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Abstract. Self-organisation is being recognised as an effective concep-
tual framework to deal with the complexity inherent to modern artificial
systems. In this article, we explore the applicability of self-organisation
principles to the development of multi-agent system (MAS) environ-
ments. First, we discuss a methodological approach for the engineering
of complex systems, which features emergent properties: this is based on
formal modelling and stochastic simulation, used to analyse global sys-
tem dynamics and tune system parameters at the early stages of design.
Then, as a suitable target for this approach, we describe an architecture
for self-organising environments featuring artifacts and environmental
agents as fundamental entities.

As an example, we analyse a MAS distributed environment made of
tuple spaces, where environmental agents are assigned the task of moving
tuples across tuples spaces in background and according to local criteria,
making complete clustering an emergent property achieved through self-
organisation.

1 Introduction

The typical MAS scenario involves a set of autonomous situated entities inter-
acting with each other and exploiting resources in the environment to achieve
a common goal [1, 2]. When designing the MAS environment, other than func-
tional properties concerning the available services offered to agents, one has also
to consider non-functional properties. First, it is crucial to balance the compu-
tational power devoted to the provision of such services: several maintenance
activities must be performed on-line and in background to guarantee a certain
level of quality of service at low computational cost. Moreover, the design of
environment should feature the emergence of quality properties: since the dy-
namics of interactions with agents cannot be fully predicted, several unexpected
situations have to be handled automatically and effectively.

As standard optimisation techniques (e.g. in resource allocation) are offline
and possibly computationally expensive, we need to rely on different approaches.
Self-organisation theory is a rich source of inspiration for sub-optimal strategies
that can be performed on-line, like every natural system does, and that require



little computational power, e.g. because of local communications. For these rea-
sons, we look for a methodological approach for the development of MAS envi-
ronments that can systematically adopt self-organisation principles, as a means
to more effectively and efficiently provide agents with useful services.

We consider the A&A (agents & artifacts) meta-model as our reference model
for MAS [3, 4]. Artifacts are environment abstractions encapsulating resources
and services provided by the environment to agents: agents exploit artifacts
in order to achieve individual as well as social goals. Following some early ex-
ploration of self-organising systems [5, 6], we see the environment as a set of
artifacts, exploited by user agents and managed by environmental agents, the
latter having the responsibility of regulating artifact behaviour and state, and
making interesting quality properties emerge whenever needed. This vision is
of course shared by the Autonomic Computing initiative [7]: in particular Au-
tonomic Computing emphasises the need for artificial systems to self-configure,
self-protect, automatically recovers from errors (self-healing) and self-optimise.

In order to focus on the the application of self-organisation principles to the
engineering of MAS environment, we devise a methodological approach based on
formal modelling and stochastic simulations. In spite of the difficulty of designing
“emergence”, this approach allows us to preview global system dynamics and
tune the system model until possibly converging to a system design matching
the expected requirements.

As a case study we discuss an application called collective sort, which is a gen-
eralisation of the brood sorting problem of swarm intelligence [8] to a distributed
tuple space scenario [9]. User agents interact with each other by putting and re-
trieving information on the environment in the form of tuples: the distributed
environment consists of a set of artifacts resembling tuple spaces, which are kept
ordered by environmental agents exploiting self-organising techniques. The ob-
jective is to devise a fully-distributed, swarm-like strategy for clustering tuples
according to their type (as a tuple template), so that tuples with same type
are aggregated into the same, unique tuple space. In this case, it is the agent-
environment coupling that creates the feedback loop supporting emergence of
ordering, by balancing between positive and negative feedback [10]. We provide
an architecture and simulation results for this problem, showing the effectiveness
of the strategy proposed.

This paper is structured as follows: in Section 2 we discuss our methodological
approach for engineering self-organising systems, and its application to our basic
architecture for MAS environments. We then apply the methodology—which is
based on the three steps of modelling, simulation, and tuning—to the collective
sort scenario. Specifically, in Section 3 we devise a model for a self-organising
environment, in Section 4 we show simulation results from the system model in
order to investigate global dynamics, and then in Section 5 we tune the strat-
egy for achieving better performance, relying on load-balancing techniques. In
Section 6 we discuss some related work, and finally in Section 7 we conclude by
pointing at some possible future developments.



