Objective versus Subjective Coordination in the
Engineering of Agent Systems

Andrea Omicini! and Sascha Ossowski?

! DEIS, Universita di Bologna a Cesena
Via Rasi e Spinelli 176, 47023, Cesena, FC, Italy
aomicini@deis.unibo.it http://lia.deis.unibo.it/"ao
2 ESCET, Universidad Rey Juan Carlos
Campus de Mostoles, Calle Tulipan s/n, E-28933 Madrid, Spain
S.Ossowski@escet.urjc.es http://www.ia.escet.urjc.es/ sossowski

Abstract. The governance of interaction is a critical issue in the engi-
neering of agent systems. Research on coordination addresses this issue
by providing a wide range of models, abstractions and technologies. It is
often the case, however, that such a wide range of proposals could not
easily find an unitary and coherent conceptual framework where all the
different views and solutions can be understood and compared — and this
is particularly true in the context of agent models and systems.

In this paper, we first discuss how all the many diverse approaches to
agent coordination can be categorised in two main classes — the subjec-
tive and objective approaches — , depending on whether they adopt the
agent’s or the engineer’s viewpoint, respectively. We then claim that the
two approaches have a deep and different impact on the way in which
agent systems are modelled and built, and show two examples rooted
in different models and technologies. Finally, we advocate that both ap-
proaches play a fundamental role in the engineering of agent systems,
and that any methodology for the design and development of agent sys-
tems has to exploit both objective and subjective coordination models
and technologies.

1 Introduction

Multiagent systems (MAS henceforth) are software systems made up of multiple
encapsulated computational entities, which are embedded in an environment
and (inter-)act in an autonomous and intelligent fashion. When exactly software
modules, objects, components etc. can be called agents, and as to how far and
in what sense they are to behave intelligently and autonomously, is still subject
to considerable debate. However, it is commonly accepted that coordination is a
key characteristic of MAS and that, in turn, the capability of coordinating with
others constitutes a centrepiece of agenthood.

Still, when researchers are asked to nail down their intuitive notion of what
coordination in MAS is all about, agreement usually ends. To some respect
this is not surprising, as the term is used in a variety of disciplines, such as

M. Klusch et al. (Eds.): Intelligent Information Agents, LNAI 2586, pp. 179-202} 2003.
© Springer-Verlag Berlin Heidelberg 2003


Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 595.276 841.889 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile (Ø¯P)
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice


180 A. Omicini and S. Ossowski

Economy, Sociology and Biology, each with its own epistemological apparatus
and research agenda. To make things worse, even within Computer Science the
term is used quite differently in fields like robotics, concurrent programming, and
mainstream software engineering. As a result, many different techniques and
frameworks coexist in the agent community that claim to tackle the problem
of coordination in MAS in one or another way, a situation that tends to be
confusing not only to novice MAS designers. We feel that a clarification in this
respect is urgently needed if, as we foresee, the development of heterogeneous
and distributed systems based on the agent metaphor are to become next “big
thing” in software engineering.

In this chapter, we first discuss how all the many diverse approaches to
agent coordination can be categorised in two main classes, subjective and objec-
tive approaches, depending on whether they adopt the agent’s or the engineer’s
viewpoint, respectively. We argue that the deep and different impact of these
approaches on the way in which agent systems are modelled and built can pro-
vide important clues for a successful navigation through the jungle of the many,
seemingly unrelated, works on agent coordination. Moreover, we advocate that
both approaches play a fundamental role in the engineering of MAS for open
environments such as the Internet, and that any modern methodology for the
design and development of such agent-based applications will have to exploit
both objective and subjective coordination models and technologies.

This chapter is organised as follows: we first review some of the most rele-
vant coordination models, abstractions and technologies and relate them to each
other. Subsequently, we introduce the notions of subjective and objective coor-
dination, illustrate them by an example, and discuss their impact on the design
of coordination mechanisms for MAS. Section 4 describes our position on how
these notions may impact coordination related issues in agent-oriented software
engineering. This chapter is concluded by our vision of the lines along which
research on coordination in MAS may evolve.

2 Coordination: An Overview

This section provides a brief overview of current coordination models, abstrac-
tions and technologies. We first outline different attempts to conceptualise coor-
dination in MAS. Then, we compare these abstractions along a variety of dimen-
sions and discuss the role of “coordination middleware”: software infrastructures
that support the instrumentation of different coordination models.

2.1 Models of Coordination

Maybe the most widely accepted conceptualisation of coordination in the MAS
field originates from Organisational Science. It defines coordination as the man-
agement of dependencies between organisational activities [I1]. One of the many
workflows in an organisation, for instance, may involve a secretary writing a let-
ter, an official signing it, and another employee sending it to its final destination.



Objective versus Subjective Coordination 181

The interrelation among these activities is modelled as a producer/consumer de-
pendency, which can be managed by inserting additional notification and trans-
portation actions into the workflow.

It is straightforward to generalise this approach to coordination problems in
multiagent systems. Obviously, the subjects whose activities need to be coordi-
nated (sometimes called coordinables) are the agents. The entities between which
dependencies arise (or: objects of coordination) are often termed quite differently,
but usually come down to entities like goals, actions and plans. Depending on
the characteristics of the MAS environment, a taxonomy of dependencies can
be established, and a set of potential coordination actions assigned to each of
them (e.g. [29]). Within this model, the process of coordination is to accomplish
two major tasks: first, a detection of dependencies needs to be performed, and
second, a decision respecting which coordination action to apply must be taken.
A coordination mechanism shapes the way that agents perform these tasks [I§].

The result of coordination, and its quality, is conceived differently at different
levels of granularity. Von Martial’s stance on coordination as a way of adapting
to the environment [29], is quite well suited to understand this question from
a micro-level (agent-centric) perspective, in particular if we are concerned with
multiagent settings. If new acquaintances enter an agent’s environment, coor-
dination amounts to re-assessing its former goals, plans and actions, so as to
account for the new (potential) dependencies between itself and other agents.
If a STRIPS-like planning agent, for instance, is put into a multiagent envi-
ronment, it will definitely have to accommodate its individual plans to the new
dependencies between its own prospective actions and potential actions of others,
trying to exploit possible synergies (others may free certain relevant blocks for
it), and avoiding harmful dependencies (making sure that others do not unstack
intentionally constructed stacks etc). At this level, the result of coordination,
the agent’s adapted individual plan, is the better the closer it takes the agent to
the achievement of its goals in the multiagent environment.

From a macro-level (MAS-centric) perspective, the outcome of coordination
can be conceived a “global” plan (or decision, action etc.). This may be a “joint
plan” [23], if the agents reach an explicit agreement on it during the coordina-
tion process, or just the sum of the agents’ individual plans (or decisions, actions
etc. — sometimes called “multi-plan” [18]) as perceived by an external observer.
Roughly speaking, the quality of the outcome of coordination at the macro-level
can be evaluated with respect to the agents’ joint goals or the desired function-
ality of the MAS as a whole. If no such notion can be ascribed to the MAS,
other, more basic features can be used instead. A good result of coordination,
for instance, is often supposed to be efficiency [23], which frequently comes down
to the notion of Pareto-optimality: no agent could have increased the degree of
achievements of its goals, without any other being worse off in that sense. The
amount of resources necessary for coordination (e.g. the number of messages
necessary) is also sometimes used as a measure of efficiency.

