
Building Mobile Agent Applications in HiMAT

Marco Cremonini, Andrea Omicini
LIA - Dipartimento di Elettronica Informatica e
Sistemistica – Università di Bologna - ITALY
E-mail: {mcremonini, aomicini}@deis.unibo.it

Franco Zambonelli
Dipartimento di Scienze dell'Ingegneria

Università di Modena e Reggio Emilia - ITALY
E-mail: franco.zambonelli@unimo.it

Abstract

An engineered approach to the design of mobile
agent applications requires appropriate abstractions for
both the space where agents move and the conceptual
space of mobile agent interaction. The paper introduces
the HiMAT framework for mobile agent applications,
which models the Internet as a collection of hierarchical
domains, where programmable coordination media rule
mobile agent's interaction within each domain and locally
to each node. This provides the designers of mobile agent
systems with a single, coherent framework enabling them
to effectively deal with network topology, authentication,
authorisation and coordination in a uniform way.

1 Introduction

The mobile agent technology promotes a new paradigm for
distributed computing which is particularly suited to the
design and implementation of Internet applications [12, 17].
Distributed applications should no longer be based only on
a set of components assigned to given nodes and remotely
interacting through the network. Instead, they can integrate
active computational entities (mobile agents) capable of
moving to different nodes and locally accessing the
resources they need. This permits to gain in efficiency, save
bandwidth, and make application less sensitive to failures in
the communication network.

Nowadays, researches in the mobile agent area have
been mainly focused on the basic technological issues to
enable Internet mobility. This includes mobile code systems
[12], supports for secure execution [8, 16] and for
interaction between mobile entities [4, 23]. However, we
feel that the novelty and peculiarity of the mobile agent's
paradigm requires not only technological support but also
structural models to precisely define the environment where
agents move and interact.

The general role of mobile agents in Internet
applications is to (i) proactively move through a
multiplicity of different execution frameworks, and (ii)
there interact with local resources and other mobile agents.

Then, an effective model for the engineering of Internet
applications based on mobile agents should define and
structure both (i) the space where agents move and (ii)  the
conceptual space of mobile agent interaction.

From the mobile agent design viewpoint, issue (i) is
essentially a topology one [9]: how agents view the space
they roam, whether their representation is partial or
complete, and whether it is statically given or dynamically
acquired. From the hosting node's viewpoint, the same issue
is related to the notion of agent identity: the space
representation may introduce relationships between nodes
and, then, may influence the agent authentication process
[18].

Issue (ii)  concerns the coordination of mobile agents
and local resources [3, 13]: how their interaction can be
constrained and driven so as to result in a system behaviour
accomplishing the global system's requirements, how a
mobile agent can deal with the heterogeneity of the hosting
nodes, and with the unpredictability of other agents
behaviour. All the above issues are also strictly related to
the authorisation problem [21]: agent mobility and
interaction have to be coherently ruled according to both
global policies, shared by a collection of nodes, and local
policies, specialising the global one according to peculiar
local needs.

The aim of this paper is to introduce the HiMAT
framework for the design and development of mobile agent
applications, aimed at addressing all the issues stressed
above. HiMAT starts from the TuCSoN coordination
model for Internet agents [23], and extends it by allowing
the Internet to be modelled as a collection of hierarchical
locality domains, where agents can exploit programmable
tuple spaces both to coordinate their interactions and to
dynamically acquire knowledge about the space they roam.
On the one hand, locality domains reflect the hierarchical
topology of Internet administrative domains and makes
agent motion and authentication easier to be managed. On
the other hand, TuCSoN programmable tuple spaces
(called tuple centres) uniformly act as both the
authorisation engines providing agents with the knowledge
about the domain resources they can access, and the media
for actually interacting with those resources.