2 A Design Approach for Self-Organising MAS
Environments

In the MAS community, several engineering methodologies have been developed
[11–13], but they typically do not face some of the most important issues in
self-organisation: Given a problem, (how) can we design the individual agent’s
behaviour in order to let the desired property emerge? Once a candidate be-
haviour is specified, (how) can we guarantee that the specific emergent property
will appear?

We recognise in general two approaches to tackle the above issues: (i) analysing
the problem and designing by decomposition an ad-hoc strategy that will solve
it; (ii) observing a system that solves a similar problem, and trying to reverse-
engineer the strategy. The former approach is applicable only to a limited set
of simple scenarios, since the non-linearity in the rules makes the results quite
difficult to predict—indeed, it hardly scales with the complexity of a problem
[14]. A self-organisation viewpoint suggests that the latter approach might be
more fruitful: indeed, several tasks accomplished by social systems have their
counterpart in computer science algorithms and architectures [8, 15]. Unfortu-
nately, strategies for specific problems are often unknown, so they are inferred by
modifying the original models: but then, how can we guarantee that such mod-
ifications would not produce side-effects, namely, behaviours that significantly
differ from the expected one?

In general, ensuring that a design leads to the desired dynamics is still an
open issue. Although it is possible to verify properties of a deterministic model
via automated tools and techniques—e.g. with model checking—, as soon as
stochastic aspects enter the picture, verification becomes more difficult—existing
works in this context appear to be somehow immature. Hence, although applying
model checking techniques is part of our medium-term research objectives—see
a discussion in Section 7—it is necessary to resort to a different methodology for
analysing the behaviour and qualities of a design.

Then, in the remainder of this section, we describe our methodological ap-
proach and, next, how concepts from the methodology map onto design abstrac-
tions.

2.1 A Methodological Approach based on Formal Modelling and
Stochastic Simulations

Our approach starts from the deliverable of analysis, and has the goal of devising
out an early design of the system, to be later detailed and implemented. However,
we do not aim at devising a complete methodology: instead of covering the
complete development process and tackling all functional and non-functional
aspects, we rather intend to use it in combination with other existing AOSE
methodologies. So, working at the early design phase, in our approach we aim
at evaluating several strategies and their crucial parameters, with the goal of
discovering the one that could provide the quality attributes required for the
application at hand.



In particular, our approach is articulated around three activities:

Modelling — to develop an abstract formal specification of the system;
Simulation — to qualitatively investigating the dynamics of the system;
Tuning — to change model parameters to adjust system behaviour.

In the modelling activity, we formulate a few strategies that seemingly fit the
behaviour to be implemented: as far as self-organisation is concerned, natural
models are an obvious source of inspiration. Such strategies should form an ab-
stract model of the system for possible architectural solutions. Specifically, in
the case of self-organising systems where complex patterns arise from low-level
interaction, selective models can make us focus on the properties of interest. To
enable further automatic elaborations—such as simulation and automatic verifi-
cation of properties—these descriptions should be provided in a formal language,
which promotes unambiguity and precise selection of the features to be modelled
and those to be abstracted away. Although we do not endorse any particular lan-
guage, given the nature of the target systems we prefer languages that easily and
concisely express notions such as distribution, concurrency, communication and
compositionality [5]. Moreover, they must be able to deal with stochastic as-
pects, which are required in order to properly abstract over unpredictability of
certain behaviours and events.

The deliverable of the modelling phase is then a formal specification. In the
subsequent activity, this specification is used in combination with simulation
tools in order to generate simulation traces. Simulation is a very useful tool able
to provide a first feedback about the suitability of a solution: for this purpose,
tools like SPiM [16] for the stochastic π-calculus have been proved to be quite
useful [5, 6]. Tools that do not directly support simulation features could be ex-
tended by using e.g. the Gillespie algorithm [17], as done for the SPiM simulator
[18]. Some general-purpose engine can also be developed to this end, like e.g. the
Maude term rewriting system module described in [9].