The dependency model of coordination appears to be particularly well suited
to represent relevant features of a coordination problem in MAS. The TAMS



182 A. Omicini and S. Ossowski

framework [B], for instance, has been used to model coordination requirements
in a variety of interesting MAS domains. It is also useful to rationalise observed
coordination behaviour in line with Newell’s knowledge-level perspective [13].
Still, when designing coordination processes for real-world MAS, things are not
as simple as the dependency model may suggest. Dependency detection may
come to be a rather knowledge intensive task, which is further complicated by
incomplete and potentially inconsistent local views of the agents. Moreover, mak-
ing timely decisions that lead to efficient coordination actions is also everything
but trivial [10]. The problem becomes even more difficult when agents pursuing
partially conflicting goals come into play [I8]. In all but the most simple MAS,
the instrumentation of these tasks gives rise to complex patterns of interactions
among agents. The set of possible interactions is often called the interaction
space of coordination.

From a software engineering perspective, coordination is probably best con-
ceived as the effort of governing the space of interaction [I] of a MAS. When
approaching coordination from a design stance, the basic challenge amounts to
how to make agents converge on interaction patterns that adequately (i.e. instru-
mentally with respect to desired MAS features) solve the dependency detection
and decision tasks. A variety of approaches to tackle this problem can be found in
the literature. Multiagent planning, negotiation, organisational structures, con-
ventions, norms, reputation management, and mechanism design, are just some
of them. These approaches aim at shaping the interaction space either directly,
by making assumptions on agent behaviours and/or knowledge, or indirectly, by
modifying the context of the agents in the MAS environment. The applicability
of these mechanisms depends largely on the characteristics of the coordination
problem at hand, as we will outline in the next section.

Finally, let us insist that conceiving coordination as a means to rule and
manage interaction in MAS is by no means opposing the dependency model.
Rather, it shifts the focus of attention from representation to design. We will
elaborate further on this software engineering perspective on coordination in
Section 4.

2.2 Characteristics of Coordination Models

It is a commonplace that, the more open a multiagent environment, the more
difficult it is to instill a sufficient quality of coordination (see also the chapter
by Fredriksson, Gustavsson, and Ricci in this volume [7]). For instance, in a
closed environment, as assumed traditionally by Distributed Problem-Solving
Systems, agent behaviour is controlled at design-time. As the agent designer has
full control over the agents, she can implement a coordination mechanism of
her choice: if certain assumptions on the agents’ behaviours are necessary, these
can simply be “hard-coded” into the agent programs. A popular example is the
original Contract-Net Protocol (CNP) [25]: volunteering services to a contractor
relies on the assumption of benevolence from the side of the bidders, which can
be easily achieved when agents are designed to follow the CNP. Thus, the space



Objective versus Subjective Coordination 183

of interactions is completely determined at the time the MAS is built. In closed
environments, design choices are usually driven by efficiency issues.

At the other extreme, in large-scale open networks like the Internet, agent
behaviour is uncontrolled, so that very few assumptions can be made about
agents’ behaviours and their frequencies. In particular, it is almost impossible
to globally foresee and to influence the space of potential agent interactions.
Most probably, agents will behave in a self-interested fashion, which may help
to anticipate some of their actions, and may provide some clues on how to
design coordination strategies at the micro-level. Also, in certain “parts” of the
open system it may be possible to influence the frequencies of behaviours by
spawning new agents with desired characteristics, so as to improve the quality
of coordination at the macro-level (e.g. [21]). Still, very little can be done in the
general case, so that the main focus of design comes to be placed on other issues,
such as security, and often at a lower level of analysis.

A promising approach to efficiently instill coordination in open systems is
inspired by the notion of agent as a situated entity. It falls in between the two
extremes (fully controlled vs. uncontrolled), by providing for a sort of partially
controlled agent behaviour. Since the environment where agents and MAS live
is partially under human control, agent interaction can be influenced by engi-
neering the agent environment: in particular, agent infrastructures are typically
exploited to shape the agent environment according to the engineers’ needs. For
instance, coordination infrastructures provide agents with coordination (run-
time) abstractions embodying coordination as a service [28], that exert a form
of partial run-time control over agent behaviour. Coordination infrastructures
are not meant to influence agent behaviour directly, but they can affect agent
actions. As a trivial example, a security infrastructure enforces a set of be-
havioural restrictions for potential users that implicitly bounds the admissible
agent interaction histories: the effects of actions of agents on the environment
are thereby constrained without limiting their deliberation capabilities. Given
a range of different coordination services made available by an infrastructure,
agents can freely choose a service based on their self-interest: once they register
with a coordination service, however, the infrastructure will enforce compliance
with behavioural restrictions. This may be achieved by executing mobile agents
on specific virtual machines, or by making agents interact through “intelligent”
communication channels that govern the interaction space by filtering, modify-
ing, or generating certain messages. Future agent-based auctions may become
examples of such coordination services.

This latter form of coordination is often termed mediated coordination —
which in general could rely on either a distinguished middle agent [9] or a co-
ordination abstraction provided by an infrastructure (like a Linda tuple space
[8], or a ReSpecT tuple centre [I6]). In the literature, mediated coordination
is often confused with centralised coordination. In fact, another important di-
mension of coordination models amounts to whether they can be designed in a
centralised fashion, or need a decentralised instrumentation. While centralised
mechanisms are appropriate for closed environments with design-time coordi-



184 A. Omicini and S. Ossowski

nation, decentralised mechanisms (like peer-to-peer models) better satisfy the
needs of open environments with run-time coordination. However, mediated co-
ordination is often multi-centric — i.e., neither centralised, nor fully decentralised
—, thus achieving a sort of welcome compromise between the engineering urges
(pushing toward controlled and predictable systems) and typical features of the
systems of today (emphasising openness, dynamics, and unpredictability).

Closely related to the above discussion is a concept recently introduced by
Tolksdorf [27]: A coordination mechanism is said to be coupled if the effectiveness
of an agent’s coordination behaviour is based on assumptions on some (other)
agent’s behaviour. By contrast, uncoupled mechanisms impose no assumptions
on agent behaviour. As truly decentralised coordination can only be achieved by
a coupled mechanism, it bears the additional burden of ensuring that all involved
agents will behave as expected.

Finally, when shifting our attention to the micro-level, the distinction be-
tween quantitative and qualitative models of coordination comes into play [18].
Qualitative approaches basically follow the dependency model outlined earlier,
by directly representing the different “reasons” for preferring or not certain ob-
jects of coordination to others. An agent’s coordination behaviour is guided by
whether a certain local action (plan, goal, etc.) depends positively or negatively
on the actions of others: it will choose its local and communicative actions based
on the “structure” of dependencies that it shares with its acquaintances. So, in
cooperative environments, it is straightforward to conceive coordination as a kind
of constraint satisfaction problem [18]. In quantitative models, by contrast, the
structure of the coordination problem is hidden in the shape of a multi-attribute
utility function. An agent has control over only some of the function’s attributes
(i.e. some of the objects of coordination), and its utility may increase (decrease)
in case there is a positive (negative) dependency with an attribute governed by
another agent, but these dependencies are not explicitly modelled. Its local co-
ordination decision problem then corresponds to a special type of optimisation
problem: to determine a local action (plan, goal, etc.), and to induce others to
choose local actions (plans, goals, etc.), so as to maximise its local utility. The
quantitative approach may draw upon a well developed theoretical framework
for both, cooperative settings (Operations Research) and non-cooperative set-
tings (Game Theory), but suffers from that fact that, due to the uncertainties
intrinsic to MAS domains, the utility function is only an approximation, so that
its optimum need not coincide with an agent’s actual best choice in the real en-
vironment. On the other hand, a coordination mechanism based on qualitative
dependencies is less prone to such modelling inaccuracies, but its foundations
go back to theories from social sciences (e.g. Social Psychology), that do not
provide a sound formal framework to guide local decision-making.

3 Subjective versus Objective Coordination

Subjective and objective coordination are two different but complementary ways
of conceiving coordination in MAS. We first sketch the different perspectives on



Objective versus Subjective Coordination 185

coordination that give rise to these notions, and then provide an example for
each of them, relying on a simple, closed environment for illustrative purposes.
Finally, we discuss why both approaches are needed for the engineering of open
agent systems.

