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Abstract. RNA secondary structure prediction is a challenging task
in computational biology. Several methods have been introduced to ap-
proach this kind of problem, and we believe that probabilistic inductive
logic programming techniques like Markov logic networks may be the
suitable framework to integrate multiple sources of information and a
priori knowledge of the domain. Solving MAP inference within Markov
logic is shown to be a natural transposition of Zuker’s classic free energy
minimization algorithm. This direction of research may also take ad-
vantage of structure learning techniques which directly learn rules from
known RNA structures.

1 Introduction

Ribonucleic acid (RNA) is a biopolymer in which the monomers (nucleotides)
are linked by phosphodiester bonds. RNA serves in a multitude of functions in
living cells, such as catalysis, transport of proteins, regulation of transcription
and translation [1, 2]. Determining the structure of an RNA molecule, given
its sequence, is a crucial task towards understanding the activity of the cell.
However, its accomplishment by experimental methods is very hard and in some
cases even impossible, because of the limitations of the methods [3] and chemical
properties of the RNA molecules. Thus, it is important to develop bioinformatics
algorithms which could predict RNA structure, directly from sequence.

Predicting RNA structure using computational methods is a task which can
be decomposed into different levels: at a first level, the secondary structure of the
RNA molecule is predicted, by individuating its canonical base-pairs; a second
more detailed step, which we do not cover within this work, would consist in the
prediction of the tertiary structure, or three-dimensional shape of the molecule.

The prediction of RNA secondary structure is a well-studied problem, which
has been addressed throughout the years using thermodynamics models [4, 5],
comparative sequence analysis [6], free energy minimization [7, 8] and proba-
bilistic context-free grammars [9, 10], which have recently been extended to tree
adjoining grammars to handle the case of pseudoknots [11]. A classic approach
for solving this problem has been introduced by Zuker [12, 13]. Zuker’s method is
based on free energy minimization, approximating the global energy of a struc-
ture with the sum of energies of the constituent motifs. The optimization problem



can be efficiently solved by a structural dynamic programming algorithm simi-
lar to the CKY algorithm commonly used for parsing natural language [14, 9].
For many RNA patterns, in fact, such as hairpins, internal loops, bulges and
dinucleotide steps, sequence-dependent thermodynamics parameters have been
experimentally determined and can therefore be used to compute the energy of
larger fragments.

The approaches described above have been developed by several different
communities: biologists, statistical physicists, mathematicians and computer sci-
entists have followed parallel but in many cases overlapping directions of re-
search, sometimes producing very similar algorithms. We argue that statistical
relational learning [15], also known as probabilistic inductive logic program-
ming [16] might be a suitable framework for the integration of such various
approaches: in this setting, in fact, it is possible to combine in a single model
information derived from various sources, like thermodynamics experiments, con-
straints determined from a priori knowledge of the domain, equations modeling
internal and terminal loops. Moreover, while all these methods can only learn the
parameters of their model, but cannot learn its structure, the use of a logic repre-
sentation allows the employment of structure learning techniques, through which
it is possible to learn clauses directly from the data describing known structures.
In this paper, we employ Markov logic networks (MLN) [17], one of the most
popular recently introduced methods for learning in relational domains, which
combine first-order logic and probabilistic graphical models. Markov logic allows
to describe objects and relations of some domain using a Markov network and
a set of weighted first-order logic rules. In our case, the main idea is to exploit
the log-linear structure of the joint distribution defined by the Markov random
field associated with the MLN. This structure easily allows us to map potential
energies derived from thermodynamics experiments into MLN weights. The high
expressivity of first-order logic may also allow to introduce in the model several
rules, able to handle complex energy functions which may not be simply used
within Zuker’s approach.

Some preliminary works trying to incorporate background knowledge and
Constraint Handling Rules (CHR) within the process of RNA structure predic-
tion have recently been proposed in [18, 19], yet without really exploiting the
power of first-order logic formalism.

2 Zuker’s algorithm

2.1 RNA motifs

In this Section we briefly revise the motifs used by Zuker to compute the overall
energy of an RNA molecule.