The above features make HiMAT a coherent
framework for mobile agent applications, which enables
system designers to effectively deal with network topology,
authentication, authorisation and coordination, in a uniform
way. This eases application design and leads to the
development of more structured applications, where typical
Internet issues such as heterogeneity and unpredictability
can be addressed, as we show by means of an application
example in the area of distributed information retrieval.

The paper is organised as follows. Section 2 introduces
some preliminary concepts: it briefly describes the
coordination model adopted (TuCSoN) and discusses its
limitations in terms of topological abstractions. Section 3
presents the HiMAT framework. Section 4 shows a simple
application example for HiMAT, while Section 5 discusses
related works.

2 Preliminaries

HIMAT extends the TuCSoN coordination model [23] with
the aim of fully exploiting its power (mostly relying on its
programmable communication abstractions called tuple
centres), and addressing its limitations in modelling the
space for agent's motion.

2.1 TuCSoN

As shown in [4], the design of Internet applications based
on mobile agents may be strongly influenced by the
coordination model adopted. In particular, coordination
models exploiting tuple spaces à la Linda [5] provide for
many features which are essential in design and
development of Internet applications based on mobile
agents. Among the others, while associative access to
information makes it possible to easily deal with partial
knowledge and dynamicity of the resources, temporal and
spatial uncoupling intrinsically suits autonomous and
dynamic entities like mobile agents.

Starting from the above considerations, TuCSoN
defines an interaction space spread over a collection of
Internet nodes and built upon a multiplicity of independent
tuple-based communication abstractions called tuple
centres [10, 11]. Each tuple centre is associated to a node
and is denoted by a locally unique identifier. Each node
possibly hosts a multiplicity of tuple centres, providing its
own version of the same TuCSoN name space (the set of
the tuple centre identifiers), and virtually implements each
tuple centre as an Internet service. Any tuple centre can
then be identified either via its full Internet (absolute) name
or via its local (relative) name. This supports the double
role of mobile agents as network-aware entities explicitly
accessing to a remote tuple space, and as local entities of
their current execution node. An operation on a remote
tuple centre must be invoked specifying its full Internet
name, as in tcID@some.node?op(tuple) , while a

local tuple centre can be accessed by specifying its local
identifier only, as in tcID?op(tuple) .

To overcome the limits of the Linda model, TuCSoN
tuple centres enhance tuple spaces with the notion of
behaviour specification: each tuple centre can be
programmed so as to implement its own observable
behaviour in response to communication events. Instead of
simply triggering the basic pattern–matching mechanism of
the Linda model, the invocation of any of the TuCSoN
basic communication primitives can be associated to
specific computational activities, called reactions, having a
success/failure transactional semantics. The result of the
invocation of a communication primitive is perceived by
agents as a single-step transition of the tuple centre state,
which combines altogether the effects of the primitive itself
and of all the reactions it triggered. Thus, a new observable
behaviour can be defined for a tuple centre, where global
coordination laws can be embedded.

As shown in [23], coordinating mobile agent's
interaction with TuCSoN leads to several interesting
features:
• interactions related to different application contexts can

be encapsulated and modularised, by exploiting the
multiplicity of the tuple centres, each one separately
and independently programmable;

• agent's interaction protocols can be made independent
of the particular execution framework architecture.
This makes it easy to deal with typical heterogeneity of
an Internet-based application domain, which is a
mandatory issue for the definition of a mobile agent
framework;

• coordination policies can be charged upon
programmable coordination media, thus freeing agents
from the burden of coordination–awareness;

• agent's accesses to resources can be easily controlled,
since they are always mediated by a tuple centre. In
addition, the possibility of programming specific
behaviours enables the definition or enhancement of
any required access control policy.

Obviously, tuple centre coordination does not prevent in
principle direct agent-to-agent communication, which could
be useful in case of data-intensive communication. Instead,
tuple centres simply work as the interaction kernel, and
could be exploited for instance when negotiating the
protocol for establishing a direct communication channel
connecting two agents.

