
Exploiting the Environment for Coordinating

Agent Intentions

Tom Holvoet1 and Paul Valckenaers2

1 K.U.Leuven - Dept. Computer Science, DistriNet
Celestijnenlaan 200A, B-3001 Leuven, Belgium

Tom.Holvoet@cs.kuleuven.be

2 K.U.Leuven - Dept. Mechanics, PMA
Celestijnenlaan 300B, B-3001 Leuven, Belgium

Paul.Valckenaers@mech.kuleuven.be

Abstract. BDI-based agent architectures have proven their usefulness
in building MASs for complex systems - their explicit attention for cop-
ing with dynamic environments is one obvious explanation for this.
One large and quite interesting family of MAS applications is character-
ized (1) by their large scale in terms of number of agents and physical
distribution, (2) by their very dynamic nature and (3) by their com-
plex functional and non-functional requirements. This family includes
a.o. manufacturing control, traffic control and web service coordination.
For this family, the complexity of the software for the individual agents
using traditional BDI-approaches, however, is overwhelming.
In this paper, we present an innovative approach to BDI agents which
alleviates agent complexity through “delegate MASs”, which use the en-
vironment and its resources to obtain BDI functionality. Delegate MASs
consist of light-weight agents, which are issued either by resources for
building and maintaining information on the environment, or by task
agents in order to explore the options on behalf of the agents and to
coordinate their intentions. We describe the approach, and validate it in
a case study of manufacturing control. The evaluation in this case study
shows the feasibility of the approach in coping with the large scale of the
application and shows that the approach elegantly achieves flexibility in
highly dynamic environments.

1 Introduction

The term “coordination and control applications” can be coined to refer to a
large family of application which share a number of characteristics. First, in the
applications, one can distinguish (1) an underlying physical or software envi-
ronment, and (2) a software system that is connected to this environment. The
underlying environment contains fixed entities or “resources” capable of per-
forming particular operations, as well as mobile entities which can move in the
environment. Second, the coordination and control software system is able to
observe and direct the entities in the underlying environment. Third, the pur-
pose of the application is to execute “tasks”. Executing a task requires moving



through the environment and performing operations by resources. The purpose
of the software system is to manage the underlying environment by controlling
entities that live in the environment, and coordinating the collective behavior
of these entities. Fourth, the underlying system evolves several orders of magni-
tude slower than the coordination and control software. This allows the software
to observe the environment and to plan ahead. Fifth, the environment itself is
highly dynamic. Resources may crash, new resources may be added, connections
between resources may be added, lost, or their characteristics (e.g. throughput,
speed) may change. Members of this family of coordination and control applica-
tions include manufacturing control, traffic control and web service coordination,
but also supply chain management and multi-modal logistics. As an example,
in manufacturing control, the environment is the physical world equipped with
resources such as machines and conveyor belts, and the tasks are the client or-
ders for fabricating particular products. The software in manufacturing control
is responsible for controlling the resources and for guiding the orders through
the factory floor.

Centralistic software approaches tend to break when the underlying system is
large scale in terms of physical distribution and number of entities. Based on the
characteristics and requirements described above, a decentralized, multi-agent
system approach is suitable for modeling and developing the software for these
applications. Both the mobile entities (partially fabricated products, vehicles,
client software) and the fixed entities or resources in the environment (machines
or conveyor belts, roads and intersections, web services) are obvious candidates
to be represented as agents - which we call task agents and resource agents
respectively.

Research related to BDI-approaches [1, 11] is particularly interesting and
broad - we refer to just of few related topics here [12, 8, 6, 2, 3]. Building a realistic
BDI agent involves many aspects, including - but not limited to:

– knowledge engineering: information (beliefs) must be gathered from the
environment and from the task and resources agents, and must be kept up-
to-date according to some policy;

– deliberation: based on the world model, the agent needs to decide what
state of affairs it will intend to bring about;

– means-ends reasoning: either through on-line planning or using plan li-
braries, a plan is devised to reach the intention;

– direct communication: for many aspects, distributed communication pro-
tocols are necessary - most notably for coordinating the behavior of the task
agents, but also to inform resources of agent intentions, exchange state with
other task agents, and so on;

– advanced concepts including joint plans, joint intentions, learning may be
quite useful.