Nearest neighbor base-pairs The first fundamental ingredient of Zuker’s al-
gorithm is given by the potentials of neighboring base-pairs (dinucleotide steps),



Fig. 1. Secondary structure of an enterovirus 5’ cloverleaf cis-acting replication element
[20]. This example contains a multi-branch structure consisting in four stem regions
(depicted with colors), three hairpins (at the end of blue, pink and green stems), a
3× 3 symmetric loop, a bulge within the green stem and a dangling end motif.

distinguishing between Watson-Crick base pairs (A-U and G-C) and wobble base-
pairs (G-U). Such motifs can be represented by a set of quadruples snn =
{(xi, xi+1, xj , xj+1)} such that xi is bonded to xj+1 and xi+1 with xj . As an
example, the following configuration:

5′ CA 3′

3′ GU 5′
(1)

brings a contribution of energy ∆G◦37 = −2.11 kcal/mol [4].

Terminal loops (hairpins) The energy of terminal loops (sometimes referred
to as hairpins) is derived from experimental data for stem loop stability by
subtracting stabilities of stems calculated by the nearest neighbor model. The
stability of hairpins longer than three nucleotides depends on the length of the
loop, the stacking energies of the first mismatch and the closing base pair. Energy
bonuses for special cases can also be included. The set of all possible admissible
terminal loops shairpins is described by the subsequences xi, . . . , xj of consec-
utive nucleotides, where xi is partner with xj , and none of the nucleotides in
xi+1, . . . , xj−1 is bonded.

Bulge loops A bulge is an interruption of the helical structure of RNA in one
stem only. The energy of a bulge is determined by its length and its nearest neigh-
bors. Bulges are formalized with a set of quintuples sbulges = {(xi, xi+1, xi+2, xj , xj+1)}
such that (xi, xj+1) and (xi+2, xj) are base-pairs. For example, the configuration
in the following example represents a bulge of length one:

5′ GXA 3′

3′ C U 5′
(2)



which will produce different values of potentials, according to which is the nu-
cleotide X in the loop.

Internal loops Internal loops are interruption of the helical structure of RNA
in both stems. They can be symmetric or asymmetric, depending on the number
of nucleotides which are present in each strand of the loop. For example, tan-
dem mismatches are 2× 2 internal symmetric loops, consisting in two opposing
unpaired nucleotides in each strand, as represented in the following example:

5′ GXYA 3′

3′ CWZU 5′
(3)

The energy of the configuration depends on the possible combinations of X,W,Y,Z
nucleotides and on the nearest neighbors of the mismatch. The set of internal
loops sintloops is a set of pairs of subsequences ({xi, . . . , xi+n},{xj , . . . , xj+m})
such that (xi, xj+m) and (xi+n, xj) are base pairs, and none of the other nu-
cleotides within the two subsequences is bonded.

Multi-branch loops The free energy of a multi-branch loop (also called junc-
tion) is computed as a function of the number of branches, the number of un-
paired nucleotides, with an additional term which depends on the closing pairs.

2.2 Free energy minimization

Consider an RNA sequence X = x1, . . . , xN , with xi ∈ {A,C,G,U}. The goal
of Zuker’s algorithm is to find the structure Sopt for which the free energy
∆G◦37(Sopt) is minimum. The energy of a generic structure S is decomposed
in the sum of contributions of the different motifs which are part of S:

∆G◦37(S) =
∑

s∈motifs(S)

∆G◦37(s) (4)

where motifs(S) is the union of the sets of motifs described in previous section
(snn, shairpins ,. . . ), which are admissible within structure S. Going into more
details, Equation 4 can be expanded by making more explicit the different motif
categories. For simplicity of notation, we consider in the following only hairpins
and internal loops:

∆G◦37(S) =
∑

h∈hairpins(S)

∆G◦37(h) +
∑

i∈intloops(S)

∆G◦37(i) (5)

The minimum free energy configuration will therefore be structure Sopt, such
that:

Sopt = argmin
S

∆G◦37(S)

= argmin
S

 ∑
h∈hairpins(S)

∆G◦37(h) +
∑

i∈intloops(S)

∆G◦37(i)

 (6)



In Section 3.2 we will explain how to implement Zuker’s algorithm into Markov
logic, showing the affinities between minimum free energy and MAP inference.
Next Section will instead summarize the dynamic programming approach em-
ployed by Zuker.