3.1 Different Perspectives on Interaction

Basically, there are two ways to look at interaction: from the inside and from the
outside of the interacting entities. When taking MAS into account, this comes
to say that interaction within a MAS can be seen from the viewpoints of either
an agent, or an external observer not directly involved in the interaction: re-
spectively, the subjective and the objective viewpoints [24]. From the subjective
viewpoint of an agent, the space of interaction roughly amounts to the observ-
able behaviour of other agents and the evolution of the environment over time,
filtered and interpreted according to the individual agent’s perception and un-
derstanding. From the objective viewpoint, the space of interaction is basically
given by the observable behaviour of all the agents of a MAS and the agent
environment as well, and by all their interaction histories [30]. If coordination is
taken to mean governing the interaction, then the two different viewpoints lead
to two different ways of coordinating.

When looking at interaction from the agent’s own point of view, coordination
roughly amounts to (i) monitoring all interactions that are perceivable and rel-
evant to the agent, as well as their evolution over time, and (%) devising actions
that could bring the overall state of the MAS (or, more generally, of the world)
to (better) coincide with one of the agent’s own goals. In short, this is what is
called subjective coordination. So, in general, the acts of an agent coordinating
within a MAS are driven by its own perception and understanding of the other
agents’ behaviour, capabilities and goals, as well as of the environment state and
dynamics.

On the other hand, when looking at interaction within a MAS from outside
the interacting agents, as an external observer, coordination means affecting
agent interaction so as to make the resulting MAS evolution accomplish one
or more of the observer’s goals In short, this is what is called objective co-
ordination. In general, the acts of external observers — whether they be MAS
designers, developers, users, managers, or even agents working at the meta-level
— are influenced not only by their perception and understanding of MAS agents
and environment, but also by their a-priori knowledge of the agents’ aims, capa-
bilities and behaviour. Also, some forms of understanding and foreseeing of the
global behaviour of the MAS as the result of the overall interaction amongst the
agents and the environment are required to instill a coordination that is effective
over time from the standpoint of the observer.

! Affecting agent interaction does not mean (directly) affecting agents. That is why
objective coordination by no means contrasts with the fundamental notion of agent
autonomy [32].



186 A. Omicini and S. Ossowski

3.2 Subjective vs. Objective Coordination: An Example

This section aims at illustrating the subjective and objective viewpoints, using
a reactive coordination scenario as an example. This scenario involves cognitive
agents that develop short-term plans. Such a stance is appropriate for a variety of
real world domains, such as agent-based decision support [4][20]. In the following,
we will use a simple setting in the synchronous blocks domain [I8], an extension
of the well known blocks world, for illustrative purposes.

There are a table of unlimited size and four numbered blocks. Blocks can be
placed either directly on the table or on top of another block, and there is no limit
to the height of a stack of blocks. The only operations that can be performed
therefore are to place a block z on the table (formally: move(z, table)), which
requires z to be clear, or to place a block x on top of some other block y (formally:
move(z,y)), which additionally requires y to be also clear. There is a clock that
marks each instant of time by a tick. This scenario is synchronous, since all
operations occur at a given tick, and the clock is the same for all operations. So,
any operation could in principle be labelled by its tick, and any set of operations
is totally ordered, since any operation can be said to occur before, after, or at
the same time (tick) as any other operation. A plan of length k is a sequence of
k operations performed successively. Instead of an operation, a plan may contain
a NOP, indicating that nothing is done at a certain tick.

initial situation ideal states

2
411 |

Fig. 1. A scenario in the synchronous blocks domain

ou: distance 3 op:distance 4

Consider the scenario shown in Fig. [Il There are two agents, a; and as, both
looking only two actions ahead, i.e. generating plans of length 2. In addition,
suppose that the former is capable of moving all blocks but block 4, while the
latter may manipulate all blocks but block 3: so, a plan by «a; cannot include
operations of the form move(4,y), while a plan by as cannot include operations
of the form move(3,y).

The initial situation and the states that each agent would ideally like to bring
about are shown in Fig. [l Both agents measure the “distance” to their ideal
world states by the minimum number of actions they would need to perform in
order to reach it. Table[d] shows some individual plans; “executability” denotes
an agent’s ability to enact a specific plan.

The subjective viewpoint in the example. In a single-agent environment,
the agent’s subjective attitude is straightforward: among the executable plans



Objective versus Subjective Coordination 187

Table 1. Some individual plans

lplan[operation sequence [ability[executability‘
1 |[move(2, table), move(3,2)]| a1 true
73 |[move(2,table), NOP a1, as true
my |[move(l,table), NOP i, az true
my |[move(2,table), move(4,2)]| a2 false
10 |[move(l,2), move(4, 1) a2 true
m11 |[move(2,1), move(3,2) a1 true
e |[NOP, NOP] a1, g true

that it can enact, it will choose the one that takes it as close as possible to its
ideal state. Still, in the example oy and as act in a shared environment, and
may perform their plans simultaneously, i.e. in essence they perform a so-called
multiplan [18|. Suppose plans are compositional, that is, the result of a multiplan
w1 be the “sum” of the effects of its component plans. If the component plans of
a multiplan “interfere”, the following rules apply:

— A multiplan g is not executable if some component plans access the same
block at the same tick in different ways, or if they obstruct a block that
another component plan uses at a later tick.

— A multiplan p is executable despite a non-executable component plan, if
other component plans “complement” it, e.g. by providing a missing action.

Let us denote with (m;,7;) the multiplan where 7; and 7; are performed simul-
taneously.

Then, the multiplans (m1,m4), (m4,m9) and (m3,74), for instance, lead to the
world states shown in Fig. 2 respectively.

o’s preference op’s preference compromise

0.1 distance 1 o1: distance 3 o1 distance 2
02: distance 3 3 o distance 1 op: distance 2
L L .. 1

Fig. 2. Some outcomes of the execution of multiplans

Each agent just controls one component of the multiplan that is performed, so
they have a (mutual) interest in coordinating their choices. It is then appropriate
that they exchange a sequence of messages following some negotiation protocol,
which defines the space of possible interactions for coordination. Obviously, the
specific coordination interaction that actually occurs depends on the local choices
of the agents when making offers and counteroffers respecting the multiplans to
agree on. Supposing that agents are individually rational, these choices should
depend on the agents’ potential to influence each other, i.e. how far they may
manipulate the outcome of their acquaintances’ individual plans.



188 A. Omicini and S. Ossowski

In the example, three classes of such social dependencies can be identified.
First, there is a feasibility-dependence of agent « for a plan m with respect to
o if the latter can invalidate the plan, i.e. if it can turn down the execution of
7. In the example, each agent is in a feasibility-dependence to the other for all
plans shown in Table [[lexcept 7. Second, agent « is negatively dependent for a
plan 7 with respect to o', if @’ can deviate the outcome of 7 to a state that is
less preferred by «. If ¢ can bring about a change in the outcome of a’s plan
7 that « welcomes, then « is positively dependent on . In Table [[] each agent
depends positively on the other for 73 and 4.

So, in essence, designing a coordination mechanism from a subjective point
of view means

— to design a social reasoning mechanism that detects these dependence rela-
tions

— to endow agents with a decision algorithm that, taking into account the
different dependence relations, guides the agent’s decision making during
coordination interactions (negotiation).

For instance, a social reasoning mechanism could make «; understand both
negative and positive dependencies for multiplans with respect to as. Also, a
decision algorithm could lead a3 and as to choose a multiplan like (m3,my),
producing a compromise between the ideal states of a; and «g (Fig. B). Both
represent forms of subjective coordination, where the agents reason, plan and
act in order to make the global effect of agent interaction achieve their desired
state of the world.