Experience with BDI-agents in small-scale and toy applications yielded agents
which were conceptually clean, yet these agents were already quite complex. For
the application domains in coordination and control for large-scale systems in
highly dynamic environments, the complexity of BDI-based models of agents
and the expected computational effort is simply overwhelming.



Partially inspired by the recent trend to exploit the environment as a design
abstraction for managing complexity in MAS [13], we propose a particular BDI-
based approach that aims to avoid most of the internal agent complexity. Rather
than creating and maintaining complex world and agent models themselves, the
agents delegate this to the environment. In the approach, so-called “delegate
MASs” are issued by the different agents. Delegate MASs consist of light-weight
agents. These light-weight agents can explore the environment and bring relevant
information back to their responsible task agent, can evaluate optional paths, and
can put the intentions of their task agent as information in the environment. This
allows delegate MASs of different agents to coordinate by aligning or adapting
the information in the environment according to their own tasks.

This paper is structured as follows. Section 2 describes the basic software
architecture of our approach, which consists of task and resource agents and
their environment. In Sect. 3, we refine this architecture by proposing how the
agents deal with beliefs, desires and intentions through delegate MASs. As the
contribution of this paper is on the approach rather than on the application
domains, we restrict the examples and illustrations to manufacturing control. A
concrete case study in manufacturing control is described in Sect. 4. Section 5
makes an evaluation and concluding remarks on the proposal, and points out
directions for future work.

2 Basic Software Architecture

for Coordination and Control Applications

We describe the basic components in the software architecture of our approach,
i.e. task agents, resource agents, and the environment.

The environment The environment of the targeted applications is a dynamic di-
rected graph. The nodes in the graph represent the resources in the environment
and the edges represent connections between different resources. The environ-
ment contains the mobile entities and allows these entities to move from resource
to resource. A mobile entity that resides on a node in the graph can communicate
with the resource on this node. When a mobile entity is on a particular node, the
corresponding resource can perform an action on the task of this mobile entity.

The lower part of Figure 1 shows an example of a simple factory of six
resources, connected through unidirectional “left-to-right” connections.

Resource Agents A resource agent represents a resource in the environment
and contains an information processing part for controlling the resource. The
resource agent lives in a virtual world that represents the underlying system,
but which allows bidirectional communication for each connection (see upper
part of Figure 1). The resource itself offers processing capacity and functionality
to the resource agent. In manufacturing control systems, a resource agent is an
abstraction of the production means such as machines, conveyors, tool holders,
material storage or even personnel.



Fig. 1. A simple factory consisting of six resources, which are connected left to right

A resource can abstractly be described as a set of capabilities. A capability
specifies the operations that the resource is able to perform.

Resource agents need to be able to make schedules based on requests from
task agents. Resource agents must also be able to answer “what-if questions”:
a task agent may ask a resource agent when and according to what quality
standards a particular operation could be performed if the task would arrive at
a future time. This allows task agents to evaluate the total time to completion
and the expected quality of the finished task for a particular plan.

Task agents A task agent represents and controls a task in the coordination and
control application, and resides on a (physical or virtual) mobile entity in the
environment. A task agent is responsible for performing its task by guiding its
mobile unit through the environment, and communicating with resource agents
in order to perform operations on the unit. A task has to be performed correctly
and on time. Every task agent is aware of the goal of its task, and has available
the schemes or plans that can be followed in order to reach this goal. For man-
ufacturing control, the task agents represent (unfinished) client orders and are
associated with the pallets with partially fabricated products. The production
schemes describe possible sequences of operations on the product in order to
obtain the final product. A task agent may represent customer orders, make-to-
stock orders, prototype-making orders, orders to maintain and repair resources,
etc.

Task agents are obvious candidates to be modeled as BDI agents. Task agents
need to deal with the observations of the environment and its entities (beliefs),
consider possible options on how to proceed (desires), choose a particular option
(intention) and communicate this with the other task agents. This allows the
agents to coordinate their behavior by accommodating their intentions. Coor-
dination is necessary as actions of one task agent may obviously influence the
situation of the other task agents. If the situation in the environment is such that
another option becomes substantially more favorable, the agent can reconsider
and adopt a new intention.