2.3 Dynamic programming implementation

The minimization problem in Equation 4 can be efficiently solved using dynamic
programming. Let Wi,j be the minimum free energy of all admissible possible
structures formed from a given subsequence si, . . . , sj , and let Vi,j be the min-
imum free energy of all admissible structures formed from si, . . . , sj , with the
additional constraint that nucleotides i and j are bonded. If i and j cannot be
bonded, then Vi,j = ∞. Again, to simplify the notation, in the following we do
not consider the case of multi-branch structures but we just take into account
hairpins and internal loops (for full details, see [21, 22]). Wi,j can therefore be
recursively computed using the following:

Wi,j = min{Wi+1,j , min
1<k≤j

(Vi,k +Wk+1,j)}

Vi,j = min{H(i, j), min
1<k<l<j

(Vk,l) + I(i, j; k, l)}
(7)

where H(i, j) is the energy of a hairpin closed by pair (i, j), and I(i, j; k, l) is
the energy of an interior loop determined by base pairs (i, j) and (k, l). The
minimum free energy structure is hence Sopt such that:

∆G◦37(Sopt) = W1,N . (8)

3 Markov logic implementation

3.1 Background

A Markov logic network (MLN) [17] consists in a set of first-order logic formulas
F = {F1, . . . , Fn}, and a set of real-valued weights w = {w1, . . . , wn}, where
weight wj is associated to formula Fj . Together with a finite set of constants
C = {c1, . . . ck} (corresponding to the objects of the domain), an MLN defines
a Markov network where the set of nodes corresponds to all possible ground
atoms, and there is an edge between two nodes if and only if the corresponding
ground atoms appear together in at least one grounding of some formula Fj .
While a first-order logic knowledge base can be seen as a set of hard constraints
over possible worlds (if a world violates even only one formula, then it has zero
probability), in Markov logic a world violating a formula will be less probable,
but not impossible. Therefore, on the one hand, Markov logic networks extend
first-order logic to handle uncertainty, by attaching weights to first-order logic
rules; on the other, they can be seen as templates to build Markov networks,
and hence they provide the full expressiveness of graphical models.



Maximum a posteriori (MAP) inference in Markov logic consists in finding
the most probable world, according to the weights associated to the first-order
logic formulas. In particular, since in many applications it is known a priori
which atoms will be given as evidence(X ), and which atoms will be queried (Y),
then MAP inference corresponds to the problem of finding the truth assignment
of query atoms maximizing the sum of weights of satisfied clauses, given the
evidence atoms. Any (weighted) satisfiability solver can be employed for this
task: MaxWalkSAT [23], a weighted variant of WalkSAT local-search satisfia-
bility solver, is one of the most used. MaxWalkSAT is a stochastic algorithm
which, at each iteration, picks an unsatisfied clause at random and flips one of
its atoms: with a certain probability p, the atom is chosen as the one maximiz-
ing the sum of satisfied clause weights when flipped; with probability 1− p it is
chosen randomly. These stochastic moves help to escape local minima.

3.2 Energy minimization

The probability of a world x in Markov logic can be expressed by the following
equation:

P (X = x) =
1
Z

exp

 |F|∑
i=1

wini(x)


=

1
Z

exp

 |G|∑
j=1

wjgj(x)

 (9)

where ni(x) is the number of true groundings of first-order formula Fi in world
x, G is the set of ground clauses, and gj(x) = 1 if and only if ground clause
gj is true within world x. The magnitude of a weight indicates how “strong”
the corresponding rule is: the higher the weight, the less is the probability of
a world violating that formula. Finding the most probable world means to find
the world x such that P (X = x) is maximum. Similarly, the prediction of the
maximum probability structure for a given RNA sequence can be formalized in
the following way:

P (S = Ŝ) =
1
Z

exp

 ∑
s∈motifs(Ŝ)

∆G◦37(s)

 (10)

If we now associate Boltzmann probability distribution to probability PŜ =
P (S = Ŝ), we obtain:

PŜ =
1
Z

exp
(
−
EŜ
kT

)
(11)

where EŜ is the energy of structure Ŝ, k is Boltzmann’s constant, T the tem-
perature and Z is the partition function.



From Equations 4, 10 and 11 it is straightforward to obtain a correspondence
between Zuker’s energy minimization problem and Markov logic MAP inference:
just plugging the energy of a motif s as the opposite of the weight of the rule gj

which describe motif s:
wgj

= −∆G◦37(s) (12)

the two problems become equivalent, in the sense that finding the structure with
minimum energy corresponds to find the maximum probability world, if we map
motifs into MLN clauses.

