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In this paper we consider several variants of the prob-
lem of sorting integer permutations with a minimum
number of moves, a task with many potential ap-
plications ranging from computational biology to lo-
gistics. Each problem is formulated as a heuristic
search problem, where different variants induce dif-
ferent sets of allowed moves within the search tree.
Due to the intrinsic nature of this category of prob-
lems, which in many cases present a very large branch-
ing factor, classic unidirectional heuristic search al-
gorithms such as A* and IDA* quickly become in-
efficient or even infeasible as the problem dimension
grows. Therefore, more sophisticated algorithms are
needed. To this aim, we propose to combine two re-
cent paradigms which have been employed in diffi-
cult heuristic search problems showing good perfor-
mance: enhanced partial expansion (EPE) and efficient
single-frontier bidirectional search (eSBS). We propose
a new class of algorithms combining the benefits of
EPE and eSBS, named efficient Single-frontier Bidirec-
tional Search with Enhanced Partial Expansion (eSBS-
EPE). We then present an experimental evaluation
that shows that eSBS-EPE is a very effective approach
for this family of problems, often outperforming pre-
vious methods on large-size instances. With the new
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eSBS-EPE class of methods we were able to push the
limit and solve the largest size instances of some of the
problem domains (the pancake and the burnt pancake
puzzles). This novel search paradigm hence provides a
very promising framework also for other domains.
Keywords: heuristic search, bidirectional search, per-
mutation sorting

1. Introduction and background

Sorting permutations of integers is a classical
problem in optimization and discrete mathemat-
ics. Given a permutation of the first M integers,
the aim is to transform it into another goal per-
mutation, which is typically the sorted configura-
tion {1,..., M}, by minimizing some cost func-
tion, such as the number of required moves. De-
pending on which moves are allowed, several vari-
ants of this sorting problem can be conceived. If
the only allowed operators consist in flipping a sub-
sequence of the first k£ integers within the permuta-
tion, then the resulting problem is formally defined
as sorting by prefix reversal (Figure la on page
5). This problem is known as the pancake puzzle
(P1) [16], since it resembles the way in which a
stack of pancakes can be sorted on a plate using
a spatula. In the burnt pancake puzzle (P2) vari-
ant (also introduced in [16]), a move also changes
the sign of the integers involved in the flip (Fig-
ure 1b). In that case, the sign indicates whether
the burnt side of the pancake is faced up or down,
and the goal is always to have all pancakes with
burnt face down (thus no integer with negative
sign in the final configuration). Another possibility
allows moves which swap two non-overlapping sub-
sequences of any length: this problem is known as
sorting by block interchanges (P3) [8] (Figure 1c).
If the two substrings are required to be adjacent,
then we speak of sorting by transpositions (P4) [2]



(Figure 1d). The sorting by reversals (P5) [1] prob-
lem can be seen as a generalization of the pancake
puzzle, where any subsequence, and not necessar-
ily a prefix, can be reversed (Figure le). The signed
variant of this problem is a natural generalization
of the burnt pancake puzzle. By merging reversals
and block interchanges, the problem of sorting by
translocations (P6) is defined [4] (Figure 1f), again
with the possibility of signed configurations. We
provide detailed definitions of these six problem
variants below.

The aforementioned problems can be applied
also to circular permutations, where elements are
arranged in a circular array rather than in a se-
quence [36]. A special case here is given by the
Top-Spin puzzle [25], where only flips of a fixed
length k are allowed. Another variant of all per-
mutation problems consists in limiting the size of
the allowed move, in which case the problem is
commonly referred to as bounded (e.g., sorting per-
mutations by bounded transpositions) [22]. A full
consideration of circular and bounded problems is
beyond the scope of this paper, where we will focus
on the plain version of each problem.

Practical applications of permutation sorting
problems are found in routing algorithms and par-
allel computing [34], logistics [38], and particularly
in computational biology for genome rearrange-
ment and evolution studies [1,8,2,27,18,37,39].

For most of these problems it is easy to con-
struct a solution by a set of macros or procedures.
However, such solutions are only sub-optimal, even
though often with good approximation bounds
(e.g., see [11] and references therein). By contrast,
finding optimal solutions (i.e., transforming the
initial permutation in the goal using a minimal
number of moves) is far more complicated, but
it strongly depends on the problem variant. Sort-
ing by blocks interchanges (P3) has been proven
to be solvable in polynomial time [8], while NP-
completeness has been proven for the pancake
problem (P1) [5], and NP-hardness for sorting by
transpositions [6]. Sorting by reversals (P5) and
by translocations (P6) can be solved in polyno-
mial time only in the signed case [19,20], while be-
ing NP-hard in the unsigned case [7,41]. No result
has been found yet for the burnt pancake problem
(P2), yet it has been shown that some sets of con-
figurations can be optimally solved in polynomial
time [31]. The literature on approximation algo-
rithms for all these variants of permutation sorting

problems is extremely wide: for example, see the
survey in [15,32] and references therein. The focus
of this paper is instead on optimal solutions for
such problems, and in particular on the application
of heuristic search algorithms for these tasks.

1.1. Background: heuristic search algorithms

Consider the task of finding the shortest path
between two states s and ¢ on an undirected
graph. Traditionally, unidirectional search algo-
rithms build a search tree where each node of the
tree includes one state of the graph. The root node
S includes the start state s. Assume that node X
in the tree corresponds to state x in the graph:
the task at X is to find a (shortest) path be-
tween = and g. Heuristic (sometimes also called
informed) search algorithms exploit the use of a
heuristic function h(x) to estimate the cost of the
path from z to g, so that the search tree can be
efficiently traversed in order to find the solution.
A* [21] and IDA* [30] are among the most used
algorithms in this context. A* uses a best-first ap-
proach to choose the states to be visited during the
search. An ordered queue of nodes (called OPEN) is
maintained, based on function f(z) = g(x)+ h(z),
where ¢ is the cost of the path from the start
node up to x, and h is the heuristic function.
The first node in this queue is removed and ex-
panded at each step of the algorithm. IDA* is the
Iterative-Deepening version of A*, which performs
iterative-deepening depth-first search guided by
the function f. The optimality of A* and IDA* is
guaranteed if the heuristic function h driving the
search is admissible. This means that it never over-
estimates the distance between the current state
and the goal:

h(z) < h*(z)

where h*(x) is the optimal distance between node
2 and the goal. In order to speed up the search, A*
can also employ a list named CLOSED. CLOSED is
used to construct the solution path and to prune
nodes which have already been visited. CLOSED
can be used to prune nodes when seen for the sec-
ond time in A* only in the case that the heuristic
function is consistent'. Otherwise nodes already

LGiven two nodes x and y in the search tree, such that
y is a descendant of z, and g(=x,y) is the cost of the path
from z to y, a heuristic h is said to be consistent if h(z) <
9(z,y) + h(y) [14]



visited could be rediscovered with an improved
cost and should be re-opened (i.e., moved from
CLOSED to OPEN).

The pancake puzzle has become a classic bench-
mark within this field [23,33], and a few works have
also considered the burnt pancake problem [29].
Nevertheless, other variants of sorting problems
have so far received no attention. Since this family
of problems presents many cases with a very large
branching factor, sophisticated algorithms have to
be employed in order to build efficient solvers.

1.2. New search algorithms

In this paper we consider two recently in-
troduced search paradigms which can greatly
speed up the search process and which per-
fectly fit the considered problem domains mention
above: enhanced partial expansion (EPE) and ef-
ficient single-frontier bidirectional heuristic search
(eSBS). EPE [12,17] was introduced as an en-
hanced version of partial expansion (PE) [40]. The
key idea of this algorithm is to avoid the genera-
tion of those nodes having an f-value larger than
the optimal solution. Coupled with A* and IDA*,
the EPE search paradigm has shown very strong
results on a number of puzzles (including the pan-
cake puzzle), as well as on single-agent and multi-
agent path-finding problems [17,35].

Additionally, since the goal state is known, bidi-
rectional search can be naturally applied within
the context of permutation sorting. Yet, apply-
ing bidirectional heuristic search to these prob-
lems so far has been limited to the pancake puz-
zle only [33] in the form of Single-frontier bidi-
rectional search (SBS) [13]. SBS is a bidirectional
search algorithm which works in the state-space of
tasks — nodes that include a pair of states. The task
inside a node is to find a shortest path between
the states of the corresponding pair. At each node,
SBS chooses which of the two states to expand, po-
tentially changing the side of the search. Efficient
single frontier bidirectional search (eSBS) [33] is an
enhanced variant of of SBS, which exploits several
pruning and caching techniques in order to speed
up the search process while maintaining low mem-
ory consumption in comparison to classic unidirec-
tional algorithms.

1.3. Contributions

The main contributions of the paper can be sum-
marized as follows:

— We propose permutation sorting problems
as new challenging benchmarks for testing
heuristic search algorithms, due to the diver-
sity of the problems that can be conceived and
the number of practical applications that can
be drawn from them.

— We present heuristic functions for each of the
problem variants, with a special mention for
the burnt pancake puzzle, for which we intro-
duce a novel, powerful heuristic, named the
oriented gap heuristic. As we show below, this
heuristic pushes the limit on the size of prob-
lems that can be solved.

— We introduce a new class of algorithms, which
combine enhanced partial expansion and effi-
cient single-frontier bidirectional search. The
resulting combination is a framework for
heuristic search, that perfectly fits the domain
of permutation sorting, but which could also
be successfully applied to other tasks.

— We provide experimental results over a variety
of different settings that show the benefits of
the new framework, which often outperforms
any of the previous approaches. In particular
we obtained state-of-the-art results for both
the pancake and the burnt pancake puzzle by
solving problems with the largest dimension
ever addressed until now.

The paper is structured as follows: Section 2
provides a formal definition of the different types
of permutation sorting problems addressed in this
work, together with heuristic functions for each
proposed problem. Sections 3 and 4 will then
review the Enhanced Partial Expansion (EPE)
heuristic search method, and the efficient Single-
frontier Bidirectional Search (eSBS) paradigm.
These two algorithms will be combined into the
efficient Single-frontier Bidirectional Search with
Enhanced Partial Expansion (eSBS-EPE) frame-
work, described in Section 5. In Section 6 we
present and discuss experimental results. Finally,
Section 7 concludes this paper.



2. Sorting problems and their heuristics

In this section we formally define the different
variants of the integer sorting problem, and we in-
troduce heuristic functions for each of them. To
ease the notation in the description and following
the approach in [23], a sorting problem of size M
is defined with M + 1 integers, where the last ele-
ment is always M + 1 and is never moved.? Such
element will be used in some definitions below.