Agent Interactions Both resource and task agents control the entities in the en-
vironment, and obviously need to interact to achieve the goal of the application.
A typical interaction amongst these agents goes as follows.

When a new “task” enters the system, a task agent is created and connected
to the appropriate unit. The agent is aware of the initial state of the task and
investigates possible next operations that can be performed. The agent searches
and selects a combination of a next processing step and a suitable resource that
has the capability to execute the step.

When the selected processing step is executed by the resource, the resource
reports on the new state of the task. This may or may not be the expected
outcome of the operation. Based on this state, the task agent investigates possible
next steps based on the task schemes, and selects a combination of a processing
step and a suitable resource again. This process repeats until the task is finished.

3 Delegate Multi-Agent Systems for BDI Through the

Environment

In the previous section, we identified the core abstractions and concepts for
modeling a coordination and control application as a multi-agent system. In this
section, we describe the functionality that is required for the task agents to be
able to achieve their goals, and explain how we achieve this functionality through
delegate MASs.

3.1 Required functionality

Make feasibility information available As routing tasks through the environment
is an essential feature in coordination and control applications, the environment
must provide a means to inspect feasible paths. A feasible path describes a se-
quences of resources can be reached by following this path. Feasibility infor-
mation reflects physical or topological constraints in the environment. If there
is a path from one node H to a destination node D via node V, this must be
observable as a feasible path.

Task agents need to explore relevant paths Task agents need to explore the feasi-
ble paths that correspond to their task schemes. A feasible path corresponds to a
task scheme if following this path routes the task agent along the resources that
are necessary to reach its final goal. A task agent needs to consider all possible
schemes (i.e. sequences of operations) which can bring the current task toward
its goal, and match these plans with the feasibility information. The feasible
paths that match a suitable scheme represent the different options that the task
agent has to achieve its goal.

Exploring a path means to evaluate the path in a “what-if mode” in order
to judge timing and quality if this path would be followed by the task agent.



Intentions Based on the options that are available to a task agent and their
evaluation in a what-if mode, the task agent chooses one path as its intention.
Adopting an intention obviously has implications on the resource agents that
will be visited as part of the intention. The task agent needs to communicate
with those resource agents and inform them of when they will arrive and which
operation the resource will need to perform. The resource agents need to book
these reservations.

3.2 How: Delegate MASs

A typical approach would be to use direct communication protocols, knowledge
engineering and means-ends reasoning to achieve this functionality. Here, we use
delegate MASs for obtaining feasibility information, exploration and propaga-
tion of intentions toward the resource agents. To some degree, delegate MASs
are inspired by food foraging in ant colonies. Food foraging ants execute a sim-
ple procedure. In absence of any signs in the environment, ants walk around
randomly in search for food. When an ant discovers a food source, it drops a
smelling substance - a pheromone - on its way back to the nest while carrying
some of the food. This pheromone trail evaporates over time, and disappears
if no other ant deposits fresh pheromone. Another ant in search for food will
use pheromones in the environment as a source of information to direct its own
behavior. Pheromones indicate possible routes to a food source, ants are urged
by instinct to follow this trail to the food source. When the ant finds the food
source, it will return with food, while depositing pheromone itself. When the
ant discovers that the food source is exhausted, it starts a randomised search for
food again. As the pheromone trail is no longer maintained, it disappears over
time.

These simple behavior patterns result in an emergent behavior of the ant
colony that is highly ordered and effective at foraging food while being robust
against the uncertainty and the complexity of the environment. An important
capability of this type of collective behavior is illustrated: global information -
about where to find food in a remote location - is made available locally - in
which direction must the ant move to get to this food. The following interesting
principles are recognized: (1) make the environment part of the solution to handle
a complex environment without being exposed to its complexity - ants are quite
simple agents; (2) place relevant information as signs in the environment ensuring
that locally available data informs about remote system properties; (3) limit the
lifetime of this information (evaporation) and refresh the information as long as
it remains valid - this allows the system to cope with changes and disturbances.