2.2 Modelling the Network

As a pure coordination model, TuCSoN falls short in
modelling complex and secure application environments, as
actually needed to develop real Internet-based application:
the TuCSoN interaction space is flat, and the TuCSoN
model currently neglects some security issues, by assuming
that agent authentication has to be solved by the engine for
mobile agent execution.



Instead, Internet-based applications typically deal with
intrinsically structured domains: (i) Internet nodes are often
grouped in clusters, subject to highly coordinated
management policies and possibly protected by a firewall;
(ii)  large clusters can be further characterised by the
presence of enclosed sub-clusters, in a hierarchical structure
of protected administrative domains. A typical example can
be found in most academic environments: a single large
cluster encloses all the academic nodes and defines basic
management policies; different enclosed clusters, such as
the ones of single research laboratories, provide protected
domains with their own policies, typically under the
administration of a single system manager.

The first observation (i) has led to several proposals
that model the Internet as a collection of locality
abstractions, both in the area of mobile agent systems, such
as MA [8] and Telescript [26], and in the area of distributed
open programming environments, such as ActorSpace [15].
In this context, we propose the place, domain, and gateway
locality abstractions.  The place provides the abstraction for
the mobile agent's execution environment, i.e., the Internet
node, where agents execute their code and interact with
local resources. The domain concept is used to model
subnetworks by grouping a set of places sharing common
policies and privileges. For instance, one domain could
represent a LAN subnetwork of a department and provide
for a security policy common to all the department places.
Specialised security policies may then be defined locally to
each place, in order to provide a fine–grained control of the
interaction with local resources. Finally, mobile agents
moving from one domain to another one rely on a specific
abstraction, the gateway, in charge of inter-domain routing
for both incoming and outgoing agents.

The second consideration (ii)  suggested assuming a
hierarchical structure, where domains can contain both
places and other (sub-)domains. This provides for higher
flexibility in modelling complex network structures, which
are often intrinsically hierarchical, and for a better support
for decentralised management, and also enables the
definition of global policies at different organisation levels,
given the clear separation of all the administrative domains
of a network.

As shown in Figure 1, the distribution of domains on
the network can be represented with a tree structure where
each node is a domain (containing places) and each arc is a
sub-domain gateway. Each hierarchical domain has a most
external gateway (gateway 1 in Figure 1) bridging it with
Internet and enabling communication between different
domains. Here Internet acts as an unstructured
communication network between domains. However, note
that also the internal structure of a domain is Internet-based:
in this context, the distinction is between the portion of the
net modelled hierarchically according to the locality
abstractions defined above, and the rest of the Internet.

The hierarchical definition adds a new meaning to the
role of gateways with respect to a non-hierarchical system.
Besides acting as centralised points for domain access

control, along with authentication of mobile agents,
gateways can be naturally exploited to provide mobile
agents with a multi–layered description of the network
topology, where each gateway only describes a single level
(the structure of its associated domain). This enables a
better management of the system knowledge, by delegating
to each domain (through its gateway) the representation and
management of what is related with its inner structure only,
security issues included.

gateway1

gateway12

gateway13
gateway131

domain1

domain12

domain13

domain131

places

gateway1

gateway12 gateway13

gateway131

domain1

domain12 domain13

domain131

domain/place representation

domain tree representation

Figure 1: Domain/place and domain tree
representations

Moreover, this simplifies the task of mobile agents when
dealing with network topology, since information about
domains can be acquired incrementally on need, whenever
crossing gateways and entering new domains. As a result,
mobile agents, during their migration towards local
resources, could see and gain knowledge only of the sub-
network strictly related with their task and application-
dependent role. By shifting the complexity of knowledge
management from agents to domains and gateways, this
approach avoids the agents need for an a priori, complete
knowledge of the system topology.