The objective viewpoint in the example. Suppose now that we are the
designers of the global MAS in the synchronous blocks world. We are looking at
the agents interactions from the outside, with the aim of obtaining certain global
results (i.e. prefer certain classes of multiplans to others). From such an objective
stance on the coordination, we need to tackle two aspects of coordination:

— a model of the outcome of coordination in the present multiagent environ-
ment is needed. What is the present space of interactions, and what will be
potential instances of interactions and their outcomes?

— a mechanism to modify the space of interactions in a principled way is re-
quired. How can we “shape” the space of interactions and promote/hamper
certain types of interactions, so as to influence the outcome of coordination
in a desired direction?

So, based on the expected outcome of agents coordinating from their subjective
viewpoints, and our mechanisms to affect the agents’ interaction space and its
global effects from an objective point of view, we can “tune” coordination from
an objective stanceH

2 Obviously, this is not to say that the objective stance always prevails over the subjec-
tive point of view. In fact, in open environments a change in objective coordination
laws (e.g. tax laws) will in turn have repercussions in the agents’ subjective coordi-
nation strategies (e.g. the tax payers’ behaviour).



Objective versus Subjective Coordination 189

In the synchronous blocks world domain example, the first aspect is best
tackled from within a gquantitative framework. Suppose that for an agent the
utility of a multiplan is given by the reduction of distance to the agent’s ideal
state. The utilities that each agent obtains from a multiplan can be represented
in a vector. In the example, the utility vectors of multiplans (71,74), (74,m9) and
(m3,m4) for a; and ag are (2,1), (0,3) and (1,2), respectively. Agents may agree
to gamble over multiplans, i.e. decide to “flip a coin” in order to choose between
alternative courses of action. In this case we use the expected utility, i.e. the sum
of each multiplan utility weighed by its probability. So, the utility of a mixed
multiplan that enacts the above three multiplans with equal probability would
be (1,2).

Still, agents are autonomous, so they are not forced to reach an agreement.
Their interaction for mutual coordination may as well end up in conflict, which
is equivalent to the decision not to (explicitly) coordinate their actions, and
instead take the chances individually. In this case, an agent must account for
the unpleasant eventuality that all its acquaintances could jointly try to harm it.
So, a rational agent may choose the best individual plan that is “autonomous”,
i.e. whose executability cannot be turned down by others. For instance, the only
plan that a; can execute and which is guaranteed not to become incompatible
is m., which as counters by 71¢, resulting in a conflict utility of —2 for a;;. Agent
o also needs to choose 7. in case of disagreement, to which «;’s most malicious
response is to enact 711, giving rise to a conflict utility of —1 for as. So, the
conflict utility vector in our example is d = (-2, —1).

The set S of utilities of all feasible (mixed) multiplans, along with the dis-
agreement point, describes the so-called bargaining scenario [26]. In our two-
agents example, the bargaining scenario can be represented in a plane, where
each axis measures the utility of one agent (Fig. B]).

U
@

Pareto surface

(1,2)

(=1,-1) X
(_2’_1)

Fig. 3. Graphical representation of the example scenario

In order to model the outcome of subjective coordination among agents from
a global point of view, the whole mathematical apparatus of bargaining theory



190 A. Omicini and S. Ossowski

is now applicable. In particular, we can apply the Nash bargaining solution [12]
which states that rational agents should agree on a multiplan that maximises
the product of gains from the disagreement point. In our example, this leads to
a solution vector of (1,2). Consequently, our model predicts that the outcome
of subjective coordination is a (mixed) multiplan whose utility is given by this
solution, e.g. an agreement on the “compromise” multiplan (73,74).

Still, from a designer’s point of view, the outcome of coordination-oriented
interactions that are driven entirely by the subjective interests of the involved
agents does not necessarily lead to the desired characteristics and functionalities
of the MAS as a whole. As a consequence, a mechanism for objective coordination
is required in order to suitably bias the coordination process and its outcome
toward the achievement of the global MAS goals.

For instance, a simple objective coordination technique in the synchronous
blocks domain relies on the ability to issue permissions or prohibitions for certain
agents to perform specific actions, and assumes that agents (cannot but) comply
with these prescriptions. Suppose it is forbidden for all agents to put block 1
on block 2. As a result, agent as can no longer execute plan m1g, whereas oy is
permitted to enact 4. So, the worst situation that as can bring about in the eyes
of a1 is to put block 4 on top of 2. The conflict utility of cy remains unchanged, so
that the disagreement point changes in favour of oy to d = (—1, —1). Because of
the change in d, the outcome of subjective coordination interaction will switch
to (1.5,1.5), which is reached by randomising equally between “compromise”
(m3,m4) and aq’s favourite (m1,m4). If it was permitted for agent as to unstack
block 1 at the first tick (i.e. all plans that manipulate the left stack in the first
step are forbidden for aq), the worst thing that «; can still do is to obstruct
block 2 for as by putting block 4 on it in the second step, giving rise to a
disagreement point which moves towards as. The solution utility vector then
changes to (0.5,2.5), which is reached by selecting aw’s favourite (m4,m9) and
compromise (73,7m4) both with probability p = 0.5.

Notice that the outcome of coordination has been changed without prescrib-
ing agents exactly what to do: it is just the space of possible agreements that has
been modified. Still, this is not of much help as long as we do not have a means
to estimate the effects of such changes in the interaction space. We would like to
ensure that, as in the examples, if an agent is favoured /harmed by prescriptions
and its “negotiation position” is strengthened/weakened, then this should be re-
flected in the agreement reached. In fact, this is always the case given the above
mechanism. Issuing permissions and prohibitions shifts the disagreement point
towards the favoured agents, while the property of disagreement point mono-
tonicity of the Nash bargaining solution ensures that the corresponding change
in the coordination outcome correlates with the movement [26]. The outcome of
objective coordination can actually be computed based on a coupled approach
using a distributed constraint optimisation algorithm [19].

3.3 Impacts on the Engineering of Agent Systems

As illustrated by the previous example, roughly speaking, subjective coordina-
tion affects the way in which individual agents behave and interact, whereas



Objective versus Subjective Coordination 191

objective coordination affects the way in which interaction amongst the agent
and the environment is enabled and ruled. So, while the main focus of subjec-
tive coordination is the behaviour of agents as (social) individuals immersed in
a MAS, the emphasis of objective coordination lies more on the behaviour of a
MAS as a whole.

When defining the architecture and the inner dynamics of individual agents,
the subjective viewpoint on coordination is clearly the most pertinent one. How
other agents’ actions are represented and foreseen, how to interpret and handle
shared information in the agent system, when and why to move from an agent
environment to another, and so on — all these issues concern subjective coordi-
nation, and affect the way in which the agents of a MAS are designed, developed
and deployed as individual entities. For instance, agents a7 and as in the exam-
ple should be designed to have some planning ability, to share goals, and to be
able to understand mutual dependencies to make it possible for them to reach at
least the compromise outcome of Fig. Bl So, the viability of approaches adopting
a subjective coordination viewpoint to the engineering of MAS strictly depends
not only on the mental (reasoning, planning and deliberation) capabilities of
the agents, but also on their ability to foresee the effect of their actions on the
environment, the behaviour of the other agents, and the overall dynamics of the
environment as well.