Consider a permutation 7 = {m1,..., 7, Tar+1}
of the first M integers (assuming mpr41 = M +1).
The goal of permutation sorting is to find a se-
quence of allowed operators m = {mgy,...,my}
which transform 7 into a given goal configura-
tion -y, which is usually the sorted configuration:
v=A{1,...,M, M + 1}. Optimal solutions aim at
identifying m so that the sequence of moves min-
imizes some cost function. The most typical case
is to consider all allowed moves as equally costly,
and therefore to minimize the number k of total
needed moves. For simplicity in the reminder of
this paper we assume this unit operator cost func-
tion. The problem of permutation sorting with an
optimal number of moves can be easily formulated
as a search problem, where the starting node con-
tains the initial configuration, the goal node is rep-
resented by the goal configuration, and a short-
est path has to be found between these two nodes.
Starting from the initial state, a search tree is
built, where the children of a certain node are all
the possible successors of that node, as a function
of the allowed moves.

As already stated in Section 1, different variants
of this problem can be modeled by different sets
of allowed moves. The average number of succes-
sors within the search tree determines the average
branching factor of the problem set. Note that the
branching factor greatly changes within the variety
of permutation sorting problems, leading to tasks
with different complexity for heuristic search.

We now turn to define the different variants of
permutation sorting problems that we work with
in this paper.

2For example, in the pancake problem, this last element
can be seen as the plate or table on which the M pancakes
are arranged.

2.1. Pancake problem (P1)

In the pancake puzzle, the allowed moves just
flip a permutation prefix of length k, where 1 <
k < M. Therefore, a k-flips transforms n =

{7T1,...,7TM+1} into
= {Thy Th1y o+ T Thg 1y -+ TM41)

The problem is depicted in Figure 1 (a), where
a 4-flip move is illustrated. The branching factor is
M —1 as flipping only the first pancake is useless.

For P1, a known very effective heuristic func-
tion is the gap heuristic [23]. This function sim-
ply counts the gaps within a given sequence
{m1,...Tnm,Tar41}, where a position in the se-
quence contains a gap if the pancake in that posi-
tion is not adjacent to the pancake below:

hi(s) = h9%(s) :=|{i s.t. i€ {1,..., M},
(s) (s) =N €{ } W
|mi — mipa| # 1}

For example, the following sequence si:
3 6 5 4 1 2 7

with M = 6, contains three gaps, one between 3
and 6, another one between 4 and 1, and finally
the last one between 2 and 7 (where 7 is “the ta-
ble”). Every move in the pancake puzzle flipping k
positions can potentially eliminate only one gap,
namely the one between position k£ and k+1, which
ensures admissibility. Thus, hi(s1) = 3.

2.2. Burnt pancake problem (P2)

In the burnt pancake variant, integers are signed
and therefore the same move mentioned for P1
would end up with configuration

T = {—7Tk, T h—1ye ey T, k41 - - .,7TM+1}
Figure 1 (b) shows an example of a 3-flip move,
where each integer involved in the flip also changes
its sign. Note that, since the integers are signed,
this problem cannot be strictly considered as a per-
mutation sorting task. In P2 the branching factor
is always M (one can flip a number of pancakes
ranging from 1 up to M): unlike P1, here flipping
the first pancake flips its sign.



1 7 5 4 6 3
(f)

Fig. 1. Examples of different permutation sorting problems: (a) pancake puzzle, or sorting by prefix reversal; (b) burnt pancake
puzzle; (c) sorting by block interchanges; (d) sorting by transpositions; (e) sorting by reversals; (f) sorting by translocations.

In the burnt pancake puzzle an admissible
heuristic can be conceived by extending the same
principle driving the gap heuristic, thus counting
the gaps between the absolute values of the ele-
ments in each position:

R (s) = |{i st. i € {1,...,M},
[lmi| = [misall # 1} |

Yet, such a heuristic is much less informative
than in the pancake puzzle case, because it does
not consider the side (sign) of the pancakes. In
fact, a more informative heuristic has been defined
in [29] as follows:

hgor (s):=|{i st. i€ {l,..., M}, o)

[lmi] = |misal] > 1V ;- migq < O} |

where a gap is counted for a certain position ei-
ther if the pancake in that position is not of ad-
jacent size to the pancake below, or if they have
opposite signs. As a matter of fact, even h"?  is
not a highly informative heuristic. For example,
given the following configuration for a burnt pan-

cake puzzle problem with M = 7:

-1 -2 -3 -4 -5 -6 7 8

only one gap will be detected by hj.- . (between

pancakes 6 and 7 which have opposite signs), while

the depth of the solution is 12. What is missing in
this heuristic, in fact, is that in the burnt pancake
also the orientation of the gap has to be consid-
ered: there is no gap between —1 and —2, but actu-
ally they are in correct order but with wrong signs.
Any flip involving both pancakes will not change
the situation, since, when flipped into the subse-
quence “2 1”7 they will be with correct signs but in
wrong order. The only way to solve this situation
is a move which separates the two pancakes.

In general, we introduce the oriented gap (ogap)
heuristic for the burnt pancake problem (P2) de-
fined as follows. Although others have previously
mentioned this idea [10], we provide the first for-
mal definition of the heuristic function, and exper-
iments with it. We say that there is an oriented
gap between two pancakes if at least one of the
following conditions holds:

1. There is a gap (as in the pancake puzzle);

2. They have opposite signs;

3. They are wrongly ordered, with correct signs;
4. They are correctly ordered, with wrong signs.

For example, in the following sequence ss:
1 2 3 —4 =5 7 6 8 9

there is an oriented gap of the first type between 6
and 8 (standard gap as in P1), of the second type
between 3 and —4 (opposite signs), of the third



type between 7 and 6 (correct signs, wrong or-
der), of the fourth type between —4 and —5 (wrong
signs, correct order). There is also an additional
gap between —5 and 7 which falls in both the first
and the second category. This gap is of course only
counted once to maintain admissibility.

Formally the ogap heuristic is defined as follows
(each line corresponds to a different condition just
mentioned):

ho(s) = h2%0 (s) :=|{i s.t. i€ {1,..., M},

burnt
[Imil = ||| > 1V
- Tiv1 <0V (3)
(g1 —m =1AT1 <0AT<0)V

(7Ti—7Ti+1:1/\7Ti+1 >0/\7T>0)}‘

for the example above we have hy(s2) = 5. Ad-
missibility is straightforward to prove, since all the
oriented gaps have to be removed, and each move
can remove at most one of them (for a k-flip, the
oriented gap between k—1 and k). Since the cost of
each move is equal to 1, and since the decrease of
the heuristic function Ah produced by any move is
at most 1, consistency is also ensured. As the ex-
periments will show in Section 6, our new heuristic
function can solve much more complex burnt pan-
cake puzzles with respect to the ones solved until
now with weaker heuristics.

2.8. Block interchanges problem (P3)

Block interchanges swap two non-overlapping
blocks of arbitrary lengths. Given i and j as the
starting positions of the two blocks and k£ and [ as
the two blocks lengths, such that:

1<i<M-1

1<k<M-i-1
t+k+1<j<M-1
1<I<M-j-1
an allowed move would transform
= {1y y i1y Ty e oy Ttk Wik kb Ly -« - 5
Tj 15 Ty e oy Tjls Tjlply - -+ TMA1}

into

™ = {7r1,...,7Ti_1,7rj,...,7rj+l,7ri+k+1,...,

TG—15sTqy e v oy Tidkey Tj4041 -« - ,7TM+1}

This problem is exemplified in Figure 1 (c), where
1 =2 and j = 5 are the two starting positions of
the moved blocks, which have lengths k£ = 2 and
l = 3, respectively. By contrast to P1 and P2, in
P3 the moved blocks are not flipped. In sorting by
blocks interchanges (P3), there are four degrees of
freedom for selecting moves: the starting position
¢ and j of the two blocks, and their lengths £ and
I: the branching factor is therefore O(M*).

For P3, an admissible heuristic can again be de-
rived from the number of gaps in a certain se-
quence, but in this case some additional consid-
erations have to be taken into account. First, k-
flips are not among the allowed moves, differently
from the pancake puzzles, and therefore one should
count the number of breakpoints, that is, gaps
where the order of the consecutive elements is also
not correct (i.e., there is a breakpoint, but not a
gap, between 4 and 3).

hPP(s) :=|{i s.t. i€ {l,...,M},

(4)
Tiv1 — i # L} ].

This heuristic function would clearly be non-
admissible, since, in the case of blocks inter-
changes, a move can eliminate more than a sin-
gle breakpoint within the sequence. More precisely,
the maximum number of breakpoints eliminated
with a single move is four (see Figure 2a) due to
the non-adjacency of the swapped blocks. There-
fore, an admissible and consistent heuristic func-
tion for P3 can be computed as follows:

bp hbp
h) =) = || ©
For example, the sequence in Figure 2a s3:

2 6 7 5 3 1 4 8

has six breakpoints (2-6; 7-5; 5-3; 3-1; 1-4; 4-8),
thus hs(s3) = 2.

2.4. Transpositions problem (P4)
Sorting by transpositions is similar to P3, but

parameter j needs not to be chosen, since the two
moved blocks need to be adjacent, and therefore



2 6 7.5 31 4 8
b 4 X X b 4
2 31 45 6 7 8
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Fig. 2. In different permutation sorting problems, a single move can remove more than one breakpoint. In particular, in
sorting by blocks interchanges (a) at most four breakpoints (indicated by black crosses) can be eliminated by a move, while

the number is only three in sorting by transpositions (b).

the second block starts at position ¢+k+1. An ex-
ample is given in Figure 1 (d). Since the two sub-
sequences are required to be adjacent, the branch-
ing factor is O(M?3), with one degree of freedom
less than the previous case. It is worth highlighting
that, for this problem, the set of allowed moves at
each node is a subset of the corresponding set in
the sorting by blocks interchanges problem (P3).
For this reason, given a starting configuration of
integers, the optimal number of moves required for
P3 will be smaller than or equal to the optimal so-
lution for the transposition case (P4). The depth
of the search tree for P3 will therefore be smaller
than or equal to that of P4, albeit with a much
larger branching factor.

An admissible and consistent heuristic function
for P4 can be computed similarly to P3, thus con-
sidering breakpoints. In particular, in P4 a move
can eliminate up to three breakpoints, and not four
as in P3 (see Figure 2b), namely the one before the
first block, the one at the end of the second block,
and the one between the two swapped blocks. This
heuristic function can therefore be computed as:

bp hbp
h4(5) = htransp(s) = ? ) (6)
For example, the sequence in Figure 2b s4:
2 6 7 5 3 1 4 8

has six breakpoints (2-6; 7-5; 5-3; 3-1; 1-4; 4-8),
thus hy(sq) = 2.