In principle, this approach can be used to model both
physical and logical network structures. By grouping the
nodes of a domain according to application/agent identity,
we may easily think of modelling the network according to
the specific needs of every mobile agent application. For
instance, all the nodes delegating gateway G for the
authentication of the agents of the application A belong to
the same logical domain with respect to identity A.
Therefore, several logical, application-dependent, possibly
overlapping trees can then be mapped onto the same
physical network.



3 The HiMAT  framework

HiMAT extends TuCSoN and defines a coherent
framework suitable to supporting all the phases of the life
of a mobile agent. These include its movement over the
network (topology), the verification of its identity
(authentication), the acquisition of the necessary
knowledge and permissions to access resources
(authorisation), and the management of its interactions with
other agents and with local resources (coordination).

3.1 The HiMAT  architecture

The above four aspects are modelled by the overall HiMAT
infrastructure. The first (topology) and the last
(coordination) are achieved by exploiting the features of
TuCSoN extended with a hierarchical framework: the
hierarchical organisation of domains, and the distribution of
programmable tuple centres coordinating interaction,
respectively. In addition, TuCSoN is exploited as the
authorisation engine with respect of resource access, and
gateways are used as filters controlling agent's movement
and domain representation in an application-oriented
environment.

More in detail, the topology aspect of HiMAT is
achieved by exploiting the locality abstractions defined in
Subsection 2.2 to model a network context. Each domain
groups a set of places along with other (sub)-domains,
implicitly defining a tree structure (HiMAT tree). The
hierarchical structure of a HiMAT tree can be explored
traversing each sub-domain gateway. For example, with
respect to the schemata of Figure 2a, mag gateway is a
place of cs  domain (where mag stands for Mobile Agent
Group and cs  for Computer Science Department).

Given this structure, an agent moving along a HiMAT
topology and accessing a new domain through its gateway
can explore the (ordinary) places and gateways belonging
to that domain, as the agent ag1  in Figure 2.

The role of gateways is fundamental to support and
control the execution of the agents roaming along the
network (authentication and authorisation issues).
Gateways are the natural places where to perform the
authentication of incoming agents for its associated
domain, by verifying agents’ identity and by propagating it
by default to all domain's places and sub-gateways. More in
detail, an agent coming from an external Internet source
must be authenticated by a gateway as in common Internet-
based applications with security requirements (i.e. by
relying on public key infrastructures managed by trusted
third-parties). Once that the agent begins the exploration of
the inner topology, deeper gateways could decide to trust
the authentication already performed by the higher gateway
and perform only a weaker form of authentication: for
example, by simply verifying that the agent comes from the
higher gateway (i.e. by relying on an internal public key
infrastructure), as shown in Figure 2b. This permits to gain

in performances and to reduce the complexity of security
requirements in mobile agent applications. Of course, any
gateway is left free to autonomously fully authenticate an
agent, wherever the agent comes from.

Figure 2b: ag1 view  from mag

tuple centre

DBMS

magStaff
place

local resources

magLibrary
place

tuple centre

mag gateway

default tuple centre

MAG DOMAIN

 exploration and
authentication

authorisation and
coordination

 cs domain

Lab1 domain csStaff
place

MAG
DOMAIN

 agent ag1

magStaff
place

magLibrary
place

 CS DOMAIN

Lab1 domain csStaff
place

mag domain

cs gateway

mag domain

cs gateway
Figure 2a: ag1 view  from cs

Lab1 domain

 agent ag1

default tuple centre

mag gateway

default tuple centre

 CS DOMAIN

 migration and
authentication

1st level authorisation
and exploration

magStaff
place

magLibrary
place

csStaff place

local resources

tuple centre

Figure 2 : The HiMAT architecture ( white boxes
are place/gateway hidden to the agent; grey boxes
are places/gateways accessible by the agent )