On the other hand, since in principle an external observer does not directly
interact with the agents of a MAS, some capability to act on the space of MAS
interaction without dealing directly with agents is obviously required in order
to enable any form of objective coordination. Given that agents are typically
situated entities, acting on the agent environment makes it possible to affect
the behaviour of an agent system without having to alter the agents themselves.
Objective coordination therefore deals with the agent environment: modifying
the virtual machine supporting agent functioning, changing resource availability
and access policies, altering the behaviour of the agent communication channel,
be it virtual or physical, and so on — all these are possible ways to influence and
possibly harness the behaviour of a MAS without directly intervening on indi-
vidual agents. The viability of objective coordination in the engineering of agent
systems depends then on the availability of suitable models of the agent envi-
ronment, and on their proper embodiment within agent infrastructures. There,
objective coordination would conceivably take on the form of a collection of
suitably expressive coordination abstractions, provided as run-time coordina-
tion services by the agent infrastructure. In order to be able to formulate and
ensure global properties of a MAS, the behaviour of coordination abstractions
in response to events in the agent interaction space should be well-known and
predictable.

To this end, the agents in the example could either willingly accomplish the
prescriptions about blocks, or e.g. be forced to do so by a suitable infrastruc-
ture implementing security policies. For instance, blocks might embody security
mechanisms, and directly handle permissions, thus bounding the space of admis-
sible interactions, or, in other terms, shaping the interaction space of the agents.
Or, blocks may be accessible only by means of virtual arms provided by the
hosting infrastructure, and moves would be provided as services by the infras-



192 A. Omicini and S. Ossowski

tructure itself. Permissions would be handled by the infrastructure, that would
then implement what we call coordination as a service, that is, coordination
provided as a service to agents by the infrastructure through a run-time coor-
dination abstraction [28]. In both cases, agent coordination would be influenced
by something external to the agents.

Also, it might be the case that permissions are explicitly available to the
agent’s inspection. Rules governing access to resources (blocks, in the example)
might be explicitly represented and stored so as to be inspectable to agents.
Agents may then read permissions, understand them, and possibly plan their
course of action accordingly, thus obtaining a clear benefit by their increased
knowledge of the environment resources. Inspectability of coordination rules
(permissions, in the example) is where subjective and objective coordination
meet. Roughly speaking, explicit representation of coordination laws, externally
to agents, is an objective form of coordination, while their interiorisation and use
by agents is obviously a form of subjective coordination. Intuitively, then, this
example shows the benefits of blending together both subjective and objective
coordination in the engineering of MAS.

On the one side, in fact, a purely subjective approach to coordination in the
engineering of agent systems would endorse a mere reductionistic view, com-
ing to say that agent systems are compositional, and their behaviour is nothing
more than the sum of the individual’s behaviour — an easily defeasible argument,
indeed. Among the many consequences, this would require global properties of
the agent system to be “distributed” amongst individuals, providing neither
abstractions nor mechanisms to encapsulate such properties. As a result, the
purely subjective approach would directly entail lack of support for design, de-
velopment, and, even more, deployment of agent systems’ global properties —
which would result in substantial difficulties for incremental development, im-
practical run-time modification, and so on. On the other side, a purely objective
approach to coordination in the engineering of agent systems would endorse
a rough holistic view — where only inter-agent dependencies and interactions
count, and individuals’ behaviour has no relevance for global system behaviour.
Among the many consequences, this would stand in stark contrast with any no-
tion of agent autonomy, and would prevent agents from featuring any ability to
affect the environment for their own individual purposes — no space for anything
resembling an agent left, in short.

In the end, all the above considerations suggest that any principled approach
to the engineering of agent systems should necessarily provide support for both
subjective and objective models of coordination, possibly integrating them in
a coherent conceptual framework, and providing at the same time a suitable
support for all the phases of the engineering processes — in terms of coordination
languages, development tools, and run-time environments. According to that, in
the next section we discuss the role of coordination models (both subjective and
objectives) in the context of agent-oriented methodologies for the engineering of
software systems.



Objective versus Subjective Coordination 193

4 Coordination in Agent-Oriented Software Engineering

Coordination is a key issue for any Agent-Oriented Software Engineering
methodology (AOSE). The notions of objective and subjective coordination may
come to play a crucial role in this respect, in particular if we follow the notion of
coordination as a service. In the sequel, we outline some basic concepts of AOSE
and discuss their relation to coordination services and their supporting infras-
tructures. We then show how subjective and objective coordination models are
put to use in the engineering of a MAS for the domain of workflow management.

4.1 Agent Abstractions in System Engineering

The ever-growing complexity of modern systems has raised the requirements on
engineering models and processes up to an unprecedented level: new abstractions
and practices are required to deal with open, heterogeneous, distributed and
highly dynamic systems. In this perspective, Agent-Oriented Software Engineer-
ing is a new research area meant to exploit powerful agent-based metaphors and
abstractions in the engineering of complex software systems [3|33]. Notions like
agent, agent society, and agent environment constitute the basis for many of the
AOSE methodologies currently being developed, such as Gaia [34] or SODA [14].
With respect to current best practice — often based on object-oriented technolo-
gies and methodologies — agent-based approaches feature two main properties:
the autonomy of the main components (agents are autonomous entities encap-
sulating control), and the promotion of interaction to a first-class issue (agents
are typically social and situated entities).

Autonomy of agents typically takes on two forms, at different levels of ab-
stractions: at the higher level, agents are assigned to tasks that they pursue in an
autonomous way; at the lower level, agents are autonomous and independent loci
of control. Task accomplishment drives the flow of control inside the agents, so
that a task can be regarded as the high-level abstraction to manage the low-level
mechanisms of control. By moving the focus of system design up from control
dependencies to task dependencies, autonomy of agents is then what allows to
abstract away from control. Since one of the main sources of complexity in the
design of open, distributed, highly dynamic systems is the coupling of control
flows between different components, autonomy plays a key role in making agents
suitable abstractions for the engineering of complex systems.

Agents are also typically acknowledged to be social entities, coexisting with
other agents in a MAS and interacting with them in order to accomplish their
own task. A group of agents interacting within a MAS is often referred to as
a society, in particularly when their mutual interaction and communication is
headed (either intentionally or not) toward the achievement of a global (social)
functionality. From this viewpoint, then, societies of agents also serve as powerful
design abstractions, to be handled as first-class entities throughout the whole
engineering process. In particular, societies can be charged with tasks that could
not (for either theoretical or practical reasons) be assigned to individual agents,
which are then to be achieved by the overall coordinated activity of the individual
member agents [14].



194 A. Omicini and S. Ossowski

Finally, agents are situated entities, immersed in an environment containing
not only other agents, but also resources and services. Resources might range
from basic survival (such as an agent virtual machine) and inter-operability tech-
nologies, to complex coordination middleware. In fact, the activity of any agent
(and of any agent society as well) could not be thought of or modelled without
considering the environment wherein it lives — so that the agent environment
calls for suitable first-class engineering abstractions on its own, modelling how
each agent perceives the world around, and how it can predict its evolution over
time.

Both task assignment to agents and interaction with the environment are
typically mediated and represented by the notion of role. In fact, tasks are typ-
ically assigned to roles, that are assumed by agents either statically at design
time, or dynamically at run-time. When playing a role, an agent is in charge of
the corresponding task, and is entitled of all the authorisations and permissions
(and limitations as well) pertaining to its role. Roles typically determine which
part is played by agents within a MAS interpreted as an organisation, so they
might be hierarchically related, or generally define some dependency between
agents. In general, the interactions between the different roles have to follow
specific rules for the overall organisation to work correctly and efficiently toward
a shared global goal.

In all, the engineering process as promoted by agent-oriented abstractions
is basically task-oriented: individual tasks are assigned to agents, and drive the
design and development of individual agents, social tasks are assigned to groups
of agents (societies) organised so as to pursue a common goal. In principle, we
no longer delegate control to components (as in object-oriented and component-
based practice), instead we delegate tasks, and with them, responsibility — while
agents and societies encapsulate control. As a result, the design of agents and
MAS is driven by tasks: individual tasks drive the design of individual agents,
whereas social tasks drive the design of agent interaction protocols and supra-
agent (social) rules.