2.5. Reversals problem (P5)

Sorting by reversals is simply a generalization of
the (burnt) pancake problem (P2). Here too, al-
lowed moves correspond to flips, but besides being
of any length (as in P1 and P2), they can also start

at any position in the sequence. For example, in
Figure 1 (e), a 3-flip is performed, starting at po-
sition ¢ = 3 in the sequence. A special case of this
problem is known as the Top-Spin puzzle, where
the permutation to be sorted is circular, and the
allowed flips can be of a fixed, given length K only
(typically K = 4).

In sorting by reversals, the degrees of freedom of
the allowed moves are the starting position and the
length of the flip: the branching factor is therefore
O(M?).

The case of reversals is similar to the pancake
puzzle, as it allows k-flips, but not necessarily in
the configuration prefix: a move can choose both
the starting element of the block to flip, say posi-
tion 7, and the length of the flipped block, k. As
in the pancake puzzle, it is possible to count the
number of gaps, but this time a single move can
remove two gaps, the one between ¢ — 1 and ¢, and
the other between i + k — 1 and i + k. Therefore,
an admissible and consistent heuristic for P5 is:

h9ap
R e I
For example, in the following sequence s5:

3 2 4 6 1 5 7 8 9

we have five gaps (2-4; 4-6; 6-1; 1-5; 5-7) thus
h5(85) =3.

2.6. Translocations problem (P6)

Translocations problems merge the rules of
transpositions and reversals: allowed moves both
swap two blocks, and also flip their content. In
Figure 1 (f), the same blocks of Figure 1 (c) are
moved, but this time the configuration that is ob-
tained has flipped elements in the moved blocks.



The space of allowed moves for the problem of
translocations is identical to P4, with a branching
factor of O(M*?), the only difference being in re-
versing the moved blocks. For P5 and P6 the same
consideration made for P3 and P4 holds: the set
of allowed moves in reversals is a subset of the al-
lowed moves for translocations. Therefore, if g5 is
the optimal solution for a given problem of P5,
then the same configuration for P6 will have an
optimal gs < g5, since a solution will certainly be
found at most at g5 (by using only the set of al-
lowed moves of P5).

As for the heuristic function, since the moved
blocks are reversed, gaps have to be counted in-
stead of breakpoints (as in P5), whereas four dif-
ferent gaps can be removed by a single move, anal-
ogously to P3. Therefore, an admissible and con-
sistent heuristic function for P6 is the following:

" h9ap
) == | S|
For example, in the following sequence sg:

3 2 4 1 ) 6 7 8 9

we have three gaps (2-4; 4-1; 1-5 thus he(ss) =
-1

Several theoretical works exist that have studied
lower bounds for these permutation sorting prob-
lems: for example, see [9] for the burnt pancakes
and [28] for reversals. Yet, such bounds are of-
ten computationally expensive, and moreover not
straightforward to adapt to the search paradigms
discussed in this paper. Conversely, all the pre-
sented heuristics can be easily formulated and
computed between any two states (similar to what
happens with the classic gap heuristic for the pan-
cake puzzle) and thus they can be naturally ap-
plied also to the bidirectional search paradigm we
use in this paper.

3. Enhanced partial expansion unidirectional
search

Partial expansion (PE) heuristic search was in-
troduced by Yoshizum et al. [40] as an efficient
solution to multiple sequence alignment problems.

An enhanced version was presented by Felner et
al. [12,17] and introduced a number of smart im-
provements which significantly contributed to the
applicability of the algorithm to several different
domains.

3.1. Partial expansion A*

It is well known that A* only expands nodes n
with f(n) < C* where C* is the cost of the optimal
solution. Define the set of surplus nodes [12] as
the nodes which have an f-value greater than C*.
A* might generate surplus nodes but it will never
expand them. The key idea of PEA* and EPEA*
is to avoid the generation of surplus nodes.

Partial expansion A*(PEA*) [40] works as fol-
lows. When expanding node n, PEA* first gener-
ates a list of all the children of n, CH(n). Only
nodes ¢ from CH(n) with f(c) = f(n) are added
to OPEN. The remaining children are discarded but
n is added back to OPEN with the smallest f-value
greater than f(n) among the remaining children
(denoted f’). n may be chosen for expansion again
with its new f-value f’. In this case, we again gen-
erate the list of all children but only add to OPEN
those children with f = f’ and the rest are dis-
carded. Finally, when n is chosen for expansion
with f(n) = f and there are no children with f-
value larger than f then n is moved into CLOSED.

It is easy to see that surplus nodes will never
be added to OPEN because a node is added to
OPEN only when its parent stores a similar f-value.
Therefore, the goal will be chosen for expansion
and the search will halt before any surplus node is
ever added to OPEN. Consequently, the main ad-
vantage of PEA* over A* is the memory require-
ments. While A* adds many surplus nodes to OPEN
(but never expands them) PEA* never adds these
nodes to OPEN (although it may generate them in
the children lists). In domains with large branching
factor when many nodes may have f-values larger
than their parents, significant memory savings can
be offered with PEA*.

3.2. Enhanced partial expansion A*

A disadvantage of PEA* is its time require-
ments. When expanding a node PEA* scans
through the entire set of its children (including sur-
plus nodes) every time it is chosen for expansion.
Enhanced Partial Expansion A* (EPEA*) [12,17]



aims to remedy this. Instead of scanning through
the entire list of children as in PEA*, EPEA*
directly generates only the children that will be
surely added to OPEN, i.e., only those with the
same f-value of their parent. Thus, EPEA* will
never generate any of the surplus nodes. EPEA*
uses a priori domain knowledge in order to make
the current choice among the children and only
generate the relevant set of children. We explain
this next.

When expanding a node, n, EPEA* generates
only those children n. with f(n.) = f(n). The
other children of n (with f(n.) # f(n)) are dis-
carded. This is done with the help of a special
domain-dependent function called operator selec-
tion function (OSF). The OSF returns the exact
list of operators which will generate nodes with the
desired f-value (i.e., f(n)). Let Af be the differ-
ence between the f-value of a node and its child,
that is Af = f(n.) — f(n). In order to build an
OSF one needs to analyze the domain and see
whether the operators have special structure that
can be exploited for this purpose. If the Af of a
given operator is always the same, the OSF will
exploit this. For example, in a single agent path
finding problem on a 4-connected grid if the goal
is at the far north, then going north will always
have Af = 0 when used with Manhattan distance
as a heuristic. When having an OSF, when n is
expanded, the OSF is consulted and the relevant
operators (which yield children with the desired
f-value) are applied.

Asin PEA*, n is then re-inserted into OPEN with
the f-cost of the next best child (this knowledge is
also returned by the OSF lookup, see [12]). Unlike
PEA*, EPEA* never generates a child and discards
it. Thus, while PEA* may generate surplus nodes
and discard them, EPEA* will never generate any
surplus nodes.

Clearly, EPEA* can have some drawbacks, de-
pending on the efficiency of the OSF and on the
specific characteristics of the considered domain.
In particular, a detailed time analysis of the differ-
ent operations is given by Goldenberg et al. [17],
with the conclusion that different domains may or
may not be suitable for the proposed approach. A
general consideration suggests that domains with
a large branching factor will typically greatly ben-
efit from EPEA*. Therefore, it is appealing to use
it for the permutation domains studied in this pa-
per.
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Fig. 3. An example of OSF on a 5-pancake puzzle configu-
ration. For operators (a) and (d) the gap heuristic function
does not change (no gap is inserted/removed), heading to
a Af = 1; operator (b) adds a gap, by breaking the 5-4 ad-
jacency, therefore producing a A f = 2; finally, operator (c)
removes a gap by making the 1 and 2 pancakes adjacent,
therefore reducing the heuristic function by 1, and heading
to an overall Af = 0.

3.83. OSF for permutation sorting problems

The main challenge within EPEA* is to build
an efficient OSF. With permutation sorting prob-
lems, it is simple to design efficient OSFs which
can compute the A f of each operator with no need
to generate the corresponding child. We note that
Af = Ag+ Ah. But, in all our problem instances,
the cost of applying an operator is constant® and
thus Ag = 1. Thus all we need to know for a given
operator is its Ah. In our domains the Ah induced
by each operator only depends on the boundaries
of the moved blocks: e.g., positions 0,k — 1 and k
for a k-flip in the (burnt) pancake puzzle. Figure 3
shows an example of OSF for the pancake puzzle:
in order to compute Ah9°? one only has to con-
sider whether a gap is removed between k — 1 and
k, and/or a gap is inserted by making the pancakes
in 0 and k adjacent. Therefore, the OSF for the
pancake puzzle iterates over all possible operators
and returns only those with the relevant Af.*

For P2 (burnt pancakes) the same consideration
holds. For P5 (reversals), the OSF has to take into

3In some problem variants the cost of a move could be
proportional to the length of the moved blocks, which any-
how can be still easily computed without the need of gen-
erating the corresponding child.

4Two different types of OSF techniques were discussed
by [17]: in the first, called Full-Checking (FC), the OSF
needs to iterate through all the possible operators so as to
retrieve the list of nodes to be generated, while the sec-
ond, called Direct-Computation (DC) the OSF allows to
directly compute only the operators of the children which
will actually be generated. In our experiments below we
implemented the FC technique.
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account the starting position of the block to be
flipped, as well as its length. Thus, the OSF com-
putation has to iterate over the blocks. For P4
(transpositions), the OSF has to consider all the
possible combinations of the starting position of
the first block, its length, and the length of the
second block. For P3 (blocks interchanges) and
P6 (translocations), four parameters are needed,
adding to the three parameters considered in P3
also the starting position of the second block,
which is not necessarily adjacent to the first one.
An important general attribute for all these prob-
lems is that we do not need to fully apply the op-
erator (and change the location of k elements) in
order to know its Ah. It is enough to observe a
constant number of elements as just described for
the various problem variants.