We exploit these principles in our approach and define three types of light-
weight agents, which each represent a different delegate MAS and which share
a common environment for indirect communication. To distinguish them from
task and resource agents, we call the light-weight agents “ant agents” or ants
further on. Delegate MASs consist of ant agents that reside in a virtual software
environment which reflects the application environment, and in which ant agents
can navigate.



Feasibility Ants Feasibility ants form a delegate MAS that is issued by resource
agents. Their purpose is to roam the environment and, at each node they pass,
drop information on feasible paths that start from this node.

Resource agents which have not seen a feasibility ant passing by for a par-
ticular period will create new feasibility ants themselves at a certain frequency.
The behavior of a feasibility ant is as follows.

A feasibility ant communicates with the resource agent at its current node,
and asks for its capabilities. The ant observes the environment locally and finds
out from which other nodes the current node can be reached. As the system
environment is a directed graph, this means that the ant makes a list of all nodes
that are predecessor of the current node. A clone of the feasibility ant is sent to
each node in this list. The ants can be seen as moving upstream. When arrived
at the new node, the ant asks the local resource agent for its capabilities, and
merges this information with information of previous nodes. Now this ant knows
that from this node, a sequence of operation that requires a capability from the
current node followed by an operation that can be performed at its previous
node is currently feasible. This information is dropped at the local information
space of the current node, as a kind of road sign. Then the ant clones itself
for every node upstream, and the process repeats itself. A feasibility ant dies
if there are no nodes upstream. Cycles can be dealt with by accumulating this
information, and as such the information may not only contain sequences but
also iterations of resource capabilities. The information that is stored in local
information spaces is time-stepped, and if not refreshed by another feasibility
agent in time, that information disappears. This is necessary to accommodate
dynamic changes in the environment both on the topology and the resources in
the topology.

This process can and must be fine-tuned for every application in order to
avoid flooding. Hop limits, limited cloning budgets and probabilistic choices of
upstream nodes are a few mechanisms that can be used, but which mechanisms
are useful and effective depends on the concrete application.

Exploration Ants Using the feasibility information available locally, a task agent
is able to find out which paths are physically or virtually feasible for achieving
the goal of its task. A task agent generates exploration ants at a certain frequency
which explore feasible paths. These exploration ants are scouts that each explore
a feasible route through the underlying system and evaluate this route. This
evaluation typically concerns completion time and quality criteria on the final
state of the task, but can also include a cost e.g. for the usage of fragile, expensive
or critical resources. To make the evaluation, an exploration ant follows a path
through the environment, and interacts with the resource agents at the different
nodes by asking the resource agent what the timing, quality or costs would be
if a task in a particular state would arrive at a particular moment in time. The
exploration ant collects this information, and then proceeds to the next node
in the path, in which this behavior is repeated. When arrived at the end of the
path, the exploration ant returns and reports back to its base, i.e. the task agent
that created the exploration ant. Figure 2 illustrates this process for the simple



Fig. 2. Exploration ants scout feasible paths

factory shown in Figure 1. The task agent on the left hand side creates three
exploration ants for scouting feasible paths.

The information that a task agent gathers in this way from all its exploration
ants is filtered out in order to withhold the paths that are valid options for the
task at hand. An option is valid if, besides yielding the required goal, the goal
is reached in due time and with an acceptable quality and cost.

The list of candidates get refreshed regularly as exploration ants are sent out
regularly. Candidates that are not refreshed are removed over time, assuming
that these candidates have become invalid or infeasible because of changes in
the environment.

Intention Ants Exploration as described above requires the resource agents to
possess an adequate estimate of their future workload. To serve this purpose,
task agents generate intention ants, which propagate the intention of task agents
through the environment.

The process goes as follows. When a task agent has constructed a set of valid
paths to follow, the task agent selects one candidate path to become its intention.
The criteria used for this selection depends on the requirements of the task, and
is application-specific. Then, the task agent creates intention ants, at a certain
frequency, to inform the resource agents that are involved in this intended path.