4.2 Coordination in the Engineering of Agent System

Both autonomy and interactiveness — as novel features of agent-oriented soft-
ware engineering — raise coordination issues. On the one hand, the ability of au-
tonomously pursuing the accomplishment of a task requires agents to be able at
least to represent the environment and foresee its evolution, to model and some-
how predict the behaviour of the other agents and the effects of their own actions
as well. This is of course the domain of subjective coordination approaches, as
discussed in the previous sections. On the other hand, agent interaction within
a society or with the environment asks to be first enabled, and then governed,
in order to make the global agent system behave as required. These are actually
interoperability and coordination issues, respectively, that straightforwardly fall
under the umbrella of objective coordination models and technologies.

It is then quite natural here to emphasise the role that coordination models
and technologies are going to play in the engineering of agent systems. This is
particularly evident when considering the engineering of agent societies. Societies



Objective versus Subjective Coordination 195

can be modelled as the sum of the individual components plus the social rules,
or norms, that govern their behaviour and interaction. Once social norms are
interpreted as coordination laws, coordination media can be easily acknowledged
as social abstractions, around which agent societies can be modelled and built. As
a result, agent societies can be easily thought of as the sum of individual agents
and coordination abstractions, encapsulating norms in terms of coordination
laws.

So, designing an agent society basically amounts to defining the social task,
designing the individual and social roles to be assigned to individual agents as
well as the corresponding interaction protocols, and then defining the norms
ruling the collective behaviour. Subsequently, as argued in [14], suitable models,
patterns, and mechanisms, of coordination can be chosen, that are expressive
enough to capture the defined norms. For instance, in a dynamic setting, both
the agents and the rules are likely to change over time: agents may join and
leave the society at will, rules may vary to account for a new goal to achieve,
or for a change in the environmental conditions: correspondingly, coordination
abstractions should support the dynamic modification of coordination laws.

For a principled approach to the construction of agent systems, design ab-
stractions should be supported throughout the whole engineering process, from
design to development and deployment. In particular, when continuous devel-
opment and incremental refinement are mandatory, design abstractions should
be straightforwardly mapped upon run-time abstractions. This first calls for the
availability of specialised coordination-specific IDEs to monitor and inspect the
space of agent interaction, equipping developers with tools mapping abstractions
into manageable metaphors — in particular, social ones [6]. Then, suitable co-
ordination infrastructures are required, providing coordination abstractions as
run-time reification of agent societies, and supporting the chosen model of coor-
dination for social norm representation and enforcement. For instance, dynamic
modification of coordination laws should obviously not only be foreseen by the
model, but also suitably supported at execution time.

4.3 A Case Study: Agent Coordination in Workflow Management

A typical example where both subjective and objective coordination models and
technologies come at hand is workflow management. In [22], an example of Work-
flow Management System (WfMS) in a Virtual Enterprise (VE) is presented and
discussed in detail: workflow is first shown to be amenable for an interpreta-
tion as an agent coordination problem, then a WfMS is built by exploiting the
TuCSoN coordination technology. In the following, we summarise the example
as well as the main issues it raises, showing how the adoption of suitable models
and technologies for agent coordination can make the engineering of complex
systems easier, particularly when they promote the fruitful coexistence of both
subjective and objective approaches.

The virtual bookshop. In [22], a wvirtual bookshop is presented, that is, a
VE that aggregates several companies of different sorts to sell books through



196 A. Omicini and S. Ossowski

the Internet. In this scenario, four sorts of companies were identified: the book-
seller (who provides the books), the carrier (who delivers books from sellers to
customers), the interbank service (which executes payment transactions), and
the Internet service provider (the Web portal for customers). In the example,
two workflows were defined, that imply the specification and execution of classic
workflow rules, such as managing a sequence of activities, an AND-Splitting pro-
cess (coordinating activities started at the same time and executed in parallel)
and an AND-Joining process (requiring synchronisation of parallel activities):

— the purchase of a single book from a specific bookseller, and
— the purchase of a set of books from different booksellers.

The first workflow describes the sequence of activities involved in the purchase
of a specific book. First, order information is gathered from the Web site used
by the customer — any of the sites provided by any Internet service provider
participating in the VE. Then, the activity to get the book ready at the chosen
bookseller’s starts. When the book is ready, the dispatching activity is executed,
to have the book delivered from the bookshop to the customer by a carrier.
Finally, after the book has been delivered to the customer, the payment trans-
action activity is executed, involving the intervention of an interbank service to
transfer money from the customer to the VE.

The second workflow involves the purchase of a set of books from (possibly)
different booksellers. After order information is gathered, a number of book
acquiring activities are executed in parallel, each aiming at getting a book from
a specific bookseller. When all the books are ready at the involved booksellers’,
the dispatching activity can start as in the first case (for the sake of simplicity,
the same carrier is assumed to be used to deliver all books).

WIMS as an agent system. The main element of a workflow is the task,
as the elementary unit of work inside a workflow. A workflow schema is the
collection of tasks that collectively achieve the goal(s) of a process. Tasks are
interrelated into a flow structure via connectors, such as split and join elements,
which define the execution dependencies among tasks (the order in which tasks
can be executed). A case is an execution of a workflow schema, i.e. an instance
of the corresponding (business) process.

According to the standard WfMC approach [31], workflow management is
modelled in terms of workflow engines (workflow servers or coordinators, where
coordination takes place) and workflow participants — thus straightforwardly
inducing a clear separation between coordinating and coordinated activities.
Workflow tasks are executed autonomously by (artificial or human) agents, co-
ordinated by the workflow engines: in particular, agents can be used to represent
the workflow participants whose activity can be automatised. Each workflow is
then modelled as an agent society, involving individual agents autonomously
pursuing workflow tasks, while the society, built around the workflow engine,
aims at bringing the whole workflow to a successful end.



Objective versus Subjective Coordination 197

In the example, the main agents involved in the workflows are:

— interface agents, responsible for collecting information about customers and
orders. These agents also interact with customers during order execution,
informing them about order status and possible problems.

— buyer agents, responsible for ordering books from the booksellers and getting
them ready for delivery.

— delivering agents, responsible for delivering the books to the customers, pro-
vided that the books are ready at the bookseller’s. To do so, they inform the
carrier of each new dispatch to do, and monitor the delivery until the book
is in the customer’s hands.

— payment agents, responsible for getting the payments done. These agents
interact with an interbank service for transferring money from customers to
the virtual bookshop.

Workflow engines govern the activity of the workflow participants, encapsulating
the workflow rules. So, coordination media can be used as workflow engines to
automatise coordination, embodying the workflow rules in terms of coordination
laws: in this way, the workflow rules can be encapsulated outside agents and
somehow superimposed on them, so that agents are entitled to autonomously
pursue their task with no need to be aware of the global workflow. In particular,
in the example, logic tuple centres are used as coordination media [I6], that
is, tuple spaces whose behaviour in response to communication events can be
specified through ReSpecT logic programs — so that a ReSpecT specification of
a tuple centre actually defines the laws of coordination that the tuple centre
embodies [T5].

The agent/engine interaction occurs either when an agent declares to be
ready to execute a specific task (according to its role), or when an agent returns
the result of the task execution (or communicates the related problems). In
our example, interaction takes the form of insertion and retrieval of tuples in
vbs tuple centres, exploiting Linda-like coordination primitives [§]: agents check
for new tasks to execute by trying to retrieve (by means of an inp operation)
ready_to_do tuples, and provide task results by inserting (by means of an out)
task_success or task_failure tuples.