3.4. Analysis of EPEA*

Goldenberg et al. [17] provides a detailed anal-
ysis of the time performance of EPEA*. Basi-
cally, the advantages of enhanced partial expan-
sion highly depend on the specific domain. More
precisely, two parameters, named « and 3, are con-
sidered in order to analyze the behavior of the al-
gorithm: « is the average number of times a cer-
tain node is expanded (clearly, each time with a
different “stored” f-value), while 8 is the average
number of generations per node, that corresponds
to effective branching factor. The running time of
EPEA* [17] can be computed as:

teppar = aXt, + baXt,r + faXt,,  (9)

being X the number of unique nodes chosen for ex-
pansion, ¢, the time needed for expanding a node,
tor the cost for computing a heuristic without gen-
erating a node, and ¢/, the time needed for gener-
ating a node. For comparison, the running time of
A* is:

tar = Xt +0Xty, (10)
where t. is time spent to retrieve the node with
least cost from OPEN, and t,, the time needed for
node generation, heuristic computation, and inser-
tion into OPEN. When 8 ~ b, being b the aver-
age branching factor of A*, then the advantage
of EPEA* is clearly not significant, and the same
happens with large values of «. If, on the other
hand, 8 << b and « is small, the obtained speed-
up can be huge. This is the case for our domains
and thus EPEA* is a great algorithm for such do-
mains.

3.5. EPEIDA*

EPEIDA* couples the enhanced partial expan-
sion technique with the IDA* algorithm. The al-
gorithm is very simple and elegant. For a given
threshold T" of an IDA* iteration, through the use
of the OSF only children with f < T are gener-
ated. Nodes with f > T will never be generated.

The performance analysis for the running time
of EPEIDA* is simpler than for EPEA*. By in-
dicating with ¢, the overall time for generating a
node, and by ¢ (as for EPEA*) the cost for com-
puting the heuristic without generating the node,
the running time of EPEIDA* is computed as:

tepEIpar = bXtop + X, (11)
As a comparison, the running time of IDA* is:
tipar = bXt, (12)

The speed-up obtained by EPEIDA* with re-
spect to IDA* can thus be rather large.

4. Efficient single-frontier bidirectional heuristic
search

Bidirectional search is a long-standing idea, al-
though it has not been used very often with
heuristics and when optimality is needed. This is
mostly due to the meet in the middle problem [26],
which is the problem of guaranteeing that the two
search frontiers meet and that that the solution re-
turned is optimal. Yet, some progress in this direc-
tion has been made where new analysis were pre-
sented [3] and a new algorithm that is guaranteed
to meet exactly at the solution midpoint was in-
troduced [24] for front-to-end bidirectional heuris-
tic search. In this work we focus only on front-to-
front approaches and use the Single Frontier Bidi-
rectional Search algorithm [13] desgined for this
purpose.

4.1. Single Frontier Bidirectional Search

A novel bidirectional search framework called
Single Frontier Bidirectional Search was recently
introduced by Felner et al. [13]. It was labeled by
the authors as SFBDS but to improve the read-
ability we shorten the notation and denote it by
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Fig. 4. Unidirectional vs. SBS search trees (expanded states
are represented in gray for SBS).

SBS. The driving principle behind SBS is to search
through a double node search tree, where each dou-
ble node (from now on, simply node) N includes
two states, one state x from the forward search and
one state y from the backward search. In node N,
the task is to find the shortest path between x and
y. Such a task is recursively decomposed by ex-
panding either x or y, and generating accordingly
new nodes between either (1) x and the neighbors
of y, or (2) y and the neighbors of x. At every node
a jumping policy decides which of the two states to
expand next, i.e., the search can proceed forward
or backward.

Classic unidirectional search and SBS are illus-
trated in Figure 4. The objective is to find a short-
est path from the start state, s, to the goal state,
g. Whereas in the unidirectional search tree (Fig-
ure 4a) every node implicitly solves the task of get-
ting from the current node to g (the search pro-
ceeding across the tree until g is found), in SBS
(Figure 4b) nodes are labeled with the shortest-
path task that should be solved beneath them.
Within each node, the state expanded is shaded in
the figure where left (right) means expanding the
forward (backward) state.

Each jumping policy induces a tree, which can
be searched by employing any admissible search
algorithm such as A* (SBS-A*) or IDA* (SBS-
IDA*). The search terminates when a goal node
is expanded, where a goal node is in the form
N(z,z).

At any node N(z,y) the remaining search ef-
fort can be estimated by a front-to-front heuristic
function, h(z,y), estimating the distance between
x and y. The optimality of the solution is naturally
guaranteed if an A*-based or IDA*-based search
are activated on such a tree, employing an admis-
sible front-to-front heuristic function.

4.2. Jumping policies

The original SBS paper [13] studied different
jumping policies and their influence on the per-
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Fig. 5. Some examples of jumping policy: never jump (al-
ways expand FW direction), jump at root (always expand
BW direction), always jump (alternately expand FW and
BW directions).

formance. Impressive savings were obtained in
many domains, but in some cases a blowup in
the search tree made SBS ineffective. For exam-
ple, if the never jump policy is applied, the ap-
proach reverts to standard unidirectional search.
With the jump at root policy, unidirectional back-
ward search (from goal to start) is obtained. Many
different intermediate policies may exist. The al-
ternate jumping policy repeatedly alternates be-
tween the forward and backward sides; at even
(odd) levels the forward (backward) side is ex-
panded. The branching factor policy expands the
side with the smaller branching factor. Similarly, in
the case of asymmetric heuristic the jump if larger
policy® for node N(z,y) chooses to expand x (y)
if h(z,y) > h(y,z) (and vice versa).

Figure 5 shows all the policies mentioned above
in a policy space tree. Nodes of this tree correspond
to the different order of expansion actions. At each
step, moving left corresponds to a forward expan-
sion and moving right corresponds to a backward
expansion. Each path from the root of this tree to
a leaf at level d corresponds to a given jumping
policy. Regular unidirectional search (never jump)
corresponds to always going left. Backwards search
(jump only at root) is to always go right. The al-
ternate policy is shown in the middle, where the
left and the right children are taken in turn.

4.3. eSBS-A*

SBS was taken several steps forward by Lippi et
al. [33], heading to an efficient version named eSBS
(efficient SBS). As SBS, eSBS is also a general-
purpose search paradigm, which in principle can

5The jump if larger policy cannot be used in the context
of this paper, as all the proposed heuristic functions are
symmetric, and thus it would never produce any “jumping”
effect.
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DOUBLE NODE SEARCH SPACE

Fig. 6. Representation of nodes in classic SBS (left) and in
eSBS (right), using pointers to states stored in the STTs.

be attacked by any search algorithm such as A*
or IDA*. With respect to classic unidirectional
heuristic search, and also to original SBS, the eSBS
paradigm has shown clear advantages in terms of
both time and memory requirements, as efficient
pruning and caching techniques can be exploited
in order to speed up the search and reduce the
amount of required memory [33].

We start by describing eSBS-A*, based on
four interdependent enhancements to plain SBS-
A* [13]. Such enhancements are general enough to
be employed also by other implementations of the
eSBS framework, which will be covered below.

4.8.1. Referencing states with pointers

The key ingredient of eSBS-A* is based on the
simple observation that the number of states seen
during the execution of SBS is much smaller than
the number of generated nodes, since the same
state will be contained in many different nodes.
The number of nodes grows quadratically with the
number of states as each pair of states from the two
frontiers, respectively, can potentially have their
own node. Therefore, the first enhancement is not
to maintain states inside nodes, but just their ref-
erences through the use of pointers. This idea is
shown in Figure 6 (right).

Basically, two State Transposition Tables (STTs)
are employed to store the states visited through-
out the search, one for each direction (forward
and backward), while nodes of the SBS-A* search
tree are stored in OPEN and maintain only refer-
ences/pointers to the states (one in the FSST and
one in BSST). Since states are typically more ex-
pensive to store than nodes, the use of references
both reduces the amount of memory employed for
the algorithm storage and also provides a useful
framework for the pruning and caching techniques
described below.

4.3.2. Parent pointers and best-g update
An additional reduction in the number of stored
pointers can be obtained by moving parent point-

ers from nodes to states within the STT. In this
way, each state will contain a pointer to its prede-
cessor. This might cause a quadratic reduction in
the number of pointers, since the same state oc-
curs many times inside nodes. These parent point-
ers will be used to reconstruct the solution path
once the solution has been found. Using such par-
ent pointers introduces a possible drawback, as two
nodes sharing the same state will now potentially
share the same parent pointer. To guarantee ad-
missibility we must ensure that the pointed par-
ent of each state x lies on the optimal path to
x. This can be obtained by providing each state
with a variable, called best-g, that keeps track of
the lowest observed cost, from the corresponding
first state of that direction (start or goal, depend-
ing on the direction) to the state itself. The par-
ent pointer will be updated whenever best-g is up-
dated, as follows. When generating a new node, it
is necessary to check whether each of the two states
can be found in the appropriate STT: if not, then it
is saved in the respective STT and its best-g is ini-
tialized to the total cost of actions that originated
it. Otherwise, it must be checked whether its new
g-value (from the side that it was now generated)
is smaller than the previously recorded best-g. In
such case, the state must be updated by resetting
both the best-g and the pointer to the parent state.

4.3.3. Duplicate detection and best-g pruning

Typically, when search algorithms expand a
node N they do not generate the parent of N (this
is usually done by keeping the operator that gen-
erated N and not applying its inverse to V). As
just explained, in eSBS two operators (in the form
of pointers) are kept for N(x,y), one for  and one
for y. When a node is expanded from its forward
(backward) side, the inverse of the operator that
was used to first reach x (y) is not applied.

Furthermore, best-first search algorithms like A*
store OPEN and CLOSED lists and they usually per-
form duplicate-detection as follows. In the case of
consistent heuristic, CLOSED is employed in order
to prune nodes already expanded, while if a newly
generated node already exists in OPEN, we keep
the copy with the smallest g value and prune the
other node. In SBS, a trivial duplicate detection
technique would check whether the same node al-
ready exists in OPEN or CLOSED. However, since
there are O(|V|?) possible nodes that can be cre-
ated out of all possible pairs of |V| states, this is
not enough.



An improved duplicate detection technique called

best-g pruning [33] is as follows. During node gen-
eration, whenever the g-value of an already seen
state a (both in the forward or backward direc-
tion) is greater than its current best-g value, we
know that this node lies on a suboptimal path and
all its descendants would fail the best-g check any-
way: thus, this node can be pruned from OPEN.
In other words, duplicate pruning is done for each
frontier of the search on its own. But, these prun-
ings have mutual effects as duplicate states will
never be added to a new generated node. Within
eSBS-A* search, including in the OPEN set such
a suboptimal successor node, which obviously will
not be part of any optimal solution, could lead to a
great waste of computational resources. This tech-
nique is shown in Figure 7. Suppose the two nodes
on the top, (a, b) and (p, q) are both in OPEN. Since
they have the same f- and h-values the ordering in
which they are visited can change when adopting
different jumping policies. If the node on the left
(x,b) is generated and added to OPEN first, and the
jumping policy requires that the next expansion
is in the forward direction, then node (z,q) will
later be pruned according to the best-g criterion,
as node (z,¢q) will have a g value for state x equal
to 4, while it had been previously seen at g = 3.
On the other hand, if the node on the right (x, q)
is added to OPEN first, then also node (z,b) will
later be generated.

