutional neural networks, this paper
gives insights on a truly new challenging approach in which we promote the idea
of using pixel-based models for any computer vision problem, including those in
which we need to extract high level symbolic representations. This paper bor-
rows the idea of multi-layer convolutional architectures and receptive fields [8],
but it provides an in-depth re-thinking of the way features are extracted and
propagated through the layers. Motivated by the recent efforts in defining an
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unsupervised algorithm to learn invariant features [2, 4], we use computational
units based on very natural invariance mechanisms. The learning principles are
based on Information Theoretic Learning [9] and, particularly, on a proper un-
supervised learning algorithm [10], which is aimed at minimizing the conditional
entropy, under the soft-constraint of optimizing the development of different fea-
tures. We sketch the general idea of the Developmental Visual Agents (DVAs)
and then focus attention on the mechanisms for feature extraction, under the
fundamental assumption of relying on computational units that are connected
to a pixel-centered receptive field that is located at different levels of the hier-
archy. In so doing, the units extract features depending on image portions that
are larger and larger as we move towards higher levels of the architecture. Un-
like other deep architectures, the one we propose has the distinctive property
of relying on computational units that incorporate classic computer vision in-
variances and, especially, the scale invariance. The proposed learning algorithm
develops the parameters of the computational units and, at the same time, makes
it possible to detect the optimal scale for each pixel.

We give experimental evidence of the mechanism of feature extraction at the
first level of the hierarchy, which is very much related to SIFT-like features. The
comparison shows clearly that, whenever we can rely on the massive availability
of training data, the proposed model leads to better performances with respect
to SIFT. This is extremely important, especially when considering that we have
only exploited the first level of the deep learning architecture, whose most re-
markable features are likely to emerge when extracting higher level features and
when closing the loop with supervised learning schemes.

2 The DVA Architecture

The DVA model consists in a stack of L processing layers that progressively ex-
tract a set of features associated to each pixel of an input image. Each layer l com-
putes a pixel-based probability distribution over dl values, such that ph,l(x,vl−1)
is the probability of the feature h for the pixel at coordinates x, given the input
vl−1 provided by the previous layer. Hence, the output of layer l is a probability
vector field vl ∈ [0, 1]dl×M×N , being M × N the input image size. The only
exception to the previous forward processing scheme is represented by the first
layer l = 1 for which v0 is the input image, represented by the RGB color levels
or luminance for gray level images.

The feature detectors for layer l are implemented by a set of dl adaptive func-
tions fh,l(x,vl−1|σl(x),νl(x),αh,l) that estimate the presence of each feature
h at pixel x given the output of the previous layer. The functions depend on a
set of parameters that are to be adapted through the developmental process. In
particular, the local scale σl(x) ∈ IR and the local rotation versor νl(x) ∈ [0, 1]2

are computed for each input to provide scale and rotation invariance in the fea-
ture extraction process, whereas the function parameters αh,l are determined
through a learning procedure that aims at developing an optimal set of features
for layer l. In particular, as it will be detailed in the following section, the fea-
ture detectors implement their computation considering a receptive field around
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the current pixel x whose extension depends on the local scale σl(x) and that
is aligned considering the local rotation νl(x). Given the feature functions fh,l,
h = 1, . . . , dl, the corresponding probability distribution is simply computed by
applying the softmax function as

ph,l(x,vl−1) =
efh,l(x,vl−1|σl(x),νl(x),αh,l)

∑dl

k=1 e
fk,l(x,vl−1|σl(x),νl(x),αh,l)

, (1)

where the dependence of ph,l(x,vl−1) on the feature detector parameters has
been neglected to simplify the notation. The feature probability distribution
for the pixel x is the vector pl(x,vl−1) = [p1,l(x,vl−1), . . . , pdl,l(x,vl−1)]

′
. The

DVA structure is depicted in Fig. 1.

Fig. 1. Sketch of the layered computation in the DVA model. The forward step allows
the extraction of the features for each pixel in the input image. The backward step is
exploited in the learning of the feature detectors.