In addition to its authentication role, a gateway works also
as a knowledge repository, providing agents with
information about the structure of its associated domain,
and can filter such information according to agents' identity.
This makes gateways implicitly work as the first
authorisation level of HiMAT. A mobile agent can
dynamically retrieve from a gateway the set of the
accessible places and sub-gateways in the domain, as well
as the set of visible tuple centres locally provided by each
place of the domain. For example, in Figure 2a, the cs
gateway authorises agent ag1  to access the mag sub-
gateway and the csStaff  place but prevents it to access
the lab1  domain, by hiding lab1  existence to ag1 . When
ag1  moves to the mag gateway, as in Figure 2b, it can
access the maglibrary  place only, because the existence
magStaff  is kept hidden to it. In HiMAT gateways, both
the function of dynamic knowledge acquisition and
authorisation are achieved via a single tuple centre,
programmed so as to make agent exploration easier and to
manage the interaction with local resources. This, however,
do not actually force agents to physically move to all the
gateways of a tree to get the required resource information.
According to the TuCSoN model, in fact, agents can
interact with gateways also remotely, possibly performing a
sort of virtual exploration before actually migrating to
some places.



In this paper, we don't address the issue of specific services
definition (i.e. directory, accounting, billing, auditing
services, administration tools). However, we argue that any
required service can be defined and implemented by
exploiting the programmability of tuple centres (for
example, by masking services behind tuples) and their
distribution on the gateways.

3.2 The HiMAT  exploration protocol

To better understand HiMAT, Table 1 reports the scheme of
a possible exploration protocol of a mobile agent moving
through an environment modelled as a HiMAT tree. We
label with network topology the operations executed by the
mobile agent to roam the tree and to deal with HiMAT
locality abstractions, and with local interaction the ones
executed by the mobile agent to interact with local
resources and other mobile agents through the tuple centres
provided by each HiMAT place.

Network topology
<goto d> migration to gateway d
<identify> gateway d authenticates the

agent on behalf of all the
places of its associated domain

?read(subdomlist)
?read(placelist)
?read(commspace)

access to the default tuple
centre of the gateway to obtain
information about domain
structure, in terms of
accessible sub-domains
(subdomlist ), places
(placelist ), and tuple
centres (commspace), filtered
according to agent's identity
and credentials, provides for
the first authorisation level

<for pl in placelist do> exploration of the accessible
places of the domain

< goto pl> migration to place pl

Local interaction
<for tc in commspace do> for all the  visible tuple centres

of place pl
tc?op(Tuple) ask tuple centre tc  of place p

to execute op  over Tuple , if
authorised by pl

Network topology (sub-trees)
<for sd in subdomlist
do>

exploration of the accessible
sub-domains

<goto sd> migration to gateway sd
<...> keep on exploration and

access, in a recursive fashion

Table 1. The HiMAT exploration protocol

The example points out the positive impact of HiMAT on
agent design. First, there is a clear distinction between the
modelling of the space through which mobile agents roam

(network topology) and the management of the interaction
among mobile agents and resources (local interaction). In
addition, HiMAT enables (i) security policies and access
control to be developed in a structured environment where
agents migrate and (ii)  the exploitation of the same
interaction protocol, mediated by the TuCSoN
programmable communication abstractions, to define both
authorisation and coordination policies.

As a result, HiMAT grants the proper level of
autonomy and isolation of each domain (for administrative,
security, management reasons), by making it possible to
find a good balance between the dual issues of security and
usability, enabling at the same time a more structured agent
design.

4 Exploiting HiMAT

Let us consider an application in which mobile agents look
for book references through the Internet nodes of
University libraries. In this scenario, there is generally one
central library and several departmental libraries, along
with a bunch of book collections owned by each research
group. This represents a typical application context suitable
to be addressed by mobile agent technology, as well as an
ideal scenario for our HiMAT model, due to:
• the hierarchical organisation of the context;
• the decentralisation of management control and

decision as well as the presence, potentially at each
level of the hierarchy, of global policies;

• the cooperation required to each domain involved in
the application;

• the intrinsic heterogeneity of local resources.
Let us consider again the Computer Science

department, where the Mobile Agents research Group
operates with its own research library. In this case, the
physical organisation of the network directly maps into a
HiMAT tree with the CS domain (cs ) as the root and all the
research group domains as children, such as the MAG one
(mag). Then, both cs  and mag have a gateway with a
default tuple centre where their internal structure is
recorded.