Since self-organising systems tend to display different qualitative dynamics
depending on initial conditions, it may happen that simulations of the current
design do not exhibit interesting behaviours: the model is then to be tuned until
the desired qualitative dynamics is reached. Thus, the parameters employed
works as a coarse set of parameters for implementation, while fine tuning is
delayed until the actual implementation has been developed. The tuning process
may end up with unrealistic values for parameters, or simply may not converge to
the required behaviour, meaning that the chosen model cannot be implemented
in a real scenario: in this case another approach should be tested, going back to
the modelling activity.

2.2 A Basic Architecture for Self-Organising Environments

The multi-agent paradigm is a natural choice for modelling natural systems and
developing nature-inspired, artificial ones. In particular, in this paper we adopt
the agents & artifacts meta-model (A&A) for MAS, where MAS are modelled



Fig. 1. Basic architecture for a MAS featuring environmental agents as artifacts ad-
ministrators.

and engineered based on two fundamental abstractions: agents and artifacts
[3, 19]. Agents are the (pro-)active entities encapsulating control: they are in
charge of the goals/tasks that altogether build up the whole MAS behaviour.
Artifacts are instead the passive, reactive entities in charge of the services and
functions that make individual agents work together in a MAS, and which shape
agent environment according to the MAS needs. Other than being an interpre-
tation means for a number of existing concepts in MAS—coordination media,
e-institutions, stigmergic fields, web services [3]—this meta-model has also an
impact on practise: it is e.g. the basis of the CArtAgO project for developing a
general-purpose infrastructure for MAS environments [4].

Based on this meta-model, we focus on the development of environments
featuring self-organisation properties, accordingly propose an architectural solu-
tion, and then discuss the impact on methodological issues. From the viewpoint
of (user) agents, that exploit the services provided by artifacts, we see the envi-
ronment as composed by a set of environmental agents, other than the artifacts
themselves. As depicted in Figure 1, artifacts exhibit a usage interface which
is accessible to user agents, and which provides the artifact services, while the
management interface is accessible only to environmental agents, and provides
features related to controllability and malleability of artifacts. Environmental
agents are in charge of managing resources—say, in an Autonomic Computing
style—by adjusting artifact behaviour and status, and by performing periodic
administration tasks, possibly taking part in the self-organisation process that
the environment should globally exhibit. In particular, this architecture supports
the positive/negative feedback loop together with agents: since self-organisation
is an active process, it is often the case that artifacts alone cannot close the



feedback loop because of the lack of pro-activity, which is instead featured by
environmental agents.1

2.3 Relating the Methodology to the Architecture

Modelling When modelling an environment according to our architecture, we
have to consider three elements: (i) the user agents requesting services, (ii)
the artifacts providing the interface to the services, and (iii) the environmental
agents administering the artifacts and driving the self-organisation process (when
needed).

Starting from user agents, we observe that they cannot be modelled as fully
predictable entities because of their autonomy, and because their behaviour is
mostly unknown to the environment designer: abstraction is a necessary process
here to cope with the peculiarities of agents to come. Hence, stochastic models
are to be used in order to abstract away from agent internal behaviour, simply
exposing timing and probability aspects—such as e.g. at which rate they interact
with artifacts.

On the other hand, the behaviour of artifacts is predictable by definition,
for artifacts automatise the service: hence, in the modelling stage it is typically
possible to precisely model their internal state and describe their step-by-step
behaviour.

Finally, environmental agents lie somehow in the middle: because they are
strongly coupled with artifacts, they are typically designed along with them.
Hence, in spite of their autonomy, we can make quite reliable predictions about
the behaviour of environmental agents, though stochastic aspects can be anyway
useful to model their effect on artifacts.

If the system is designed to exhibit emergent properties, then user and envi-
ronmental agents are necessarily functionally coupled: such a coupling is required
for the positive/negative feedback loop, in that the result of actions performed
by user agents eventually triggers a response by environmental agents. Hence,
some assumptions about the nature of feedback have to be made: however, these
assumptions are not too restrictive, since the set of services offered by the envi-
ronment is limited.