4.8.4. Successor caching

A powerful caching technique again derives from
the consideration that the same state can appear
in several nodes. Therefore, if each state in the
STTs is attached a list of pointers to its successor
states, it will not be necessary to recompute the
successors every time the state is reached. When a
state s is first generated, its successor pointers are
set to NIL. The first time that a node including s
is expanded in the direction containing s, the suc-
cessor function is called on s and all the successor
pointers are updated. The next time the state s is
encountered, the successors are already available
and the cached pointers can be simply returned.

eSBS-A* employs all these four enhancements
over basic SBS. Next we describe two more ver-
sions of eSBS also presented in [33].
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Fig. 7. An example of best-g pruning technique. If node
(a, b) is expanded before node (p, ), which could depend on
the adopted jumping policy, then node (z, ¢) will be pruned
according to the best-g criterion. Otherwise, both nodes will
be added to OPEN.

4.4. eSBS-A* lite

Experimental results confirm that best-g prun-
ing is a powerful technique, which greatly con-
tributes in pruning a significant number of nodes,
and therefore in speeding up the whole search pro-
cess. This consideration heads to the development
of a variant of eSBS-A*, named eSBS-Ax lite [33],
which neither stores CLOSED, nor performs dupli-
cate detection within OPEN, but only relies on best-
g evaluations in order to prune sub-optimal nodes.
The resulting algorithm will generate a greater
number of nodes with respect to eSBS-A*, ow-
ing to the missing duplicate detections in OPEN
and CLOSED, but is faster since it does not have
to check for such duplicates. In terms of effec-
tive memory usage, this variant does not use much
more memory than eSBS-A*, since the greater
number of generated nodes is somehow balanced
by the savings obtained by not storing CLOSED.

4.5. eSBS-H

The combination of SBS with IDA* leads to the
algorithm named SBS-IDA* [13], that basically de-
cides, for each expanded (double) node in the itera-
tive deepening framework, which of the two search
directions should be chosen according to the given
jumping policy. SBS-IDA* does not store OPEN,
CLOSED or any of the STTs. Thus, similarly to reg-
ular IDA* (and to any other DFS algorithm), its
memory requirements are just equal to the depth
of the current node in the search tree.

When the eSBS search paradigm is coupled with
the Iterative Deepening approach, a new algo-
rithm which is a hybrid between A* and IDA*
is obtained. Such algorithm was named as eSBS-
H [33], where H stands for hybrid. eSBS-H exploits
all the advantages of the eSBS search paradigm,
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and it is a smart compromise between compu-
tational speed and memory consumption. Simi-
larly to IDA*, eSBS-H does not employ OPEN and
CLOSED to decide which node to expand next and
it uses an iterative deepening approach on the
double node search tree. By contrast, like eSBS-
A* eSBS-H stores and maintains the STTs for
the two search frontiers. Therefore, all the advan-
tages induced by the eSBS search paradigm can
be exploited, including in particular best-g pruning
and successor caching. Basically, eSBS-H acts like
IDA* with transposition tables, but its transposi-
tions are not in the form of nodes but in the form
of states. It is worth remarking that, due to the use
of STTs, the memory requirement of eSBS-H is not
linear with the depth of the tree (as plain IDA*).
Since the states are stored in the STTs and succes-
sors are cached, at each new iteration of the algo-
rithm at depth d the whole subtree of depth d—1 is
immediately available. Hence, instead of pushing
and popping nodes in a stack which is newly re-
generated on-the-fly at each iteration, such nodes
do not need to be generated, but just accessed via
the successor pointers.

4.6. Complexity issues

The memory complexity of the eSBS-based al-
gorithms mainly depends on the STTs. Assum-
ing that the alternate jumping policy is employed,
that expands the forward state at one level and the
backward at the following one, at each node only
the successors of either the forward or the back-
ward state are generated in the relevant STT:

Level 0 — 2 new states

Level 1 — b new states (fw expansion)
Level 2 — b new states (bw expansion)
Level 3 — b x b new states (fw)
Level 4 — b X b new states (bw)

Level d-1 — b x b x ... x b new states (fw)
—_———

d/2 times
Level d — b Xx b x ... X bnew states (bw)
—_———

d/2 times
Thus, the overall number of stored states in the
STTs will be:

/2 /2

O (" +%) =0(2> %) = 0(b*?)

k=1 k=1

Table 1
Memory complexity comparison of SBS and eSBS variants.
Algorithm Nodes States Total
eSBS-A* 2.¢cp bt | 52092 | bd
eSBS-A* lite || 2-¢p b | ¢s-2-b%/2 | b4
eSBS-H 2-cpd | cs-2-b%2 | pd/2
SBS-IDA* 2-cpd - d

since the search process will store 2-b* states every
two levels.®

Assume that ¢, is the constant memory allo-
cated for a pointer and c; is the constant mem-
ory needed to store a state. While ¢; is mainly
problem-dependent, ¢, depends primarily on the
hardware/software implementation. If ¢, < ¢,
eSBS-A* does not reduce memory consumption,
since the overhead of maintaining pointers to the
states would be greater than the advantage of re-
ducing the number of stored states. However, in
most problems it is likely that c¢g is much greater
than c,, thus heading to considerable memory
savings. It was shown that eSBS-A* has mem-
ory complexity of O(b%), while eSBS-H reduced it
to O(b?) [33]. The memory complexity of these
algorithms is summarized in Table 1: basically,
eSBS-A* stores both OPEN and CLOSED, and the
two STTs, whereas the lite version does not store
CLOSED; eSBS-H stores neither OPEN nor CLOSED;
SBS-IDA* does not even store the STTs, as it hap-
pens in classic IDA*.

Results reported in [33] show the advantages of
eSBS variants with respect to the original SBS
framework in a variety of domains.

5. Efficient Single-frontier Bidirectional Search
with Enhanced Partial Expansion (eSBS-EPE)

Both EPE and eSBS exploit smart search strate-
gies and technical solutions in order to build more
efficient heuristic search algorithms, capable of
both reducing the memory requirements and of
greatly speeding up the search process. These im-
provements are in a sense orthogonal, and can eas-
ily be integrated in a unique framework, producing
a new family of heuristic search algorithms which
combines the benefits of both paradigms. This is
the aim of this section.

bw?
branching factors along the two directions were different.

6More precisely, such number would be b’;w + bk | if the



5.1. Partial expansion vs. successor caching

As detailed below, SBS and the enhanced ver-
sion eSBS can all be combined with the EPE
paradigm. The only exception is the successor
caching technique.

An intrinsic feature of partial expansion is to
prevent multiple visits of surplus nodes. By con-
trast, successor caching exploits the generation of
all the children of a certain node (even those which
are pruned later on, due to best-g pruning). The
driving principle in that case is to immediately
access the already computed children when the
same state is re-expanded: this is particularly use-
ful when generating a successor is an expensive
operation which should not be performed multiple
times for a single node.

To combine the two opposite techniques, in prin-
ciple, the successor caching technique could be
done lazily, which means that successors could be
incrementally cached only when the EPE frame-
work generates them. Yet, in this way, when gen-
erating a new child, it would be necessary to check
whether the corresponding successor had already
been cached. We observed experimentally that this
process basically balances the advantages intro-
duced by caching, and thus the overall mechanism
does not produce any significant speed-up in the
search. Therefore, for these reasons, when combin-
ing the EPE framework with eSBS, the state suc-
cessor caching technique will not be used.

The new search paradigm that results from the
combination of eSBS and EPE is named efficient
Single-frontier Bidirectional Search with Enhanced
Partial Expansion (eSBS-EPE). As for eSBS and
EPE, clearly it also can be coupled with different
heuristic search algorithms. We now cover a few
variants of such combinations.

5.2. eSBS-EPE-A*

Starting from the eSBS-A* algorithm, for exam-
ple, one could implement enhanced partial expan-
sion in a straightforward way, with the same prin-
ciple adopted by unidirectional EPEA*. We name
the resulting algorithm as eSBS-EPE-A*.

Once anode N is removed from OPEN for expan-
sion, the adopted jumping policy indicates which
of the two directions is to be expanded. In either
case, the A f for node N is equal to the A f induced
by the operator on the forward /backward direction
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chosen by the jumping policy. As already stated
in Section 3.3, in case the cost of all operators is
always one (as it happens with the permutation
sorting problems we consider), for each possible
child we have Af = 1+ Ah, and thus only changes
in Ah have to be considered. Following the EPE
paradigm, only those states with Af = C will be
generated from node N, being C' the smallest A f
among those of the children not yet generated (all
the children, in the case IV is expanded for the first
time). As a consequence, only the double nodes
containing such states will be generated and stored
in OPEN. If some states with a larger Af are not
generated following this principle, then N will be
re-inserted into OPEN, with an f-value equal to the
smallest among those of the children which were
not generated, named f¢,;. Otherwise, IV can be
moved to CLOSED.

In permutation sorting problems, this mecha-
nism can be easily implemented since the Ah in-
duced by a certain operator can be computed in
a straightforward way (without node generation)
also in the case of bidirectional search, by ex-
ploiting the same OSFs that have been described
in Section 3, extended to the considered front-to-
front heuristic function.

5.2.1. Jumping policies

A special consideration should also be made re-
garding the link between the jumping policy and
the EPE mechanism. In principle, it could happen
that a certain node could be re-inserted into OPEN
and, the first time it is re-expanded, a different di-
rection (with respect to the one selected at the first
expansion) could be chosen. Yet, this cannot hap-
pen in unit-cost domains with consistent heuristics
and with the alternate jumping policy, which is the
setting adopted in this paper. In fact, with such
policy, a certain node N can be expanded more
than once but only at the same depth d within the
search tree, otherwise it would have been pruned
owing to the best-g pruning mechanism. Since with
the alternate jumping policy the direction to ex-
pand is directly associated to the depth of the node
(either odd/even for forward/backward), and we
always employ unit costs, this issue is not consid-
ered in this paper.