The mag domain defines some places representing
different agent execution environments (typically Internet
nodes) bound with different local resources. Each place has
tuple centres as communication abstractions handling all
the interactions between agents and resources. In particular,
the two places, maglibrary  and magvarious,  of the
mag domain both provide for the books  tuple centre.
However, the books  tuple centre of maglibrary  keeps
track of already catalogued book only, while the books
tuple centre of magvarious  keeps also track of not–yet
catalogued books.

The application bookreader  is in charge of
exploring the books  tuple centres for finding book
references, by exploiting two classes of agents: the first one
(role ordinary ) has to take into account catalogued



books only; the second one (role advanced ) has to
considers not–yet–catalogued books, too. According to that,
the cs  gateway must authenticate agents’ identity, i.e.,
application identity (bookreader ) and role identity
(either ordinary  or advanced ). The mag gateway, by
its side, can decide to trust cs  and delegate it the
authentication of bookreader  agents.

Once authenticated by the cs  gateway, agents access
its default tuple centre to discover what places are in the
domain and which tuple centres are available. In addition,
agents recognise the presence of an inner gateway, the mag
one, which they may be interested to explore. As
bookreader  agents arrive to the mag gateway, they are
not re-authenticated, since mag delegates this task to cs .
However, based on their role, mag can decide to assign
them a particular view of its internal domain structure. In
particular, in the example:
• A bookreader  agent with ordinary  role

(bookreader:ordinary ), as it comes to the mag
gateway and access its default tuple centre, is made
aware of the maglibrary place only and can access
its books  tuple centre. However, it has no way of
accessing the magvarious  place (Figure 3a).

• A bookreader  agent with advanced  role
(bookreader:advanced ) is made aware of both
the maglibrary  and magvarious  places, and can
access both associated books  tuple centres (Figure
3b).

The capability of providing different tuple centre views to
different agents – achieved by appropriate behaviour
specifications of the default tuple centre – is likely to
notably simplify both agent design and management. In
fact, agents are not in charge of authorisation issues in tuple
centres access, because the gateway simply denies to agents
the possibility of acquiring the knowledge about the
existence of tuple centres they are not authorised to access
to.

A further simplification of agent design comes from
providing to agents with a uniform view of all the resources
of a domain. Let us suppose that the two books  tuple
centres of maglibrary and magvarious  mediate
agent's access to different information structures (Figure 3).
Catalogued books are recorded in the maglibrary place
exploiting a DBMS. The DBMS interfaces with the local
tuple centre books  through a wrapper, which translates
tuples into queries and back answers into tuples. Not–yet–
catalogued books, since they are typically a small number,
are instead directly recorded as tuples of the form
book( Author ,  Title )  in the books  tuple centre
provided by the magvarious  place. The general problem,
then, is that semantically homogeneous information
(concerning books in our example) are often represented in
an heterogeneous way by different information sources.

HiMAT addresses the above problem by considering
that agents dynamically acquire knowledge about the
domain. Moreover, the tuple centres of a domain can be
programmed to dynamically provide agents with a uniform

view of the resources they access. This allows agents to
adopt the same, straightforward interaction protocol,
independently of the (architecture of) their current hosting
node, and makes it possible to deal with heterogeneity. Let
us suppose agents ask both books  tuple centres for tuples
bookTitle( Title ) . On the one hand, the
maglibrary  tuple centre can be programmed to
dynamically produce a tuple representing a DBMS query,
put it into the tuple centre, get the consequent answer tuple,
and translating it into tuples of the form
bookTitle( Title ) . On the other hand, the
magvarious  tuple centre can be programmed to
dynamically transform the tuples in the form
book( Author , Title )  already stored into tuples of
the form bookTitle( Title ) .