Simulating When it comes to simulating, it is necessary to provide a set of
operating parameters for the system modelled. It is worth noting that, for the
simulation to be meaningful, parameters should represent actual values, oth-
erwise it is not possible to decide about the feasibility of the solution: hence,

1 It is worth noting that our view of MAS environment should not be considered as a
departure from the original idea of the A&A model, where the environment is made
by artifacts alone. Indeed, drawing the boundary of the environment is a subjective
task: as far as we call “environment” what is outside a particular subset of agents,
it could be naturally seen as made of artifacts and by the remaining agents. So,
our architecture here is to be considered as a possible specialisation of the A&A
meta-model to the case of self-organising environments.



devising such parameters is probably the most crucial aspect in the simulation
stage. It is then possible to investigate the system global dynamics before ac-
tually implement it. In order to preview certain behaviours, it is necessary to
sweep through unbounded parameters: tweaking parameters is almost unavoid-
able since—working with complex systems—small modifications likely lead to
qualitatively very different results.

While it is possible to precisely characterise the behaviour of artifacts and
environmental agents, we cannot foretell user agents behaviour: then, stochastic
and probabilistic models can abstract from those details, though introducing
simplifying assumptions that should be later validated. What we actually need
is to devise likely scenarios—completeness is typically unfeasible—each of which
characterised by a statistical description of user agents’ interaction with arti-
facts. For example, if system behaviour depends on the distribution in time of
service requests, it is necessary to investigate several scenario, e.g. even, random,
burst distribution and the like. The goal of each simulation is then to understand
whether the behaviour of environmental agents is suitable to achieve the prop-
erties required.

Tuning While parameters for artifacts and user agents likely reflect an actual
implementation, environmental agents are the real place where tuning occurs:
working parameters of environmental agents are to be adjusted, keeping them
within the range of physical feasibility, until the system exhibits the desired be-
haviour. If the required behaviour is not reached with a valid set of parameters,
it is then necessary to tune the model until such a behaviour is displayed. Mod-
ifications usually involve aspects linked to locality and computational cost, that
is, in order to make the system converge to the desired state it might be neces-
sary to extended the locality boundaries to let an environmental agent gather
further information, or to adopt more sophisticated strategies. However, it is
worth noting that pursuing that line too forward moves us away from what is
the self-organisation philosophy towards the more traditional approach of de-
vising optimal solutions—which typically require too much computational price,
and are therefore unsuitable e.g. for on-line tasks.

In the end, it may happen that, despite these modifications, the desired
behaviour is not met: then, we have to look for different models and strategies,
going back to the modelling stage.

3 Step 1: Modelling the Collective Sort Strategy

In the rest of the article, we apply our methodology to a case we name collective
sort [9]:

1. we start by defining the problem and identifying key aspects of a possible
solution;

2. the strategy is translated into a suitable formalism, enabling the execution
of stochastic simulations and analysis of results;



3. variations on the strategy can be evaluated by tuning system model so as to
increase the expected performance.

3.1 Motivation and Problem Description

We aim at developing an environment that keeps similar tuples—i.e. having the
same template—clustered in the same tuple space, uniformly distributing the
load across the nodes where tuple spaces reside. In several scenarios, sorting
tuples may increase the overall system performance. For instance, it can make
it easier for an agent to find an information of interest based on its previous
experience: the probability of finding an information where a related one was
previously found is high. Moreover, when tuple spaces contain tuples of one kind
only, it is possible to apply aggregation techniques to improve performance, and
it is generally easier to manage and achieve load-balancing.

Increasing system order however comes at a computational price. Since we
want the sorting process to take place on-line and in background, we look for
suboptimal algorithms, which are able to guarantee a certain degree of ordering
in time without requiring too much computational power. To this purpose, we
look at existing self-organising systems to find one that exhibits this capability
of sorting items: in particular, we identify a suitable solution in the brood sorting
problem of swarm intelligence [8]. In brood sorting, ants cluster broods that were
initially dispersed in the environment: although the actual behaviour of ants is
still not fully understood, there are several models that are able to mimic the
dynamics of the system. Ants behaviour is modelled by two probabilities [8],
respectively, the probability to pick up Pp and drop Pd an item

Pp =
(

k1

k1 + f

)2

, Pd =
(

f

k2 + f

)2

, (1)

where k1 and k2 are constant parameters, and f is the number of items perceived
by an ant in its neighbourhood and may be evaluated with respect to the recently
encountered items. To evaluate the system dynamics, it could be useful to provide
a metric for system order: such an estimation can be obtained by measuring the
spatial entropy, as done e.g. in [20]. Basically, the environment is subdivided into
nodes, and Pi is the fraction of items within a node, hence the local entropy is
Hi = −Pi log Pi. The sum of Hi having Pi > 0 gives an estimation of the order
of the entire system, which is supposed to decrease in time, hopefully reaching
zero (complete clustering).