The development of the feature detectors is performed in order to optimize a
given criterion through a learning process. The objective function can incorpo-
rate both supervised and unsupervised criteria at a layer level. For instance, once
a semantic role is assigned to the features of a given layer or set of layers, super-
visions can be provided as a target value for a subset of pixels. However, in this
paper we do not consider any supervised contribution, neither contributions that
implement constraints (e.g. geometrical, semantic) among the feature values in
the same or different layers. These supervised criteria can be straightforwardly
incorporated into the learning process once an appropriate cost function is de-
fined and they will be at the basis of the future implementations of the DVA
model.

The unsupervised criteria are generally defined at a layer level. In particular,
the learning objective is to favor the development of feature detectors that are
selectively triggered by specific characteristics of the local neighborhood of each
pixel (i.e. only one or just few conflicting features are detected for each pixel),
while, at the same time, trying to exploit all the available codebook (in principle
made up of dl symbols). The selectivity of the feature detector can be measured
by the entropy of the distribution computed for each pixel, whereas the overall
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use of the codebook is measured by the entropy of the overall distribution of
codes. In the current implementation we considered the Rényi entropy for both
the measures. In particular, the average local entropy for each layer l is computed
as

Hp({pl(xij ,vl−1(t))}) = − 1

TNM

∑

t

∑

ij

log

[
dl∑

k=1

pk,l(xij ,vl−1(t))
2

]

(2)

for a batch of T input images v0(t), t = 1, . . . , T , yielding the feature vectors
pl(xij ,vl−1(t)). The global entropy of the codebook of layer l is computed as

HP ({pl(xij ,vl−1(t))}) = − log

⎡

⎢
⎣

dl∑

k=1

⎛

⎝ 1

TNM

∑

t

∑

ij

pk,l(xij ,vl−1(t))

⎞

⎠

2
⎤

⎥
⎦ .

(3)
The optimization process aims at minimizing the local entropy in order to de-
velop selective feature detectors while maximizing the global entropy to exploit
the maximum number of codebook symbols. This second contribution is needed
to avoid trivial solutions in which the same feature is detected on all the input
pixels [10].

Finally, the learning objective incorporates also a regularization term to favor
parsimonious solutions. In particular, we can introduce a cost term to favor the
development of smooth feature detection functions. In the current implementa-
tion, we considered the gradient as differential operator and the objective is to
minimize its average norm for all the feature detectors by adding the cost term

Nl =
1

2TNMdl

∑

t

∑

h

∑

ij

‖∇xfh,l(xij ,vl−1(t))‖2 (4)

where the dependence of the feature functions on the set of parameters was
omitted to simplify the notation. The gradient can be explicitly computed given
the definition of the functions fh,l.

The three contributions can be combined to obtain the unsupervised objective
function that is to be minimized in the long-term learning process to determine
the optimal feature detector parameters αh,l, h = 1, . . . , dl, l = 1, . . . , L. Hence,
the objective function is

Ul = ηHp({pl(xij ,vl−1(t))}) + (η − 1)HP ({pl(xij ,vl−1(t))}) + λNl (5)

where η ∈ [0, 1] and λ > 0 are used to weight the contributions of each term.
The sketch of the learning process, that requires also to determine the optimal
local scale values σl(x) for each input image, is reported in section 2.3.

2.1 The Feature Detectors

The adaptive feature detectors, exploited in the current implementation of the
DVA model, are basically convolutional filters whose output for a given pixel x
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is computed as

fh,l(x,vl−1) =

dl−1∑

q=1

∑

ij

⎡

⎣
|Nl|∑

k=1

αhqk,le
−‖σl(x)Rl(x)x̌k,l+x−[i,j]′‖2

2μlσl(x)2

⎤

⎦ vqij,l−1 , (6)

where in the left side we omitted the list of the function parameters to simplify
the notation. Basically for each component q of the input field vl−1, the detector
computes a local convolution between the input vqij,l−1 and a kernel (the term
in square bracket in the equation) that is computed as a mixture of gaussians
centered in a predefined set of sample points around the local origin,Nl = {x̌k,l}.
The coefficients αhqk,l of the mixture are the parameters used to adapt the
feature detector behavior during the learning process, whereas the set of points
in Nl is an a-priori design choice. The local scale σl(x) is used to stretch or
compress the convolution kernel, in order to obtain scale invariance in the feature
detector. The rotation matrix Rl(x), that is defined by the local reference versor
νl(x), rotates the convolution kernel in order to obtain rotation invariance. The
receptive field of the feature detector is defined by the area in which the samples
of the convolution kernel are not negligible and, hence, its size varies depending
on the local scale. The parameter μl is predefined and allows the tuning of the
gaussian widths with respect to the position of their centers in the sample set
Nl, for a given reference scale, i.e. σl(x) = 1.