To make the same example as in Section 2.2, consider now RNA free energy
only as a sum of contributions from hairpins and internal loops. If we model
every hairpin h as a ground clause gh and every internal loop i as a ground
clause gi, we can compute the minimum-energy structure in Markov logic as the
world xopt such that:

xopt = argmin
x

 ∑
gh∈Ĝh(x)

wgh
+

∑
gi∈Ĝi(x)

wgi

 (13)

which is equivalent to Equation 6, if we impose for each hairpin h that wgh
=

−∆G◦37(h), and the same for each internal loop i.

We map Zuker’s equations into first-order logic clauses as described in the
following. Note that MLN weights are simply the negative energies of the corre-
sponding motifs.

Nearest neighbor rules Consider for example the two duplexes in example 1;
a simple first-order logic rule which encodes such pattern is the following:

Base(i,G) ∧ Base(i+1,A) ∧ Base(j,U) ∧ Base(j+1,U)∧
Bonded(i,j+1) ∧ Bonded(i+1,j)

(14)

to which we attach a weight w = −∆G◦37 = +3.42(kcal/mol) [4].

Forbid non-canonical base pairs Rules like the following must have an infi-
nite weight:

Base(i,G) ∧ Base(j,A)⇒ ¬Bonded(i,j)
Base(i,U) ∧ Base(j,C)⇒ ¬Bonded(i,j)

. . .

(15)

A nucleotide can have at most one partner base Also this rule must have
an infinite weight.

¬(Bonded(i,j) ∧ Bonded(i,k) ∧ i!=j ∧ i!=k ∧ j!=k). (16)



1 × 1 symmetric loops A generic sequence-independent 1× 1 symmetric loop
can be encoded with the following rule:

Bonded(i,j+2) ∧ Bonded(i+2,j) ∧ ¬Bonded(i+1,j+1) (17)

having a weight w = −∆G◦37 = −0.40(kcal/mol).

Hairpin rules Several rules can be used to model hairpins. First of all, hairpins
of length L < 3 can be forbidden using rules like the following:

¬Bonded(i,i+3). (18)

A generic rule for a hairpin of length 4, for example, can be encoded by the
clause:

Bonded(i,i+5) ∧ InHairpin(i+1) ∧ InHairpin(i+4) (19)

to which we associate a potential w = −∆G◦37 = −5.60(kcal/mol). Yet, for
some particular sequences an energy bonus for the whole hairpin configuration
is applicable, as in the following case:

Base(i,C) ∧ Base(i+1,U) ∧ Base(i+2,A) ∧ Base(i+3,C)
∧Base(i+4,G) ∧ Base(i+5,G) ∧ Bonded(i,i+5)

(20)

which has a weight w = −∆G◦37 = +2.80(kcal/mol).

4 Experiments

We present here some preliminary experiments, which have the only goal to
show the fitness of the proposed approach. A data set of 120 RNA sequences
was collected from PDB (Protein Data Bank), choosing RNA sequences with less
than 50 nucleotides, and eliminating structures with non-canonical base pairs.
Using Alchemy software 1 we built a Markov logic network with 72 clauses,
and we compared results obtained by MAP inference with the ones produced
by UNAFold software [8]. To compare the performance of the two systems, we
measured the F1 on base-pairing, as the harmonic mean between precision P
(number of correct base pairs, out of predicted) and recall R (number of correct
base pairs, out of true). The two systems produced very similar results: on 97
sequences out of 120 the predicted structure was identical; in 7 cases Markov
logic achieved a better F1, while in 16 cases UNAFold produced better results.
The average F1 produced by MLN and UNAFold was 94.0 and 95.8, respectively.
These differences in the two predictors are due to small differences in the two
models employed: in our MLN, for example, we still lack an efficient implemen-
tation of tandem mismatches (or 2×2 symmetric loops), which would otherwise
produce a too large number of clauses. Also, we do not yet handle the case of
loops and hairpins of arbitrary length, for which the use of Hybrid Markov logic
networks [24] will be necessary. The use of such motifs could not be disabled for
the computation of free energy in UNAFold, and for this reason the models of
the two systems were not identical.
1 http://alchemy.cs.washington.edu



5 Conclusions

We presented a Markov logic approach to RNA secondary structure prediction.
The key idea is to map potential energies derived from thermodynamics experi-
ments into MLN weights: in this way, MAP inference in the Markov logic network
is shown to be equivalent to Zuker’s free energy minimization algorithm. In sim-
ple preliminary experiments, the approach achieves similar results as Zuker’s
UNAFold prediction server. Further improvements of this method should arise
from the use of structure learning techniques, through which it may be possible
to learn rules directly from known RNA structures.
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