We aim at generalising this approach for an arbitrary number of item kinds,
and we call it collective sort. We conceive this environment itself as a MAS,
i.e. made of artifacts and environmental agents: the goal of these agents is to
collect and move tuples across the environment so as to order them according
to an arbitrary shared criterion. We consider the case of a fixed number of tuple
spaces hosting tuples of a known set of tuple types: the goal of agents is to move
tuples from one tuple space to another until the tuples are clustered within
different tuple spaces according to their tuple type.



Fig. 2. The basic architecture consists in a set of environmental agents moving tuples
across tuple spaces.

3.2 A Solution to the Collective Sort Problem

The basic bricks are user agents and tuple spaces (realised through artifacts):
user agents are allowed to read, insert and remove tuples in the tuple spaces.
Transparently to user agents, the environment provides a sorting service in order
to maintain a certain degree of ordering of tuples in tuple spaces. This function-
ality is realised by a class of environmental agents that is responsible for the
sorting task. Hence, each tuple space is associated with one or more environ-
mental agents—see Figure 2—whose task is to compare the content of the local
tuple space against the content of another tuple space in the environment, and
possibly move some tuple. Since we want to perform this task on-line and in back-
ground we cannot compute the probabilities in Equation 1 to decide whether to
move or not a tuple: the approach would not be scalable since it requires to
count all the tuples for each tuple space, which might not be practical.

Hence, we devise a strategy based on tuple sampling, and suppose that tuple
spaces provide for a reading primitive we call urd, uniform read. This is a variant
of the standard rd primitive that takes a tuple template and yields any tuple
matching the template: primitive urd instead chooses the tuple in a probabilistic
way among all the tuples that could be returned. For instance, if a tuple space
has 10 copies of tuple t(1) and 20 copies of tuple t(2) then the probability that
operation urd(t(X)) returns t(2) is twice as much as t(1)’s. As standard Linda-
like tuple spaces typically do not implement this variant, it can e.g. be supported
by some more expressive model like ReSpecT tuple centres [21]. When deciding
to move a tuple, an agent working on the tuple space TSS follows this agenda:

1. it draws a destination tuple space TSD different from the source one TSS ;
2. it draws a kind k of tuple;
3. it (uniformly) reads a tuple T1 from TSS ;
4. it (uniformly) reads a tuple T2 from TSD;
5. if the kind of T2 is k and it differs from the kind of T1, then it moves a tuple

of the kind k from TSS to TSD.



The point of last task is that if those conditions hold, then the number of tuples
k in TSD is more likely to be higher than in TSS , therefore a tuple could/should
be moved. It is important that all choices are performed according to a uniform
probability distribution: while in the steps 1 and 2 this guarantees fairness, in
steps 3 and 4 it guarantees that the obtained ordering is appropriate.

It is worth noting that the success of this distributed algorithm is an emergent
property, affected by both probability and timing aspects. Will complete ordering
be reached starting from a completely chaotic situation? Will complete ordering
be reached starting from the case where all tuples occur in just one tuple space?
And if ordering is reached, how many moving attempts are globally necessary?
These are the sort of questions that could be addressed at the early stages of
design, thanks to a simulation tool.

4 Step 2: Simulating the Collective Sort Strategy

In this section we briefly describe simulation results obtained by using the
Maude tool. Maude is a high-performance reflective language supporting both
equational and rewriting logic specifications, for specifying a wide range of ap-
plications [22]. Since Maude does not directly provide any facility for simulation
purposes, we developed a general simulation framework for stochastic systems:
the idea of this tool is to model a stochastic system by a labelled transition sys-
tem where transitions are of the kind S

r:a−−→ S′, meaning that the system in state
S can move to state S′ by action a, where r is the (global) rate of action a in
state S—that is, its occurring frequency. We do not describe here the simulation
framework since that would requires a separate treatment: interested readers can
refer to [9] for more details about Maude and a comprehensive description of
our framework.