Besides the fact that the alternate policy is ex-
tremely simple, and that it has shown good re-
sults in previous applications of eSBS [33], also
note that, in the case of permutation sorting prob-
lems, the more sophisticated jump if larger (JIL)
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policy cannot be applied, since all the considered
heuristics are symmetric, whereas the JIL policy
only works with asymmetric heuristics. In addi-
tion, with a given jumping policy, the chosen di-
rection may immediately generate a larger num-
ber of states than those which would have been
generated by the other direction, due to the EPE
constraints on the Af. This could induce a novel
jumping policy, that is a variant of the branching
factor policy, which takes into account the EPE
pruning that happens at the state level. A deeper
analysis of jumping policies within the eSBS-EPE
framework, and not restricted to the domain of
permutation sorting, is left for a future work.

5.2.2. Pseudo code

The pseudocode of eSBS-EPE-A* is given in Al-
gorithm 1. At line 6, the node N with lowest cost
is taken from OPEN, and at line 9 the jumping pol-
icy indicates the state z to be expanded. Then,
at line 10, the OSF is applied to z. Then, each
state z. returned by the OSF is either added to
the FSST/BSST (line 15) or considered for best-g
pruning (lines 12-13). If z. is not pruned, a new
double node is generated which has z. and the
state from N of the other side (which was not cho-
sen for expansion) (line 17), duplicate detection in
OPEN and CLOSED is performed (line 18), the best-
g and parent pointers of its states are updated (line
19), and it is finally put into OPEN (line 20). Lines
22 and 23 decide whether N has to be re-inserted
into OPEN according to the EPE mechanism.

5.2.8. Computational issues

This approach hence combines the memory
savings induced by eSBS (except the successor
caching technique of eSBS, as already stated
above) with the speed-up produced by the EPE
paradigm. In particular, the time analysis de-
scribed by Goldenberg et al. [17] for EPEA* is
valid for eSBS-EPE-A* too, thus still depending on
some domain-dependent parameters. Yet, in this
case we must distinguish the re-expansion of nodes
with the re-expansion of states. We can compute
the running time of eSBS-EPE-A* as:

tesBs—EPE—A* = anXtp +bagStor + Ban Xt

(13)
where X is the number of unique nodes that are
chosen for expansion, S the number of stored
states, tg is the time needed for expanding a (dou-
ble) node, t,¢ is the time needed for computing the

heuristic of a state without generating it (i.e., ex-
ploiting the OSF), ¢ is the time needed for gen-
erating a child double node, [ is the average ef-
fective branching factor, ay indicates how many
times the same node will be expanded, whereas
ag indicates how many times the same state will
be expanded. With respect to the running time
of EPEA* (see Equation 9), the performance of
eSBS-EPE-A* strongly depends on the balancing
between any and «g. In fact, if the time needed
for heuristic computation via the OSF is lower
than the time needed for expanding a node (i.e.,
if toy < tg), then the speed-up induced by eSBS-
EPE-A* will be more evident as long as ag > ay.
This happens when the same state is expanded
multiple times. As a matter of fact, this condition
is typically met in those contexts where even the
enhancements of eSBS have more effect, that is
where the same state is encountered many times
during the search.

Finally, we remark that both the memory and
time complexity are the same as those of eSBS-A*.

5.3. eSBS-EPE-A* lite

A lite version of eSBS-EPE-A* can be conceived,
which is analogous to the eSBS case. Basically,
neither CLOSED is employed, nor duplicate detec-
tion in OPEN is performed. To avoid the genera-
tion of surplus non-optimal nodes, the best-g prun-
ing technique is coupled with the partial expan-
sion mechanism, exactly as it happens is eSBS-
EPE-A*. Even in this case, an expanded node will
be re-inserted in OPEN if and only if there exists
some child which was not generated due to the A f
threshold cut. With respect to the pseudo code
presented in Algorithm 1, only lines 18 and 23 are
removed.

As reported for eSBS [33], the lite version of
eSBS-A* is not suitable for settings where a large
number of duplicate nodes sharing the same g-
value exists. In such cases, in fact, the impact of
CLOSED on duplicate detection is crucial in order
to avoid the re-expansion of many identical nodes.
This will happen also in permutation sorting prob-
lems, as shown in Section 6.
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Algorithm 1 eSBS-EPE-A*
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Input: start state s, goal state g

generate the start double node Ng = (s, g)
compute h(Ng), set f(Ng) < h(Nsg)
put Ng into OPEN
while OPEN is not empty do
get N with lowest f(N) from OPEN
if N is goal then exit
end if
choose state z to expand according to the jumping policy
consult OSF(z) and set (Z, frnezt(N))
for all states z. € Z do
if state z. already in FSTT or BSTT (according to the jumping policy) then
if best-g(zc) < g(zc) then prune z.
end if
else add z. to either FSST or BSTT (according to policy)
end if
compute double node child Z = (m, z.) (or Z = (zc,m), according to the jumping policy)
check for duplicate nodes in OPEN and CLOSED
update best-g(z.) and parent pointers for z.
put Z into OPEN
end for
if frnezt(N) < oo then set f(N) < frewt(IN) and re-insert it into OPEN
else put NV into CLOSED
end if
end while

Algorithm 2 DFS procedure for eSBS-EPE-H

—

== e
N = O

Input: node N, threshold T’

DFS(N,T)

compute h(N)

set f(IN) < g(N) + h(N)

if f(N) > T then return

end if

if N is goal then halt

end if

choose state z to expand according to the jumping policy
set (Z, frext(N)) = OSF(z)

. set Tnezt = min(Tnezt, fnezt)
: for all states z. € Z do

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

if state z. already in FSTT or BSTT (according to the jumping policy) then
if best-g(zc) < g(zc) then prune z.
end if
else add z. to either FSST or BSTT (according to policy)
end if
compute double node child Z = (m, z.) (or Z = (z¢,m), according to the jumping policy)
set g(Z) < best-g(m) + best-g(zc) + cost(z, zc)
update best-g and parent pointers for z.
call DFS(Z,T)
end for

5.4. eSBS-EPE-H

As described in Section 4.5, when coupling eSBS

with iterative deepening A*, we obtain an algo-

rithm that is a hybrid between SBS-A* and SBS-

IDA*, since it maintains two transposition tables
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for state storing, while performing iterative deep-
ening search on nodes. This paradigm remains also
when we combine eSBS-H with EPE, just adding
to the search framework the mechanism for avoid-
ing the generation of surplus nodes as induced by
A f computations.

As in EPEIDA* and eSBS-H, neither an OPEN
nor a CLOSED set are maintained, and the only
memory requirements are therefore due to the
state transposition tables (similar to eSBS-H). The
resulting algorithm is named eSBS-EPE-H, still
maintaining in the name the fact that the memory
requirements remain a sort of hybrid between A*
and IDA*. As a matter of fact, the memory com-
plexity still remains that of eSBS-H, i.e., O(b%?).

In detail, when a node NN is expanded, and the
child state x (either forward or backward) is cho-
sen according to the adopted jumping policy, only
those children y of z having a Af < T — f(N) are
effectively generated, being T' the current thresh-
old for the iterative deepening process. Such a con-
dition on Af can be translated in the following
condition on the variation of the heuristic func-
tion: Ah < T — f(N) — cost(z,y). In this way,
with respect to eSBS-H, the EPE approach avoids
the generation of each surplus node M having
f(M) > T. The next threshold T,.,: will be equal
to the lowest f-value among those of children not
generated, named fpeqt-

Algorithm 2 reports the pseudocode of the depth
first search (DFS) recursive step of eSBS-EPE-
H. First, a state z is chosen for expansion by
the jumping policy (line 7). Then, similar to
EPEIDA*, the OSF is consulted and retrieves the
set of children to be generated (Z) and the low-
est cost among the currently unneeded children
(fnext) (line 8). Such cost is used to update the
threshold T),¢,+ for the next iteration (line 9). As
in EPEIDA*, this threshold is initialized to infinity
at the beginning of the current iteration. Similar to
eSBS-EPE-A*, lines 11-18 consider each state z.
returned by the OSF, whether it has to be added
to the FSST/BSST (line 14) or pruned (lines 11—
12), the generation of a new double node contain-
ing z., named Z (line 16), and the update of the
best-g and parent pointers of its states (line 18).

In domains where the OSF's can be easily com-
puted, eSBS-EPE-H represents a significant step
forward with respect to eSBS-H, as it combines
the memory savings of single frontier bidirectional
search with the efficient node generation induced
by the EPE framework.

With respect to the running time, eSBS-EPE-H
benefits from the speed-up of partial expansion, at
the expense of discarding successor caching. Keep-
ing the same formalism of eSBS-EPE-A*, we com-
pute the running time of eSBS-EPE-H as:

tesps—EpE—H = bXtop + Xtrn + Strs  (14)

where try is the time needed for generating a
node, and trg the cost for generating a state.

6. Experimental results and discussion

We ran experiments on all the variants of the
permutation sorting problems that have been de-
scribed throughout this paper. In all our experi-
ments we used an Intel Core i7 @3.20 GHz, with
8Gb of RAM.

6.1. Results on small instances

We first performed a set of experiments in order
to compare the following ten different algorithms.
Two classic unidirectional searches: A* and IDA*.
Three single-frontier bidirectional searches: eSBS-
A*, eSBS-A*-lite and eSBS-H. Two unidirectional
enhanced partial expansion searches: EPEA* and
EPEIDA*. Finally, three single-frontier bidirec-
tional partial expansion searches: eSBS-EPE-A*,
eSBS-EPE-A* lite and eSBS-EPE-H. The aim of
these experiments was to select the most efficient
algorithms, to be run on larger problem sizes as
many of these 10 algorithms are expected to run
out of memory or require too long computational
times on large problems. We report representa-
tive results obtained by the 10 algorithms on the
M = 18 burnt-pancake problem (P2) with our new
ogap heuristic function, and on the M = 15 trans-
positions problem (P4). These two problems were
chosen due to their different branching factors of
28 and 560, respectively.” Results for the other do-
mains produced similar tendencies and are omit-
ted. Note that, for the burnt pancake puzzle (P2),
M = 18 represents the largest problem size previ-
ously solved by IDA*, with a modified gap heuris-
tic and pattern databases [29]: it is worth mention-
ing that, with the same heuristic, EPEA*, eSBS-

"P3, which has an even larger branching factor than P4,
could not be chosen since too many algorithms failed to
solve several instances due to memory limitations.
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Results obtained by ten different competitors on the 18-
burnt pancake problem (P2). Time is reported in ms.
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Table 3

Results obtained by ten different competitors on the 15-
transpositions problem (P4). Time is reported in ms.