maglibrary
place

DBMS other

books tuple centre

mag gatewayFigure 3a: the bookreader:ordinary view

bookreader:ordinary
agents

tuple collection

books tuple centre

magvarious
place

 CS DOMAIN

Lab1 domain csStaff
place

mag domain

cs gateway

 bookreader
agent

magvarious
place

maglibrary
place

MAG DOMAIN

default tuple centre

Figure 3b: the bookreader:advanced view

books tuple centre

DBMS other

magvarious
place

tuple collection

maglibrary
place

bookreader:advanced
agents

books tuple centre

 CS DOMAIN

Lab1 domain csStaff
place

mag domain

cs gateway

 bookreader
agent

magvarious
place

maglibrary
place

MAG DOMAIN

default tuple centremag gateway

Figure 3: An example of HiMAT application space

5 Related works

Despite the great deal of activity in the mobile agent area
[17], only a few proposals focus on the definition of a
comprehensive model extensively supporting the migration
of agents in a structured environment and the coordination
of their interaction with information resources.

Most of the systems focus on how to support mobile
agent applications to allow agent motion in the unstructured
Internet network, thus generally assuming flat (single-level)
architectures (Aglets [19], Ara [24], D'Agents [14],
Jumping Beans [1]). Telescript [26] proposes a limited form
of hierarchy (i.e. Telescript's nested places), whose goal is
simply to provide a mechanism to manage policies with
raising degrees of security on the same interpreter, called
engine. Differently from HiMAT, Telescript does not



exploit its nested places to develop a hierarchical topology
mapping both the organisation structure and the application
spaces.

As far as security is concerned, all the systems cited
above support traditional cryptographic mechanisms and
exploits general-porpoise protocols [25, 27]. They also
define basic solutions to deal with authorisation by means
of resource access control lists [1] and credentials (called
allowances in Ara). Basic security mechanisms could be
sufficient to develop some applications in unstructured
environments. However, when considering more complex
scenarios, we argue that security should be strictly
integrated with the organisation topology and exploited to
define protocols to rule the motion of agents within the
organisation network. In this paper we only sketched the
HiMAT security model, which exploits all the mechanisms
usually employed for Internet applications and integrates
them with tuple centres and the gateway hierarchy. The
actual definition and formalisation of HiMAT security
support is in progress.

To the best of our knowledge, the only proposals
which addresses the issue of the hierarchical structure of
many Internet application domains and explicitly models
the migration of active entities across protected domains are
Ambit [6] and Discovery [20]. However, both the above
models fall short in supporting agent exploration and in
providing for suitable coordination abstractions.

More in general, the lack of appropriate coordination
models is a common weakness of several today's mobile
agent systems. Most of them rely on message passing for
inter-agent communication and on the client-server model
for access to the local information system [17]. As already
discussed in this paper, these approaches often do not suit
Internet applications based on mobile agents. The notion of
programmable coordination medium [10], exploited by
TuCSoN in HiMAT, has been already applied in the ACLT
system, which exploits programmable tuple spaces for the
coordination of distributed applications based on intelligent
heterogeneous agents [11]. In the context of mobile agents,
MARS [3] adopts programmable tuple spaces for mobile
agent coordination. Developed in the context of an
affiliated project, MARS is mostly oriented to network
management duties, rather than to handle accesses to highly
dynamic and heterogeneous information sources. The
PageSpace project [7] aims to define a general architecture
for the coordination of Internet agents: interactions occur
via Linda tuple spaces that are not programmable in itself.
Instead, special-purpose agents are provided, which are
capable of accessing the space permits and changing its
content to influence the coordination activity of the
applications agents. The ActorSpace model [15] provides a
comprehensive framework for building agent ensembles
which addresses the coordination issue explicitly, but
provides no support for agent exploration. However, none
of the above coordination systems addresses in an
integrated way the issues of authentication and

authorisation in the accesses to the coordination media,
which is instead one of the key–features of HiMAT.