Given the strategy described in Section 3.2, we translated it into the Maude
syntax. Our reference case sticks to the case where four tuple spaces exist, and
four tuple kinds are subject to ordering: we represent the distributed state of a
system in Maude using a syntax of the kind:

< 0 @ (’a[100])|(’b[100])|(’c[10])|(’d[10]) > |

< 1 @ (’a[0]) |(’b[100])|(’c[10])|(’d[10]) > |

< 2 @ (’a[10]) |(’b[50]) |(’c[50])|(’d[10]) > |

< 3 @ (’a[50]) |(’b[10]) |(’c[10])|(’d[50]) >

It expresses the fact that we work with the tuple kinds ’a, ’b, ’c, and ’d, and
with the tuple spaces identifiers 0, 1, 2, and 3. The content of a tuple space 0
is expressed as < 0 @ (’a[100])|(’b[100])|(’c[10])|(’d[10]) >, meaning
that we have 100 tuples of kind ’a, 100 of kind ’b, 10 of ’c, and 10 of ’d.
The formal definition of agents agenda is defined in terms of simple transition
rules. The chart in Figure 3 reports the dynamics of the winning tuple in each
tuple space, showing e.g. that complete sorting is reached at different times in
each space. The chart in Figure 4 displays instead the evolution of the tuple
space 0: notice that only the tuple kind ’a aggregates here despite its initial
concentration was the same of tuple kind ’b.
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Fig. 3. Dynamics of the winning tuple in each tuple space: notice that each tuple
aggregates in a different tuples space.

Although it would be possible to make some prediction, we do not know in
general which tuple space will host a specific tuple kind at the end of sorting: this
is an emergent property of the system and is the very result of the interaction of
environmental agents through the tuple spaces. It is interesting to analyse the
trend of the entropy of each tuple space as a way to estimate the degree of order
in the system through a single value: since the strategy we simulate is trying to
increase the inner order of the system we expect the entropy to decrease, as it
actually happens as shown in Figure 5.

5 Step 3: Tuning the Collective Sort Strategy

Such a strategy based on constant rates is not very efficient, since agents are
assigned to a certain tuple space and keep working also if the tuple space is
already ordered. We may exploit this otherwise wasted computational power
by assigning idle agents to unordered tuple spaces, or rather, by dynamically
adapting the working rates of agents. This alternative therefore looks suited to
realise a strategy to more quickly reach the complete ordering of tuple spaces.

In order to adapt the agents rate, we adopted spatial entropy as a measure
of system order. If we denote with qij the amount of tuples of the kind i within
the tuple space j, nj the total number of tuples within the tuple space j, and
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k the number of tuple kinds, then, the entropy associated with the tuple kind i
within the tuple space j is

Hij =
qij

nj
log2

nj

qij
(2)

and it is easy to notice that 0 ≤ Hij ≤ 1
k log2 k. We want to express now the

entropy associated with a single tuple space

Hj =
∑k

i=1 Hij

log2 k
(3)

where the division by log2 k is introduced in order to obtain 0 ≤ Hj ≤ 1. If we
have t tuple spaces then the entropy of the system is

H =
1
t

t∑
j=1

Hj (4)

where the division by t is used to normalise H, so that 0 ≤ H ≤ 1. Being t the
number of tuple spaces then it also represents the number of agents: let each
agent work at rate Hjr, and tr be the maximum rate allocated to the sorting
task. If we want to adapt the working rates of agents we have to scale their rate



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  1000  2000  3000  4000  5000

E
nt

ro
py

Time

Tuple Space 1
Tuple Space 2
Tuple Space 3
Tuple Space 4

Fig. 5. Entropy of tuple spaces in the constant rate case: they all eventually reach 0,
that is, complete ordering.

by the total system entropy, since we have that

γ

t∑
j=1

rHj = tr ⇒ γ =
t∑t

j=1 Hj

=
1
H

(5)

then each agent will work at rate rHj

H where Hj and H are computed periodically.
Using load balancing we introduced dynamism in our model: indeed in each

simulation step the activity rate associated with a tuple space—i.e. the proba-
bility at a given step that an agent of the tuple space is working—is no longer
fixed, but it depends on the entropy of the tuple space itself. Hence, as explained
above, agents belonging to completely ordered tuple spaces can consider their
goal as being achieved, and hence they no longer execute tasks. Moreover, this
strategy guarantees a better efficiency in load balancing: agents working on tuple
spaces with higher entropy, have a greater activity rate than others working on
more ordered tuple spaces.