2.2 The Local Rotation

The local rotation is determined by defining a reference direction that depends
on the input configuration around the current pixel, such that any rotation in the
input field yields the same direction. In the current implementation, the reference
direction is computed by considering the average gradient of an appropriate norm
of the input field, as

sl(x,vl−1) =
∑

ij

∇x‖vl−1‖r |[i,j]′ e
− ||x−[i,j]′||2

2γσl(x)2 (7)

where the contributions around the considered pixel x are weighted by a gaussian
whose width depends on the local scale σl(x). The parameter γ is used to tune
the width for computing the average with respect to the scale range. For the
first layer, we use r = 1 such that the computed direction is the average of the
gradients for each of the channels in the input image. For the following layers,
we consider r = 2 since it has a nice probabilistic interpretation. In fact, in this
case

sl(x,vl−1) =
∑

ij

∑

q

vqij,l∇[x,y]′vqxy,l−1 |[i,j]′ e
− ||x−[i,j]′||2

2γσl(x)2 , (8)

that corresponds to an average of the gradients of each component of the prob-
ability field, weighted by the corresponding probability1.

1 In the implementation the gradients are computed with the 3× 3 Sharr filter.
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Finally the direction versor, to be used to compute the rotation matrix Rl(x),

is obtained by the normalization νl(x) =
sl(x,vl−1)

||sl(x,vl−1)|| . If ||sl(x,vl−1)|| is below a

given threshold, as it happens in regions with constant or isotropic input values,
a predefined default direction is chosen.

2.3 The DVA Learning Algorithm

The DVA model features two different sets of parameters that have to be deter-
mined by an optimization procedure: the feature detector convolutional kernel
coefficients αh,l and the local scale fields σl(x). Even if these two sets of pa-
rameters are related to each other, their nature is quite different. In fact, the
feature detector coefficients are to be developed through a long-term learning
procedure that requires to extract sufficient statistics from a significant set of
images. On the contrary, the scale parameters are basically a local property of
each image, even if their optimal values depend also on the current configuration
of the convolutional kernel coefficients. Basically, the parameters αh,l determine
the DVA behavior, whereas the local scales σl(x) are a by-product of the feature
extraction process on each single image.

We briefly sketch the optimization policy adopted in the early experimentation
with the DVA model, but many aspects related to the learning procedure are
still an open research activity.

The development of appropriate feature detectors requires a long-term learn-
ing process. Hence, the update policy follows an EM-like procedure in which the
scale is estimated to compute the extracted features with the current αh,l values
(forward step). In particular, since the scale is a local property, its values are
optimized with respect to the local entropy computed at each pixel x as

Hp(pl(x,vl−1(t))) = − log

[
dl∑

k=1

pk,l(x,vl−1(t))
2

]

, (9)

when processing the input image v0(t). Starting from the bottom layer l = 1,
layer by layer we select the scale map that yields the most discriminative decision
for the feature detector at each pixel (i.e. the one that minimizes the local entropy
of eq. (9)). Hence, the scale optimization is part of the forward step that allows
the computation of the feature maps for all layers.

After the forward step is performed on all the T images in the learning batch,
it is possible to evaluate the objective function Ul for each layer, given the cur-
rent values of the parameters αh,l. In order to optimize Ul, we exploit a gradient
descent technique2. More precisely, once Ul has been computed, the evaluation
of the partial gradient for a given input image follows a back-propagation like
scheme among the functional blocks that compose the architecture (i.e. the fea-
ture detection functions, the local rotation module, etc.).

The procedure described so far requires large memory resources to store the
forward variables computed for all the T images, since the global entropy term

2 We employed a version of the Resilient Backpropagation (RPROP) algorithm [11].
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HP of eq. (3) combines their contributions using a non linear function. To over-
come this issue, it is possible to approximate the global entropy computation
by applying an incremental moving average technique, so that the partial gra-
dient can be evaluated on each image independently. Basically, the argument of
the log(·) function in HP is computed by mixing the statistics obtained for the
images already processed with the current αh,l parameters together with a con-
tribution derived from the statistics computed at the previous iteration of the
learning procedure (i.e. with the previous parameter configuration). Formally,

∇αh,l
Ul ≈ 1

T

T∑

t=1

∇αh,l
Ûl(t) , (10)

where Ûl(t) is the partial objective function which considers the local entropy
and the regularizer only for the t-th image, whereas the global entropy is the
approximated estimate for the whole batch up to image t.