Mapping a workflow engine onto a tuple centre essentially means to define the
event model and the process model [2]. The event model defines what kinds of
internal and external workflow events must be considered. Internal events are the
ones defining the normal flow of activities within the workflow, such as temporal
events related to the starting and the termination of a task. External events
are events that can have an impact on the regular evolution of a running case,
but are outside the control of the WfMS. In the example, both internal and
external events are captured and represented by reifying them as descriptive
tuples in the tuple centre. For instance, when a case CaselID is terminated, the
tuple case_done(CaseID) is inserted in the tuple centre.

In turn, the process model describes the behavioural aspects of a workflow
specification, from its initial state to one of its final states. In our example,
the coordination activities of a workflow engine are naturally mapped upon
the behaviour of a tuple centre. In particular, part of the rules, implemented



198 A. Omicini and S. Ossowski

Table 2. ReSpecT code for the workflow meta-rules

reaction(out (case_to_start(CaseName, Info)), (
in_r(case_to_start(CaseName, Info)),
in_r(case_id_counter(ID)),
NextID is ID + 1,
out_r(case_id_counter (NextID)),
out_r(case_started(ID,CaseName, Info)),
out_r(case_state(ID, executing, .)),
out_r(next_task(ID, CaseName, case_start,_.)))).

reaction(inp(ready_to_do(TaskType, -, -)),(
pre,
in r(task-to_do(CaseID, TaskType, Info)),
in_r(task_id_counter(TaskID)),
NextID is TaskID + 1,
out_r (task_id_counter (NextID)),
current_agent (ExecutorID),
out_r(ready_to_do(TaskType, Info, TaskID)),
out_r(task_started(TaskID, CaseID, TaskType, Info, ExecutorID)))).

reaction(out (task_success(TaskID, Info)), (
in_r(task_success(TaskID, Info)),
out_r(task_done(TaskID, Info)))).

reaction(out_r(task_done(TaskID, Info)), (
rd_r(task-started(TaskID, CaseID, TaskType, Info, .)),
rd_r(case_started(CaseID, CaseName, .)),
rd_r(case_state(CaseID, executing, .)),
out_r(next_task(CaseID, CaseName, TaskType, Info)))).

reaction(out_r(next_task(CaseID, CaseName, TaskType, Info)),(
in_r(next_task(CaseID, CaseName, TaskType, Info)))).

reaction(out_r(case_done(CaseID)), (
in r(case_state(CaseID, executing, -)))).

as ReSpecT reactions, constitute a basic core of meta-workflow rules, acting
as the instructions of a workflow virtual machine: they are independent of the
specific workflow, and are used to define standard workflow behaviour triggered
by internal workflow events, making it possible to define the basic skeleton of the
flow structure. These (meta-)rules interpret/execute other rules (trigger other
ReSpecT reactions in our case), which are specific to the given workflow type
and constitute the remaining part of the rules defining the process model. Taken
from [22], Table 2 shows the ReSpecT code for the workflow meta-rules, while
Table [3 shows the ReSpecT code for the single book purchase workflow.

Features. Adopting coordination media like tuple centres as the workflow en-
gines provides, in the first place, all the benefits of objective coordination ap-
proaches, and, in the second place, a most effective support for subjective coor-
dination techniques.

Due to mediated interaction, workflow participants are loosely coupled, and
may interact with no need to know each other, or to coexist in space or in time.
Then, workflow rules are encapsulated within suitable abstractions outside the
agents — the tuple centres —, so that workflow participants are enabled to au-
tonomously participate in the workflow with no need to be aware of the global
workflow rules or dynamics. This also means that agents acting as workflow par-



Objective versus Subjective Coordination 199

Table 3. ReSpecT code for the single book purchase workflow example

reaction(out_r(next_task(CaseID, single_book-purchase, case_start,.)),(
rd_r(case_started(CaseID,single_book_purchase,info(_,Book,Seller,.))),
out_r(task_-to_do(CaseID, buy-the_book, info(Book,Seller))))).

reaction(out_r(next_task(CaseID, single_book_purchase, buy_the_book,

BookReceipt)), (
rd_r(case_started(CaseID,single _book _purchase,info(Customer,_,Seller,Carrier))),
out_r(task-to_do(CaseID, dispatch_the_book,

info(BookReceipt,Carrier,Seller,Customer))))).

reaction(out_r(next_task(CaseID, single_book_purchase, dispatch_the_book,
CustomerReceipt)), (
rd_r(case_started(CaselD,single_book_purchase, info(Customer,Book,_,_.))),
out._r (task-to_do(CaseID, make_payment, info(Customer,Book))))).

reaction(out_r(next_task(CaseID, single_book_purchase, make_payment,
BankReceipt)), (
out_r(case_done(CaseID)))).

ticipants are amenable to independent design and development, and, dually, that
changes in the workflow rules do not necessarily require changes to all agents.
Finally, both the state of the interaction and the laws of coordination are explic-
itly represented as logic tuples in the tuple centre (respectively, ordinary tuples,
and meta-level ReSpecT tuples), that can then be inspected and dynamically
modified by both engineers and (intelligent) agents, at least in principle.

On the other hand, explicit representation and inspectability of both the
communication state and the coordination state are the features of objective
coordination models (like ReSpecT tuple centres) that build a bridge toward
subjective approaches, thereby making them particularly effective. In fact, since
agents can perceive the state of the interaction, an intelligent cooperative agent
could in principle monitor the state of the workflow and act to improve the
overall workflow performance or results, either starting an activity by itself,
or by properly stimulating other cooperative (but possibly not-so-intelligent)
agents. Also, since coordination laws are inspectable and dynamically modifiable,
an intelligent supervisor agent could in principle reason about the state of the
workflow and its rules, and possibly change them according to current needs —
for instance, when external conditions have turned the previously established
workflow ineffective — thus paving the way for dynamically adaptive systems.

All in all, this example clearly suggests that the concerted exploitation of
both objective and subjective approaches in the coordination of agent systems
could provide a well defined path to the construction of dynamic, adaptive, and
intelligent systems.

5 Discussion

In this chapter, we have given a brief overview over current conceptualisations,
models and support infrastructures for coordination in MAS. Among the many
dimensions of coordination models, the duality between the objective and the



200 A. Omicini and S. Ossowski

subjective viewpoint on coordination has been identified as particularly impor-
tant for the construction of modern MAS, an idea that has been illustrated using
a simple multiagent blocks world domain as an example. We have stressed the
fact that such an approach leads quite naturally to the idea of conceiving coor-
dination as a service that multiagent coordination infrastructures may provide.
Finally, we have argued that this stance can be smoothly integrated into current
Agent Oriented Software Engineering methodologies, and provided evidence for
that claim by an example from the domain of agent-based workflow management.

The question of how to design effective coordination mechanisms for open
environments is a major research issue in the agent community. A popular ap-
proach to this problem is to complement mechanisms for closed systems with
techniques that enforce initially uncontrolled agents to comply with the required
“behavioural norms”. Some self-enforcing approaches have been borrowed from
Game Theory and Economics (e.g. Vickrey Auctions), but their applicability to
many real-world domains appears to be limited. In this respect, work on social
control and models of trust is promising, but much work still needs to be done in
that direction. An effective instrumentation of findings from Evolutionary Game
Theory and Social Simulation to instill desired global properties, e.g. by control-
ling the frequencies of certain behaviours in a open agent society, is still further
ahead.