Using the collective sort specification with variable rates, we ran a simulation
having the same initial state of the one in Section 4: the chart of Figure 6 shows
the trend of the entropy of each tuple space. Comparing the chart with the one
in Figure 5, we can observe that the entropies reach 0 faster than the case with
constant rates: in fact, at step 3000 every entropy within the chart in Figure 6
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Fig. 6. Entropy of tuple spaces in the variable rate case: the system reaches the com-
plete ordering since step 3000.

is 0, while with constant rates the same result is reached only after 4600 steps
in Figure 5. The chart in Figure 7 compares the evolution of global entropy
(see Equation 5) in the case of constant and variable rates: the trend of the
two entropies represents a further proof that variable rates guarantee a faster
stabilisation of the system, i.e. its complete ordering.

6 Related Works

Since the environment plays a crucial role in MASs, existing methodologies are
incorporating guidelines for environment design. Furthermore, there exist a few
methodologies also considering issues related to self-organization: we will briefly
describe some of these methodologies and design practices.

In [14] it is recognised that traditional methodologies cannot help complex
systems engineers: indeed, the required coordination between components is in-
compatible with the decomposition approach. We agree with that consideration
and do not follow the decomposition approach, rather look for suitable solutions
among the catalogue of known self-organising systems. Furthermore, in [14] some
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useful guidelines are provided for the engineering process, although they are not
organised in an actual methodology.

In [23] an architecture for MAS-based manufacturing control application is
described. In particular, they describe an architecture and a case study which
initial solution is inspired by stigmergy in ant colonies: although, they do not
provide any hints on how to apply their approach to other domains or problems.

A more general approach is presented in [24] and focuses on reactive MAS
for collective problem solving. A problem model is specified in the environment
and constraints are assimilated to environment perturbations: agents collectively
solve the problem by regulating environment perturbations. Hence, the MAS as
a whole acts as a regulation process, in a way similar to automatic control.
The methodology proposed is articulated in four steps, namely (i) defining the
problem model, (ii) defining agent perceptions, (iii) defining agent interaction
mechanisms and (iv) measuring the result as an emergent structure [24]. Al-
though, methodology mainly focuses on problem solving suggesting that it is
not well suited for environments as service providers. Instead, the main focus
of our contribution is on developing a methodology for environments offering



services with self-* capabilities, where environment is conceived as a run-time
entity.

A more comprehensive methodology explicitly tailored for self-organising sys-
tems is ADELFE [13] which covers all the steps involved in adaptive systems
engineering. Nonetheless, the authors overlooked the two most important issues
in self-organization, that is (i) a general approach for devising a solution by emer-
gence and (ii) metrics and performance assessment of the solution provided. Our
approach, compared to ADELFE, is less comprehensive: composing them would
however be an interesting future work.

7 Conclusion and Future Work

In this article we discuss an approach to the design of self-organising MAS envi-
ronments: as far as methodological aspects are concerned, the approach relies on
formal methods and tools for modelling and performing stochastic simulations.
We briefly describe our A&A meta-model for MAS based on agents and artifacts,
and discuss a basic architecture for self-organising environments: this solution
features environmental agents as artifacts managers for the self-organisation pro-
cess.

To better clarify our approach, we consider the case of a self-organising envi-
ronment featuring automatic clustering of tuples of the same kind. The solution
to this problem, that we call collective sort, has been derived from the swarm
intelligence problem known as brood sorting, which we consider as a paradig-
matic application of emergent coordination through the environment. Then, we
elaborate on the idea of collective sort by evaluating entropy as a possible metric
to drive the self-organisation process, showing its effectiveness.

Currently, we are working to refine the simulation framework developed on
top of Maude, and to implement the collective sort application in TuCSoN.
Future works include

– deeper testing of the convergence properties of the strategy;
– applying advancements in the field of formal methods, for the analysis of

system specifications;
– identifying applicable patterns from self-organisation theory to the engineer-

ing of MAS environments.
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