The intention ants follow the selected path, and virtually execute the routing
and processing of their selected candidate solution. On their virtual journey, the
intention ants acquire travel, queuing, and processing times from the resource
agents on their path. Any changes, which occurred since the exploration, imme-
diately become visible when these resource agents provide the information. In
contrast to the exploration ants, intention ants inform the resource agent that
their order agent is likely to visit them at the estimated time and to perform a
particular operation. In this way, intention agents make a (evaporating) booking
on the resource, and the resource agent adjusts its load forecast (local schedule
of the resource) to account for this visit. As a consequence, resource agents are
able to predict their workload and performance more accurately to their visiting



Fig. 3. Intention ants communicate intentions through the environment

exploration and intention ants. Similar as exploration ants, intention ants report
back to their task agent to inform the agent about the schedule and performance
of the bookings.

Figure 3 illustrates this for our simple factory example. Based on the infor-
mation that was gathered by the three exploration ants, the task ant decides
that the path explored by the last exploration ant (which explored candidate
path 2) fits the task requirements best. To confirm this and align this decision
with the involved resource, an intention ant tries to walk the same path and
make bookings on its way.

One important note to make is that, as a consequence of this process, the
actual intention of a task agent, as it is distributed to the different resource
agents, is only the path that the task agent intends to follow. This intention is
then aligned with the schedules and performance of the involved resources. The
task agent decides on the path to follow in an intention, the environment and its
resources decide on the resulting schedule and performance, which may or may
not correspond with the beliefs of the task agent based on the information from
the exploration ants. As such, this process reliefs the task agent from massive
communication using complex protocols to ensure e.g. a two phase commit for
reserving all resources.

The intention information at the resource agent - the booking - evaporates.
Task agents must create intention agents to refresh their intention at a frequency
that is sufficiently high to maintain their bookings at the resources.

While refreshing, a task agent observes the evolution of the expected perfor-
mance of its current intentions through the reports on the estimated performance
that intention ants bring back. This performance estimate is compared to the
estimates of the candidate solutions that are found and refreshed by the explo-
ration agents. When the estimated performance of the current intention drops
significantly below the estimated performance of other candidate solutions, the
task agent may revise its intention. When the task of a task agent reaches the
point where a decision needs to be executed, the task agent triggers the action
in the underlying system in accordance with the intention.



Task and Resource Agents Let us now list the responsibilities of task and re-
sources agents. These lists should guide a developer of a coordination and control
application to define a concrete software architecture for these agents.

A resource agent is responsible for (1) answering what-if questions from ex-
ploration ants, (2) making schedules based on requests for bookings by intention
ants - the schedules must obviously respect resource constraints as well as fol-
low a predefined policy for re-scheduling, e.g. when high-priority tasks make a
booking, this may reject earlier reservations, (3) keep an up-to-date view on the
resource that the resource agent is managing (e.g. observe operation quality and
status), and (4) send out feasibility ants if no feasibility ants have contacted
this resource agent for a while. These guidelines should suffice to produce a con-
crete architecture according to the requirements of a concrete application. The
resource agent could execute each of these responsibilities in sequence, or one
may opt to define concurrent execution of some of these responsibilities.

The responsibilities of the task agents are the following. First, a task agent
must have knowledge about its task, about the initial state of the task, and
about task schemes. Task schemes describe one or several plans to achieve the
goal of the task, and given any intermediate state of the task, the task scheme
should provide one or more sub-plans to fulfill the task. Second, a task agent
must manage its beliefs. Beliefs on feasibility are readily available from the in-
formation space in the environment. Beliefs about explored paths are gathered
by exploration ants. Third, this information needs to be filtered out, yielding
valid paths - the agents desires. Fourth, based on the beliefs about the task and
the options, a task agent then chooses or revises its intention. Fifth, at appro-
priate times and frequency, exploration ants as well as intention ants are sent
out. Finally, a task agent is responsible for interacting with resource agents in
order to perform operations on its task.

Again, these responsibilities are either executed as a sequence, or one may
choose for concurrent execution of some of these responsibilities.