At the time being, the notion of coordination as a service appears most
promising to us. Once agents have freely chosen a particular coordination service,
the compliance with its “behavioural norm” can be enforced by the infrastruc-
ture of the service itself, e.g. through dedicated virtual machines or “intelligent”
communication channels. Still, this idea requires advances on several fronts. Most
importantly, more powerful service description languages are needed, that allow
agents to dynamically choose between services based on their self-interest. In
addition, what kind of coordination knowledge should be used in these services,
and how to model, represent, and enact it within coordination media is still sub-
ject to debate. Finally, some considerations on how current AOSE methodologies
could be extended in a principled manner to better capture the design abstrac-
tion of coordination services and its mapping to adequate run-time abstractions
may lead to interesting results. In this regard, the chapter by Fredriksson, Gus-
tavsson, and Ricci in the present volume [7] presents a current effort to develop
a comprehensive methodology for the provision of sustainable coordination in
open systems.

References

1. Nadia Busi, Paolo Ciancarini, Roberto Gorrieri, and Gianluigi Zavattaro. Coordi-
nation models: A guided tour. In Omicini et al. [I7], chapter 1, pages 6-24.

2. Fabio Casati, Silvana Castano, Mariagrazia Fugini, Isabel Mirabel, and Barbara
Pernici. Using patterns to design rules in workflows. IEEE Transactions on Soft-
ware Engineering, 26(8):760-785, August 2000.

3. Paolo Ciancarini and Michael J. Wooldridge, editors. Agent-Oriented Software
Engineering, volume 1957 of Lecture Notes on Computer Science. Springer-Verlag,
January 2001. 1st International Workshop (AOSE 2000), Limerick, Ireland, 10
June 2000, Revised Papers.



10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

Objective versus Subjective Coordination 201

José Cuena and Sascha Ossowski. Distributed models for decision support. In
Gerhard Weiss, editor, Multiagent Systems — A Modern Approach to Distributed
Artificial Intelligence, pages 459-504. MIT Press, 1999.

Keith Decker. TAEMS: A framework for environment centered analysis and design
of coordination mechanisms. In Gregory M.P. O’Hare and Nicholas R. Jennings,
editors, Foundations of Distributed Artificial Intelligence, pages 429—-448. John Wi-
ley and Sons, 1996.

Enrico Denti, Andrea Omicini, and Alessandro Ricci. Coordination tools for MAS
development and deployment. Applied Artificial Intelligence, 16(10), November
2002.

Martin Fredriksson, Rune Gustavsson, and Alessandro Ricci. Sustainable coordi-
nation. Springer-Verlag, 2002. In this volume.

David Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80-112, 1985.

Matthias Klusch and Katia Sycara. Brokering and matchmaking for coordination
of agent societies: A survey. In Omicini et al. [I7], chapter 8, pages 197-224.
Victor R. Lesser. Reflections on the nature of multi-agent coordination and its im-
plications for an agent architecture. Autonomous Agents and Multi-Agent Systems,
1(1):89-111, 1998.

Thomas Malone and Kevin Crowston. The interdisciplinary study of coordination.
ACM Computing Surveys, 26(1):87-119, 1994.

John F. Nash. The bargaining problem. Econometrica, 28:152-155, 1950.

Allen Newell. Reflections on the knowledge level. Artificial Intelligence, 59:31—38,
1993.

Andrea Omicini. SODA: Societies and infrastructures in the analysis and design
of agent-based systems. In Ciancarini and Wooldridge [3], pages 185-193. 1st
International Workshop (AOSE 2000), Limerick, Ireland, 10 June 2000, Revised
Papers.

Andrea Omicini and Enrico Denti. Formal ReSpecT. In Agostino Dovier,
Maria Chiara Meo, and Andrea Omicini, editors, Declarative Programming — Se-
lected Papers from AGP’00, volume 48 of Electronic Notes in Theoretical Computer
Science, pages 179-196. Elsevier Science B. V., 2001.

Andrea Omicini and Enrico Denti. From tuple spaces to tuple centres. Science of
Computer Programming, 41(3):277-294, November 2001.

Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert Tolksdorf, ed-
itors. Coordination of Internet Agents: Models, Technologies, and Applications.
Springer-Verlag, March 2001.

Sascha Ossowski. Coordination in Artificial Agent Societies — Social Structure and
its Implications for Autonomus Problem-solving Agents, volume 1535 of LNAIL
Springer, Berlin, 1999.

Sascha Ossowski. Constraint-based coordination of autonomous agents. Flectronic
Notes in Theoretical Computer Science, 48, 2001.

Sascha Ossowski, Josefa Z. Hernéandez, Carlos A. Iglesias, and Alberto Fernandez.
Engineering agent systems for decision support. In Paolo Petta, Robert Tolks-
dorf, and Franco Zambonelli, editors, Engineering Societies in an Agent World III.
Springer-Verlag, 2002.

Sunju Park, Edmund H. Durfee, and William P. Birmingham. Emergent properties
of a market-based digital library with strategic agents. Autonomous Agents and
Multiagent Systems, 5:33-51, 2000.



202

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

A. Omicini and S. Ossowski

Alessandro Ricci, Andrea Omicini, and Enrico Denti. Virtual enterprises and work-
flow management as agent coordination issues. International Journal of Coopera-
tive Information Systems, 11(3/4):355-380, September/December 2002. Coopera-
tive Information Agents: Best Papers of CIA 2001.

Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of Encounter — Designing Con-
ventions for Automated Negotiation Among Computers. MIT Press, 1994.
Michael Schumacher. Objective Coordination in Multi-Agent System Engineering
— Design and Implementation, volume 2039 of LNAI Springer-Verlag, April 2001.
Reid G. Smith. The Contract Net Protocol: High level communication and control
in distributed problem solver. IEEE Transactions on Computers, 29(12):1104—
1113, 1980.

William L. Thomson. Cooperative models of bargaining. In R. Aumann and
S. Hart, editors, Handbook of Game Theory, pages 1238-1284. North-Holland, 1994.
Robert Tolksdorf. Models of coordination. In Andrea Omicini, Franco Zambonelli,
and Robert Tolksdorf, editors, Engineering Societies in an Agent World. Springer-
Verlag, 2000.

Mirko Viroli and Andrea Omicini. Coordination as a service: Ontological and for-
mal foundation. In Antonio Brogi and Jean-Marie Jacquet, editors, Foundations of
Coordination Languages and Software Architectures — Papers from FOCLASA 02,
volume 68 of Electronic Notes in Theoretical Computer Science. Elsevier Science
B. V., 2002.

Frank von Martial. Co-ordinating Plans of Autonomous Agents, volume 661 of
Lecture Notes on Artificial Intelligence. Springer-Verlag, Berlin, 1992.

Peter Wegner. Why interaction is more powerful than computing. Communications
of the ACM, 40(5):80-91, May 1997.

Workflow Management Coalition home page. http://www.wfmc.org/.

Michael J. Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and
practice. The Knowledge Engineering Review, 10(2):115-152, 1995.

Michael J. Wooldridge, Gerhard Weiss, and Paolo Ciancarini, editors. Agent-
Oriented Software Engineering II, volume 2222 of Lecture Notes on Computer Sci-
ence. Springer-Verlag, January 2002. 2nd International Workshop (AOSE 2001),
Montreal, Canada, 29 May 2001, Revised Papers and Invited Contributions.
Franco Zambonelli, Nicholas R. Jennings, Andrea Omicini, and Michael J.
Wooldridge. Agent-oriented software engineering for Internet applications. In
Omicini et al. [I7], chapter 13, pages 326-346.



	Introduction 
	Coordination: An Overview 
	Models of Coordination 
	Characteristics of Coordination Models 

	Subjective textit {versus} Objective Coordination 
	Different Perspectives on Interaction 
	Subjective vs. Objective Coordination: An Example 
	Impacts on the Engineering of Agent Systems 

	Coordination in Agent-Oriented Software Engineering 
	Agent Abstractions in System Engineering 
	Coordination in the Engineering of Agent System 
	A Case Study: Agent Coordination in Workflow Management 

	Discussion 