The back-propagation technique could also be used to compute the gradient
of the local entropy with respect to the scale. However, in the implementation we
exploited a grid search since the scale values are quantized for efficiency reasons.

The development of an appropriate set of feature detectors requires several
learning iterations. We can design the learning process considering a set of devel-
opmental stages that focus on easier tasks first. These stages are implemented by
a schedule of the learning algorithm parameters. The possible schedules are cur-
rently under study. For instance, the scale range can be progressively widened,
starting with large constant scales (i.e. blurred images) in order to first learn
features at a coarse level, and the focus the learning towards the development
of feature related to small scale details. Future directions concern the definition
of developmental stages related to the layers in the DVA (the learning process
should focus first on the lower layers), and to the progressive introduction of
external knowledge in the learning process (like supervisions and constraints
derived from rules).

3 Experimental Results

We evaluated the low-level feature extraction (L = 1) mechanism of DVAs on
several experimental settings aimed at showing different properties of the model.
In all the experiments, we set μ1 = γ = 1

9 , so that for integer values of the scale
σ1(x) we get receptive fields defined on (2σ1(x)+ 1)× (2σ1(x)+ 1) patches (±3
standard deviations from the mean). The x′

k points are placed on the vertices
of the 3× 3 grid centered around the origin.

The first test aims at showing the ability of learning distinct features. A DVA
was trained to learn 4 different filters with σ1(x) set to the fixed value 1 (3× 3
patches), when processing a pattern consisting of a grid whose lines are 1 pixel
wide and separated by 1 pixel (see Fig. 2). The functions, reported in grayscale
in Fig. 2, detect 4 distinct patterns (+, O, H, and rotated H) that can be easily
distinguished on the input grid. As long as the objective function decreases (see
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Fig. 2. A white grid on a dark background (lines are separated by 1 pixel). Each
receptive field is a 3×3 patch (σ1(x) = 1). Left to right: the input pattern, the 4 learned
filters, the objective function and entropies with respect to the training iterations.
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Fig. 3. Four features learned at different scales σ1. The input example v0 and the
feature maps {ph,1(x,v0)}, h = 1, . . . , 4 are shown.

the plot in Fig. 2), the local and global entropy are minimized and maximized,
respectively (the maximum value of the latter is ln(4) ≈ 1.38, that is also added
to U1 to set its minimum value to zero).

In order to evaluate the type of features extracted at different scales, we
trained a 4-feature DVA on a grayscale image composed of two traffic signs,
downscaled to 80 × 50. Fig. 3 reports the resulting 4 feature maps, i.e. the
probabilities ph,1(x,v0), h = 1, . . . , 4 for all the image pixels. The DVA learns
finer features as long as the scale decreases. We can clearly distinguish edge-like
features, corners, uniform regions. When σ1(x) = 10, the features become hardly
interpretable, but it is still appreciable how they capture different properties.

The DVA model includes rotation invariance, and the scale of each pixel is
automatically adjusted. The next experiment is composed of two pictures at the
same resolution, representing the same object at a different scale/angle. Fig. 4
shows the case of two guitars, out of which a DVA has extracted 4 features using
a variable scale (σ1(x) ∈ [2, 10]). Comparing the pairs of corresponding feature
maps (each column of Fig. 4), it can be noticed that the DVA has learned the
same features from both images, exploiting the invariance properties with respect
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Fig. 4. Two images of the same guitar represented at a different orientation/scale.
DVA extracts similar features for the two pictures (variable scale, σ1(x) ∈ [2, 10]).

to rotation and scale changes. The two leftmost graphs of Fig. 5 depict the scale
of each pixel: smaller scales are found along the borders of the guitar as well as
in regions in which there are more details. The rightmost graph represents the
percentage of pixels (excluding the background) at each scale level. The scale of
the pixels on the external borders of the guitars and in internal uniform regions
are comparable between the two images, so that the plots show a similar trend.
However we can appreciate that the number of pixels at smaller scales is larger
in the case of the small guitar.