4 A Case Study in Manufacturing Control

We have applied the approach (in simulation) on several artificial toy examples,
and on one realistic case. In a research and development project, in collaboration
with an industrial partner, we investigated the approach for coordination and
control of a factory that produces parts of weaving machines (see Figure 4 for a
screen shot of the factory in a simulation tool). The factory that is modeled in
this case study has a particular topology, which consists of several workstations
(machines, in the middle of the picture) and one warehouse (top of the picture),
and a shared transportation unit (on the rails). The warehouse contains storage
slots, which store containers with product parts. The warehouse is automated
in that it is capable of managing these slots itself. Besides the machine worksta-
tions, an “input station” is responsible for entering new orders into the system,
and one “output station” delivers finished product outside of the system. The
transportation unit is a tram which can visit all workstations and the warehouse.



Fig. 4. The graph environment of the manufacturing control case - a star topology

This tram carries containers between the different workstations and between the
workstations and the warehouse.

A schematic representation of this topology illustrates the directed graph of
this environment, see Figure 5. Conceptually, all workstations and the warehouse
are bi-directionally connected to the tram resource.

Fig. 5. The graph environment of the manufacturing control case - a star topology

A crucial requirement for the coordination and control software for this case
is the optimization of usage of the transport system (the tram). During periods
of heavy demand for transportation (rush hour), the tram is a bottleneck and
causes workstations and operators to idle, which is expensive.

For this case, we conducted two sets of experiments. The experiments focus on
the flexibility of the approach in dealing with unpredictable timings of machine



operations. Experiments with changing topologies are promising results as well,
but are not reported here.

In a first set of experiments, we applied a straightforward detailed design
of our approach, in which the production schemes reflect current practice. The
production schemes are simple deterministic lists of sequential processing steps,
which includes a visit to the warehouse between each two successive processing
steps on workstations. The order is stored in the warehouse until the next ma-
chine where the order needs to be processed, becomes available. It may seem
illogical to visit the warehouse in between each two operations. The reason why
this is current practice is the inability of the current system to cope with flexibil-
ity for dealing with unpredictable timings of operations. When an operation is
finished on one machine, and the workstation that is going to be used for the next
step is available, a visit to the warehouse is unnecessary, and the order could be
delivered immediately. If, however, because of variation in processing time, the
workstation for the next operation is not available, even though it was predicted
to be available at this time, the transport cannot be performed. The current
industrial system (in reality) does not have up-to-date forecasts, and the effects
of direct workstation-to-workstation transports on the system performance are
therefore unclear and represent an unacceptable risk for the company.

The results obtained from this first set of experiments are quite satisfactory
compared to the current characteristics of the system as it is operational today
(numbers not available by non-disclosure). Results on the performance of the
transport system and the bottleneck machines (W3824 and W3310) in the fac-
tory are reported in Table 1. The rightmost column displays aggregated results
for all workstations.

Tram W3824 W3310 Total

avg. wait time 76 41 145 287

total wait time 4315 370 435 8928

max wait time 891 84 365 1587

utilization rate 8% 91% 89%
Table 1. Results from the basic controller.

In a second set of experiments, we aimed to test the effect of adding flexibility
to the system by allowing more flexibility in the task schemes. In these experi-
ments, visiting the warehouse is no longer mandatory but optional between each
two processing steps. Besides this change in production schemes, the task agents
and resource agents were identical to the first set of experiments. Our approach
can benefit from this extra flexibility in the task schemes as it relies on forecasts
(intentions) that may be revised, e.g. in the case where processing a particular
operation takes longer than predicted. Table 2 shows the results for these ex-
periments. The main effect of this extra flexibility on the tram is a reduction of
its load by 25% and the number of transports by 30%. This results in reduced
waiting times for all workstation and especially for the bottleneck workstations.



The utilization rate on the bottleneck workstations increases, implying that the
overall throughput of the manufacturing system increases proportionally. This
improvement is significant, even for small percentages, since it directly affects
the financial return rate of the investments.

Tram W3824 W3310 Total

avg. wait time 109 31 129 274

total wait time 4374 280 387 8488

max wait time 838 57 345 1587

utilization rate 6% 93% 90%
Table 2. Results from the enhanced controller.