Nodes States Time Nodes States Time
A* 2,815,908 | 2,815,908 | 15,695 A* 9,599,941 | 9,599,941 40,854
IDA* 16,711,388 - | 32,988 IDA* 183,892,146 - | 200,757
eSBS-A* 2,384,016 139,278 4,127 eSBS-A* 32,926,978 667,533 41,349
eSBS-A* lite 3,009,903 172,640 2,402 eSBS-A* lite 63,862,925 867,933 32,132
eSBS-H 12,643,067 508,981 2,862 eSBS-H 191,164,078 | 1,649,970 36,724
EPEA* 175,878 175,878 399 EPEA* 141,061 141,061 474
EPEIDA* 928,418 - 1,658 EPEIDA* 1,053,970 - 5,052
eSBS-EPE-A* 172,601 15,930 1,201 eSBS-EPE-A* 244,118 7,618 1,330
eSBS-EPE-A* lite 176,883 16,034 1,274 eSBS-EPE-A* lite 435,259 13,504 3,269
eSBS-EPE-H 749,693 48,834 748 eSBS-EPE-H 933,602 18,779 4,141

EPE-A* and eSBS-EPE-H were able to solve burnt
pancake puzzles with M = 18 as well, but without
the pattern databases. This is due to the enhanced
algorithms and the novel ogap heuristic.

Tables 2 and 3 present results for which all 10
algorithms could solve 100 random instances. We
report the number of nodes, the number of stored
states in the STTs (that is equal to nodes for A*
and EPEA*, whereas it is not reported for IDA*
and EPEIDA* as they do not store transposition
tables) and the CPU time in ms. All the measure-
ments are averaged over the 100 instances.

For the burnt pancake problem, EPEA* is the
fastest algorithm, with eSBS-EPE-H second best.
Yet, the advantage of eSBS-EPE-A* in memory
requirement is particularly evident with respect to
the other approaches. The lite version of the bidi-
rectional algorithm has much less impact when it
is coupled with partial expansion: while eSBS-A*
lite is much faster than eSBS-A*, this difference
is not tangible between eSBS-EPE-A* lite and
eSBS-EPE-A*. This result indicates that the over-
head due to duplicate detection within OPEN and
CLOSED is less significant in eSBS-EPE-A* than in
eSBS-A*. The EPE approach showed to be very ef-
fective (timewise) for the hybrid algorithm (eSBS-
EPE-H) in this domain, due to the combination of
not storing OPEN and CLOSED with the property
of not generating surplus nodes. Since eSBS-EPE-
H does not store OPEN and CLOSED it has a much
smaller constant time per node. While its num-
ber of nodes and number of states was three times
larger than eSBS-EPE-A* it was almost twice as
fast in its CPU time.

For the transpositions problem (P4), EPEA* is
still the fastest algorithm, but (unlike P2) eSBS-

EPE-A* and eSBS-EPE-A* lite are faster than
eSBS-EPE-H. This is due to the fact that eSBS-
EPE-H generates more nodes than eSBS-EPE-A*,
and the cost of OSF is greater for transpositions
than for pancakes, because multiple positions have
to be checked in order to compute the Ah. For the
other algorithms, the trends are very similar to the
case of burnt pancakes.

6.2. Results on large problems

Based on these small experiments, we consid-
ered the three algorithms which had proven to
be the most efficient on the simple problem sets,
namely EPEA*, eSBS-EPE-A* and eSBS-EPE-
H, and we evaluated them on problems having
larger sizes. We also consider eSBS-A* in order
to have a full comparison of all A* variants. This
time we employed up to 64 Gb of RAM. We
tested the four algorithms on 25 random instances
of 85-pancake (P1-85), 28-burnt-pancake (P2-28),
15-blocks-interchanges (P3-15), 17-transpositions
(P4-17), 17-reversals (P5-17) and 18-translocations
(P6-18). These experiments demonstrate the power
of heuristic search in general. First, to the best of
our knowledge, for blocks interchanges, transposi-
tions, reversals and translocations (P3-P6) these
are the first problems optimally solved with heuris-
tic search algorithms. Moreover, for the pancake
(P1) and burnt pancake puzzles (P2), which are
widely known in the heuristic search literature,
these results represent the largest problem size
ever solved for the first time. While for the pan-
cake puzzle (P1) the previous best results are for
70 pancakes [17,23] we further pushed the limit
and solved the 85 pancake case. Similarly, for the
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Table 4
Comparison among EPEA*, eSBS-A*, eSBS-EPE-A* and
eSBS-EPE-H on large problem sets. bf is the problem
branching factor. g* and hg represent the average solution
depth and initial heuristic estimate, respectively. 3 is the ef-
fective branching factor of each algorithm. Time is reported
in ms, memory in MB. When results are not available (NA)
for an algorithm, the number in parentheses indicates the
number of instances on which it runs out of memory. In this

case we employed 64G of memory.

Problem bf g* ho | Algorithm B Nodes States Time | Memory
P1-85 84 83.52 83.08 | EPEA* NA (2) NA (2) NA (2) NA (2) NA (2)
eSBS-A* NA (21) NA (21) NA (21) NA (21) | NA (21)
eSBS-EPE-A* 1.23 | 50,381,647 | 2,143,436 | 1,050,944 5,626
eSBS-EPE-H 1.24 | 163,874,256 | 5,583,024 274,025 6,568
P2-28 28 3272 27.60 | EPEA* NA (1) NA (1) NA (1) NA (1) | NA (1)
eSBS-A* NA (7) NA (7) NA (7) NA (7) NA (7)
¢SBS-EPE-A* 1.66 | 83,955,659 | 2,593,674 | 820,757 9,558
eSBS-EPE-H NA (3) NA (3) NA (3) NA (3) NA (3)
P3-15 1,365 6.08 3.92 | EPEA* 7.43 7,643,690 | 7,643,690 28,952 160
eSBS-A* NA (7) NA (7) NA (7) NA (7) NA (7)
eSBS-EPE-A* 8.26 | 30,516,250 131,486 | 272,854 2,428
eSBS-EPE-H NA (2) NA (2) NA (2) NA (2) NA (2)
P4-17 560 8.08 5.68 | EPEA* 4.27 2,172,773 | 2,172,773 41,611 113
eSBS-A* NA (6) NA (6) NA (6) NA (6) NA (6)
eSBS-EPE-A* 4.51 5,007,803 64,344 29,421 444
eSBS-EPE-H 5.73 18,607,160 131,205 113,906 976
P5-17 120 10.64 8.12 | EPEA* 3.12 1,750,861 | 1,750,861 23,113 208
eSBS-A* NA (2) NA (2) NA (2) NA (2) NA (2)
eSBS-EPE-A* 3.29 11,304,659 120,178 72,939 1,082
eSBS-EPE-H 4.28 45,488,349 288,605 118,915 1,952
P6-18 3,060 5.76 4.48 | EPEA* 5.98 415,863 415,863 16,645 46
eSBS-A* NA (3) NA (3) NA (3) NA (3) NA (3)
eSBS-EPE-A* 6.05 529,034 21,614 29,222 60
eSBS-EPE-H 8.53 3,663,731 58,584 281,426 244

burnt-pancake problem the previous largest size
was 18 [29] while we solved the 28 version.
Results are shown in Table 4. We report the op-
timal solution length ¢g*, the initial heuristic func-
tion hg, an estimate of the effective branching fac-
tor 8 for each algorithm, the number of nodes, the
number of stored states in the STTs (that is equal
to nodes for EPEA*) and the CPU time in ms.
B was estimated as v/X, being X the number of
nodes and d the solution depth. All the measure-
ments are averaged over the solved instances.
Whereas on the previously reported small-size
problem instances EPEA™ is the fastest algorithm
(although not the one consuming the least mem-
ory), on larger problem instances the impact of ef-
ficient single-frontier bidirectional search becomes

evident. First, we can observe that eSBS-EPE-A*
is the most robust. It was the only algorithm capa-
ble of solving all the instances of these six problem
sets. The other three methods ran out of memory
on some of the considered instances. eSBS-EPE-A*
is also the fastest algorithm on P4-17, and on P2-
28, where the other two algorithms cannot solve
all the instances. eSBS-EPE-H is the fastest al-
gorithm on the pancake puzzle (P1-85). By con-
trast, EPEA™ is the fastest method on the remain-
ing three problems (P3-15, P5-17, P6-18). In the
next paragraphs we cover each of these domains in
turn and explain the results.

6.2.1. 85 pancake (P1)
With 85 pancakes EPEA* and eSBS-A* could
not solve 2 and 21 of the 25 instances, respectively,



given the 64Gb available memory. Only the eSBS-
EPE variants could solve all instances. For this
problem set, the results show that eSBS-EPE-H
is the fastest algorithm, although eSBS-EPE-A*
generates fewer nodes. In fact, this is the problem
where eSBS-EPE-H has the best constant time per
node, with respect to the other domains. This be-
havior is explained by the fact that the pancake
puzzle is the problem where the cost of the OSF
computation is the smallest, since it involves the
comparison of only three positions (0,k — 1,k) in
the sequence. According to the analysis in [17],
which has been summarized in Section 3, this is
the condition that guarantees a large speed-up for
EPEIDA* with respect to IDA*, and therefore also
for eSBS-EPE-H. The larger running time of eSBS-
EPE-A* can be ascribed, in this case, to the com-
putation of the hash functions for each state and
node (needed to store nodes in OPEN/CLOSED),
that has a significant impact, due to the large size
of the puzzles.

Figure 9 (left) shows the memory usage compar-
ison between EPEA*, eSBS-EPE-A* and eSBS-A*
on P1-85. The 25 instances are sorted by increasing
number of EPEA* nodes, so that the advantage of
eSBS-EPE-A* is evident as the number of nodes
(i.e., the complexity of the problem) grows. Fig-
ure 9 (right) shows time comparison between these
three algorithms, highlighting the fact that EPEA*
is the fastest, when provided enough memory. For
the algorithms which could solve less than 25 in-
stances, only the solved instances are displayed in
the plot. Also note that in this domain the heuris-
tic function is extremely informative, with an av-
erage difference between solution depth and ini-
tial heuristic guess equal to 0.44 on the considered
instances. The average effective branching factor
B is very small too, as children introducing an
additional gap are obviously not generated. For
EPEA*, eSBS-EPE-A* and eSBS-EPE-H £ is al-
most identical, being about 1.23.

6.2.2. 28 Burnt pancake (P2)

eSBS-EPE-A* is the only algorithm which could
solve all 25 instances of the P2-28, as all the other
three competitors run out of memory. Note that
this is the problem where the heuristic function
(h°99P) is the least informed (see columns g* and
ho in Table 4), where we measure informativeness
by the difference between g* and hg. Nevertheless,
results show that this is newly introduced heuristic
had a dramatic impact for solving larger instances.