Fig. 6 shows the results of an experiment in the case of a multichannel in-
put. An RGB image (Fig. 6, top-left) is fed to DVA that is requested to learn
6 distinctive features (right portion of Fig. 6) as well as the scale of each pixel
(Fig. 6, bottom-left). The 3 features on the top-row correspond to the detection
of red regions (the tomatoes), of the transitions between red and green, and of
information on the gray levels (notice the gray leaf on the bottom right corner),
respectively. The features on the bottom-row are related to details on the green
background region. This illustrates that DVA has nicely exploited the colors to
learn distinguishable and relevant low level features. As in the previous exper-
iment, the scale (σ1(x) ∈ [1, 5]) has been adjusted by DVA to better capture
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Fig. 5. The scale maps for the pixel in the two images of Fig. 4 as determined by DVA.
The rightmost graph is the percentage of pixels (discarding the background) that are
associated to a certain scale (from larger to smaller scales).
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Fig. 6. Left column: an RGB input image and the scale developed by DVA (σ1(x) ∈
[1, 5]). Right column: the 6 features maps learned by DVA on the RGB input.

the details at the appropriate grain. For instance, the region of the tomatoes is
detected at a large scale since it is close to be uniform.

In order to better investigate the role of color, a DVA has been trained to
learn 3 features on the 80×50 images of Fig. 7 (strawberries, vegetables, ocean).
A large (fixed) scale was used (σ1(x) = 20), so that the receptive field of each
pixel involves a neighboring region of 41× 41 pixels. The extracted features are
shown on the right of each image. At such a large scale the image under each
receptive field is strongly blurred, and the DVA has automatically learned to
distinguish the RGB values, by developing a specific detector for each color.

3.1 Image Classification

DVA are general purpose agents performing pixel-based labeling. The informa-
tion at the lower level must be hierarchically processed to capture high level
image properties such as the class to which it belongs. However, in order to
investigate the quality of the low level features, we simulated a scenario that
allowed a qualitative comparison of a single-level DVA with image classification
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Fig. 7. Three RGB images. Due to the large scale, the learned features (on the right
side of each image) correspond to the RGB values (σ1(x) = 20) .

Table 1. Average accuracy (and std) on the test dataset from the Caltech 101

Training Images 10 50 150

SIFT 38.3 (10.1) 45.5 (0.9) 46.7 (4.0)

DVA 37.8 (9.6) 47.5 (5.8) 48.7 (3.1)

procedures based on Scale Invariant Feature Transform descriptors (SIFT) [7].
In detail, first a gaussian smoothing was applied to each feature map, to bet-
ter capture the relationships of neighboring pixels (simulating an artificial higher
level of computation). Then, the average of the feature vectors of the pixel in the
image was used as input for a linear Support Vector Machine (SVM) classifier.

We selected the data from the Caltech 101 collection [12], composed of several
real-world images grouped in 101 categories. We considered the first 10 classes
with ≥ 50 examples each (in alphabetical order) and we trained a DVA on a
variable number D of images (D = 1, 5, 15 per class) converted to grayscale
and scaled to 151 × 143 (preserving proportions by zero padding the shorter
edge, if needed). The number of DVA features was set to 15. For an accurate
comparison, SIFTs descriptors were computed for each pixel and a codebook of
15 words was built by K-Means (as popularly done [13]), so that each image was
represented by a visual word of length 15. Classifier parameters were tuned by
a 5-fold cross-validation (or using an additional example per class when D = 1),
and the accuracy was measured on 200 test instances (20 per class). The results
in Table 1 indicate a good quality of the features learned by DVA, that benefits
from a larger number of examples, encouraging the research along this direction.

4 Conclusions

The paper introduces the idea of using deep architectures for computer vision
under the strong hypothesis of developing pixel-based features at all the layers of
the hierarchy. The most remarkable feature with respect to others deep learning
schemes is that we incorporate crucial invariances (e.g. scale invariance), that
emerge thanks to the minimization of a proper information-based criterion. The
very promising experimental results given at the first layer of the architecture
shed light on most important future challenges, where those invariance properties
are expected to arise at higher levels of the hierarchy.
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