Further improvements are being investigated in this case. The excess capacity
on the tram, outside rush hours, can be used to prepare the work during periods
of high demand. The availability of an up-to-date prediction is essential for this
enhancement since it both informs the system whether there is an opportunity
to rearrange the storage and tells the system which rearrangement is likely to
lower the workload during upcoming periods of high demand.

Related work on MAS for Coordination and Control The main contribution
of a delegate MAS design is its ability to generate short-term forecasts; these
forecasts account for recent updates on the state of the underlying system and
the control system entities themselves. Moreover, feasibility ant agents propagate
constraints in the underlying system to wherever they may be relevant.

In comparison, known scalable MAS coordination and control developments
are myopic [4, 9]. These approaches decide about task allocations when the pre-
ceding task is about to finish or is already finished. These systems use interaction
protocols e.g. variations on the well-known contract net to implement decision-
making mechanisms. A “utility function” in such interaction protocols needs to
capture all future implications of the decisions. As a consequence, these designs
have proven to be very successful in dynamic but homogeneous environments.
For instance, [4] is capable of controlling a homogeneous collection of CNC ma-
chine tools in a factory with a flexible transport system but fails to handle a mix
of hard automation (low cost and very fast) with flexible but expensive CNC
equipment and fails to handle transport systems that have limited flexibility
(routing from resource A to resource B is not always feasible). In a delegate
MAS, feasibility ant agents account for such heterogeneity and the forecast-
ing functionality permits the coordination and control system to account early
enough for the often erratic constraints in such production systems.

Early attempts to account for the complete sequence of production steps
that are required to execute a task, suffer from combinatorial explosions. In such
developments, resource agents, when they are unable to finish a task, recursively
subcontract the remainder of this task to other resource agents before entering
their bid [7]. Recently, advanced machine learning techniques have been applied



to select candidate subcontractors and eliminate the combinatorial explosion [5].
However powerful, such solutions require software maintenance when the model
of the underlying system changes (e.g. to account for storage and transportation)
by an expert in such machine learning technology. Likewise, researchers have
developed MAS control system that incorporate planning systems [10]. Again,
changes to the model of the underlying system are likely require challenging
maintenance efforts. In contrast, models in delegate MASs have a one-to-one
correspondence to the corresponding entity in the real world; their is no modeling
effort required to fit the coordination technology; delegate MAS designs stay
close to reactive agent designs in that the world almost remains its own best
model.

5 Evaluation and Conclusion

Developing a real-world coordination and control application will never be easy -
the problem domains are too complex and the environment too dynamic for this.
In this paper, we do not claim that other MAS approaches to these applications
(e.g. classical BDI-based or other approaches), are not suitable to tackle these
applications. Instead, we want (1) to emphasize the enormous complexity that is
involved in the agent software for such realistic applications, and (2) to make a
strong case that creative architectural alternatives are worth investigating. In the
approach we propose, we stick to the basic philosophy of belief-desires-intention
agents, but exploit the environment and delegate MASs, inspired by ant be-
havior, to realize beliefs, desires and intentions. This innovative approach yields
quite interesting results for the targeted application domains, both in terms of
the reduction of the agent software complexity and in overall performance in a
highly dynamic environment.

The use of a delegate MAS allows the coordination and control system to
handle changes and disturbances as “business-as-usual”. Indeed, feasibility ants
discover the (dis)appearance of resources during refresh. Likewise, lost connec-
tions and (re)connections are discovered during such refresh by feasibility ant
agents. Furthermore, disturbances such as a rush order pushing reservations by
other tasks backwards, or a temporary equipment malfunction causing similar
shifts for reservations, are detected during refresh of both intentions and candi-
date solutions by respectively intention and exploration ants. Stale information,
which refresh activities fail to update or remove, disappears through the evapo-
ration mechanism within the time needed for a few refresh cycles.