21

1x107
1x108
100000

10000 | - o7

Average number of SBP-A* visits

—8—— Gap Heuristic
-=--0---" Oriented Gap Heuristi

1000 | 077

ic

10 12 14 16
Puzzle dimension

Fig. 8. Impact of the ogap heuristic on the number of
eSBS-EPE-A* nodes in the burnt pancake puzzle (P2), as
a function of the puzzle dimension (y-axis is in log scale).

In fact, until now, the largest solved burnt pancake
puzzle had size M = 18 [29], solved with a mod-
ified gap heuristic and pattern databases. Both
our new heuristic (ogap) and our new algorithm
(eSBS-EPE-A*) made it possible to push the limit
and solve the case with 28 pancakes. With our
new heuristic, EPEA*, eSBS-EPE-A* and eSBS-
EPE-H were able to solve burnt pancake puzzles
with M = 18 as well, without employing pattern
databases (see the results above). Note that, in this
problem, the average difference between the goal
depth and the initial heuristic estimate is about 5
for M = 28, which confirms the highly challenging
nature of the problem.

To assess the impact of the ogap heuristic, Fig-
ure 8 shows the number of eSBS-EPE-A* nodes
both with gap and ogap, as the number of elements
grows from 10 to 18 (plotted in log-scale).

It is worth remarking that both P1-85 and P2-
28 set new limits for these two permutation sort-
ing problems, as the literature reports no larger
problem having been solved before.

6.2.3. 15 Blocks Interchanges (P3)

The blocks interchanges problem has a very
large branching factor. The number of nodes grows
extremely rapidly with the size of the problem (it
was 1,365 for our case), which makes the problem
infeasible for the competing algorithms for M >
15. The effective branching factors for EPEA* and
eSBS-EPE-A* were 7.43 and 8.26, respectively,
while eSBS-EPE-H runs out of memory on two
instances. This is the most suitable domain for
EPEA*, that is almost one order of magnitude
faster than eSBS-EPE-A* due to the much lower

18
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Fig. 9. Memory (left) and time (right) comparison between eSBS-EPE-A*, EPEA* and eSBS-A* on the P1-85 problem, for
all 25 instances, ordered by increasing number of EPEA* nodes. Time is plotted in log scale.

number of generated nodes, which was the result
of a smaller effective branching factor.

6.2.4. 17 Transpositions (P4)

In transpositions (P4), the space of allowed
moves is a subset of blocks interchanges (P3) and,
for this reason, the branching factor is smaller
(there is one degree of freedom less in specifying
moves, given the fact that moved blocks need to be
adjacent) than in blocks interchanges. As a con-
sequence, the depth of the solution for the same
starting configuration is at least as large as in the
blocks interchanges case. In P4-17, eSBS-EPE-A*
was faster than EPEA* on average, but here we
should remark that eSBS-EPE-A* was faster only
in 2 out of 25 instances, which are the most difficult
ones and therefore dominate the average. Figure 10
(right) shows the individual instance CPU time of
eSBS-EPE-A* and EPEA* as the complexity (ex-
pressed as number of nodes) of the P4-17 instances
grow (speed is reported in log-scale). This behavior
suggests again that the impact of the bidirectional
approach grows with the problem size. The com-
parison on memory usage, reported in Figure 10
(left) highlights the huge memory saving of eSBS-
EPE-A* with respect to eSBS-A*, with efficient
partial expansion thus playing a crucial role in this
domain.

6.2.5. 17 Reversals (P5)

The case of P5-17 is somehow in between the
pancake puzzles and the other problems, as it
needs to check only four positions (only one more
than in P1 and P2), while having a quite large ef-
fective branching factor. Here the gap heuristic is
still informative, even though not as much as for

the pancake puzzle: the average difference between
the goal depth and the initial heuristic estimate
equals 2.52 for M = 17. The effective branching
factors for EPEA*, eSBS-EPE-A* and eSBS-EPE-
H are 3.12, 3.29 and 4.28, respectively. EPEA* is
the fastest algorithm, by generating one order of
magnitude less nodes than eSBS-EPE-A*.

6.2.6. 18 Translocations (P6)

Sorting by translocations has a branching factor
identical to that of blocks interchanges, with the
difference of flipping the moved blocks, as in sort-
ing by reversals. Yet, the heuristic function here is
more informative, and thus problems with a larger
size can be solved more efficiently. The difference
between the goal depth and the initial heuristic
function is 1.28 for M = 18. Here EPEA™ is still
the fastest algorithms, but the difference with re-
spect to eSBS-EPE-A* is lower, due to the similar
number of generated nodes.

6.3. General observations and guidelines

Overall, some general observations can be made
in the light of the experiments described in the pre-
vious sections. First, from Tables 2 and 3, it is clear
that the eSBS algorithms are constantly outper-
formed by the corresponding eSBS-EPE versions:
eSBS-A* is outperformed by eSBS-EPE-A* (also
in the lite versions), as well as eSBS-H by eSBS-
EPE-H. Therefore, efficient partial expansion is
shown to be a crucial element for these domains,
that can be nicely combined with the efficient sin-
gle frontier bidirectional search framework. As a
further proof of this observation, it can be eas-
ily observed from Table 4 that EPEA* results to
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Fig. 10. Memory (left) and time (right) comparison between eSBS-A*, eSBS-EPE-A*, EPEA* and eSBS-A* on the 17-TP
problem, for all 25 instances, ordered by increasing number of EPEA* nodes. Time is plotted in log scale.

be the most efficient algorithm only when enough
memory is available (P3, P5, P6). Yet, when the
complexity of the problem grows, then eSBS-EPE-
A* becomes faster, as it is shown by the two most
difficult problems of P4-17 (see Figure 10, right).
In many cases, eSBS-EPE-A* also requires much
less memory, and it is in fact able to solve all the
P1 and P2 instances.

When the problems become large EPEA* runs
out of memory, one should use alternative algo-
rithms, and the eSBS-EPE framework is perfectly
suitable within this context. The novel eSBS-EPE
framework combines the advantages of both EPE
and eSBS: EPE reduces memory usage by avoid-
ing storing unneeded nodes, while the eSBS does
it owing to bidirectional search. These advantages
are more evident in those domains where the cost
of storing a state is larger than the cost of storing
a node (¢, << ¢, referring to Section 4.6), which
happens in P2-28, but even more in P1-85.

In these domains, also the iterative deepening
search becomes a viable alternative. For example,
eSBS-EPE-H is the fastest algorithm on P1-85,
while suffering in terms of speed when the cost of
the OSF computation is not negligible. This clearly
happens for P3-15, P4-17, and P6-18, where the
nature of the allowed moves requires a check of
several gap positions in order to compute the vari-
ation of the heuristic function. In addition, on such
domains with a very large branching factor, eSBS-
EPE-H needs to store many transpositions, thus
requiring more memory.

To summarize, the performance of the consid-
ered algorithms and their advantages and disad-
vantages strongly depend on a number of problem-

dependent parameters, such as the branching fac-
tor, the cost of storing a state, the overhead of
applying OSFs, and the informativeness of the
heuristic function. Only the net effect of these ob-
servation will determine which algorithm should
be preferred for a given problem instance. How-
ever, we hereby attempt to provide some general
rules on the effect of each attribute.

1. One should usually choose either EPEA* or
one of the eSBS-EPE variants.

2. When the cost for storing a state is high,
EPEA* can suffer from memory require-
ments. In such cases eSBS-EPE-A* is more
efficient. This is confirmed by our results on
P1 and P2.

3. When the overhead induced by OSFs is low,
and the branching factor is relatively small,
then the iterative deepening variant combin-
ing eSBS and EPE (eSBS-EPE-H) becomes
extremely efficient, as confirmed by our re-
sults on P1.

4. When enough memory is available and es-
pecially if the cost of storing a state is low,
EPEA* is to be preferred: in fact, this is the
case where the eSBS framework has fewer
advantages. This is confirmed by our results
on P3, P5, and P6. Yet, eSBS-EPE-A* is
faster than EPEA* on highly complex prob-
lems with large branching factor, such as the
two hardest instances of P4-17.

Clearly, the development of more sophisticated
heuristic functions could have a great impact on
the performance of all these algorithms. In partic-
ular, the computational time of EPEA* and eSBS-
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EPE-A* highly depends on (3, the effective branch-
ing factor, and on the number of times a given node
is expanded (parameter « introduced in Section 3).
Both parameters could be reduced with more in-
formed heuristics. If larger problems could be ad-
dressed also for the domains with higher branch-
ing factor, we argue that eSBS-EPE-A* could out-
perform EPEA*.

7. Conclusions

In this work we considered the problem of sort-
ing integer permutations with heuristic search al-
gorithms. Several different variants of this kind
of problem can be conceived when varying the
set of allowed moves. We considered the so-called
sorting by transpositions, translocations, reversals,
and blocks interchanges, which have recently re-
ceived great attention in other computer science
domains, due to their application to the problem
of genome rearrangement in computational biol-
ogy, but also in logistics and optimization. The
pancake and burnt pancake puzzles are the only
problem sets, belonging to the family of permuta-
tion sorting, which have historically been used in
the heuristic search literature. These permutation
sorting problems often present very large branch-
ing factors and hence they represent extremely
challenging tasks for heuristic search algorithms.
We believe that these variants of permutation sort-
ing problems could become new challenging bench-
marks for heuristic search algorithms.

Sophisticated approaches such as partial expan-
sion or single-frontier bidirectional search are per-
fectly suitable within this context. Thus, the pa-
per introduced a new family of heuristic search al-
gorithms, named efficient Single-frontier Bidirec-
tional Search with Enhanced Partial Expansion
(eSBS-EPE), combining the benefits of partial ex-
pansion and single-frontier bidirectional searches.

An extensive experimental evaluation conducted
for a wide variety of problem sets highlighted
the advantages and limitations of the considered
heuristic search algorithms for this kind of task,
while showing that the eSBS-EPE approach is a
very smart compromise between computational ef-
ficiency and memory consumption, often heading
to state-of-the-art performance. In general, when
increasing the size of the problems, the eSBS-EPE
algorithms behave better: while they always em-

ploy less memory than the considered competitors,
with larger problems they are often even faster.
Among the reported experiments, results on the
85-pancake and 28-burnt pancake puzzles pushed
the limit and represent the largest problems ever
solved for these domains.

Further improvements could be conceived by
studying the effect of applying domain-specific
jumping policies, or by devising new heuristic func-
tions. In particular, pattern databases could be
also employed for this category of problems. Since
they are computationally expensive to generate
and have large memory requirements, in this work
we focused on simpler and more efficient heuristic
functions, leaving this interesting research direc-
tions for future works.
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