One important difference between an approach using delegate MAS and tra-
ditional BDI approach for coordination and control systems is that a delegate
MAS design extends Brooks concept of having the world as its own best model,
while traditional BDI approaches rely on maintaining world models. The basic
idea of having the “world as its own best model” only discusses the present
state of the world. In contrast, the delegate MAS approach in this paper ex-
tends this idea toward the future state, using exploration and intention ants,



while keeping modeling efforts acceptable. Indeed, resource agents only need to
be knowledgeable and intelligent about their own small section of the world.

There is one caveat to the approach: the task agents must behave in a socially
acceptable manner. This means that agents do not change their intentions too
easily and too frequently. Otherwise, minor disturbances such as a short break-
down of a resource may create an avalanche of tasks that shift to alternative
resources. The perceived improvement must be higher than a threshold value
before the current intention is replaced by the more-promising alternative.

To avoid too many agents revising their intentions at the same time, possibly
yielding thrashing behavior, task agents change their intentions probabilistically.
As a result, only a small fraction of task agents may change their intentions, and
the other agents are able to observe the consequences before changing their in-
tentions as well. Adopting this mechanism ensures that task agents will gradually
shift toward alternative routes when a disturbance occurs until a new equilibrium
is reached.

To serve the purpose of this paper, the approach was described at a high-
level of abstraction as a generic software architecture, and contained mainly hints
and guidelines for designers of real coordination and control applications, and a
report on experiments in one manufacturing control case. A detailed design of the
approach specific for manufacturing control is available. Other detailed designs
are likely to follow when adopting this approach in other concrete application
domains.

References

1. M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard, Cambridge,
MA, USA, 1987.

2. L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A bdi agent system combining
middleware and reasoning. In M. K. R. Unland, M. Calisti, editor, Software Agent-
Based Applications, Platforms and Development Kits, pages 143–168. Birkhuser-
Verlag, Basel-Boston-Berlin, 9 2005. Book chapter.

3. L. Braubach, A. Pokahr, W. Lamersdorf, and D. Moldt. Goal representation for bdi
agent systems. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni,
editors, Second International Workshop on Programming Multiagent Systems: Lan-
guages and Tools, pages 9–20, 7 2004.

4. S. Bussmann, N. Jennings, and M. Wooldridge. Multiagent systems for manu-
facturing control: A design methodology, volume XIV of Springer Series on Agent
Technology. Springer-Verlag, 2004.

5. B. Cs.Csji, L. Monostori, and B. Kdr. Reinforcement learning in a distributed
market-based production control system, 2004.

6. F. Dignum, D. Morley, L. Sonenberg, and L. Cavedon. Towards socially sophisti-
cated bdi agents. In ICMAS, pages 111–118. IEEE Computer Society, 2000.

7. A. Marcus, T. Vancza, and L. Monostori. A market approach to holonic manufac-
turing, 1996.

8. S. Parsons, O. Pettersson, A. Saffiotti, and M. Wooldridge. Intention reconsider-
ation in theory and practice. In W. Horn, editor, Proceedings of the Fourteenth
European Conference on Artificial Intelligence (ECAI-2000). John Wiley & Sons,
2000.



9. H. Parunak, A. D. Baker, and S. J. Clark. The aaria agent architecture: From
manufacturing requirements to agent-based system design. Integrated Computer-
Aided Engineering, 8(1):45–58, 2001.

10. M. Pěchouček, A. Ř́ıha, J. Vokř́ınek, V. Mař́ık, and V. Pražma. Explantech: ap-
plying multi-agent systems in production planning. International Journal of Pro-
duction Research, 40(15):3681–3692, 2002.

11. A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings
of the First Intl. Conference on Multiagent Systems, San Francisco, 1995.

12. J. Thangarajah, L. Padgham, and J. Harland. Representation and reasoning for
goals in BDI agents. In M. J. Oudshoorn, editor, Twenty-Fifth Australasian Com-
puter Science Conference (ACSC2002), Melbourne, Australia, 2002. ACS.

13. D. Weyns, H. V. D. Parunak, F. Michel, T. Holvoet, and J. Ferber. Environ-
ments for multiagent systems state-of-the-art and research challenges. In D. Weyns,
H. V. D. Parunak, and F. Michel, editors, E4MAS, volume 3374 of Lecture Notes
in Computer Science, pages 1–47. Springer, 2004.