6 Conclusions

HiMAT provides a comprehensive and uniform solution to
several critical problems raising when designing and
developing mobile agent applications, such as topology,
authentication, authorisation and coordination. This is
achieved by exploiting both locality abstractions for
modelling agent's motion through application domains, and
programmable communication abstractions for managing
agent's interaction.

At the time of writing, we are completing the
implementation of a mobile agent system fully supporting
the HiMAT model. This system is being implemented by
integrating the Java implementations of the MA mobile
agent system (which also provides for MASIF compliance
[22]) and TuCSoN. Further work will be devoted to a
deeper investigation of the issues of the HiMAT security
and access control models, as well as on the identification
of suitable high-level design patterns for mobile agent
applications to be used for HiMAT application development
[2].

Acknowledgements: This work has been supported by the
Italian Ministero dell'Università e della Ricerca Scientifica
e Tecnologica (MURST) in the framework of the Project
"MOSAICO: Design Methodologies and Tools of High
Performance Systems for Distributed Applications".

References

1. Ad Astra Engineering, Inc., Jumping Beans White Paper,
December 1998. http://www.AdAstraEng.com/

2. Aridor, Y., Lange, D.B., Agent Design Patterns: Elements of
Agent Application Design, Proceedings of Autonomous
Agents ’98, ACM Press, 1998.

3. Cabri, G., Leonardi, L., Zambonelli, F., Reactive Tuple Spaces
for Mobile Agent Coordination, 2nd International Workshop on
Mobile Agents, Lecture Notes in Computer Science, vol.
1477, 237-248, Springer-Verlag, Sept. 1998.

4. Cabri, G., Leonardi, L., Zambonelli, Coordination Models for
Internet Applications based on Mobile Agents, IEEE
Computer, 1999, to appear.

5. Carriero, N., Gelernter, D., Linda in Context, Communications
of the ACM, 32(4):444-458, 1989.

6. Cardelli, L., Gordon, A., Mobile Ambients, Foundations of
Software Science and Computational Structures, Lecture
Notes in Computer Science, vol. 1378, 140-155, Springer-
Verlag, 1998.

7. Ciancarini, P., et al., Coordinating Multiagent Applications on
the WWW: A Reference Architecture, IEEE Transactions on
Software Engineering, 24(5):362-375, May 1998.

8. Corradi, A., Cremonini M., Stefanelli, C., Locality
Abstractions and Security Models in a Mobile Agent
Environment, 7th IEEE Workshops on Enabling Technologies:
Infrastructure for Collaborative Applications, Stanford (CA),
June 1998.



9. Cremonini, M., Omicini, A., Zambonelli, F., Modelling
Network Topology and Mobile Agent Interaction: an
Integrated Framework, Proceedings of the 1999 ACM
Symposium on Applied Computing, 410-412, San Antonio
(TX), Feb. 1999.

10. Denti, E., Natali, A., Omicini, A., Programmable Coordination
Media, Proceedings of the 1997 Conference on Coordination
Languages and Models, 274-288, Berlin (D), 1997.

11. Denti, E., Natali, A., Omicini, A., On the Expressive Power of
a Language for Programming Coordination Media,
Proceedings of the 1998 ACM Symposium on Applied
Computing, 169-177, Atlanta (G), 1998.

12. Fuggetta, A., Picco, G., Vigna, G., Understanding Code
Mobility, IEEE Transactions on Software Engineering,
24(5):342-361, May 1998.

13. Gelernter, D., Carriero, N., Coordination Languages and their
Significance, Communications of the ACM, 35(2):97-107,
Feb. 1992.

14. Gray, R., Kotz, D., Cybenko, G., Rus, D., D'Agents: Security
in a Multiple-Language, Mobile-Agent System. 4th Workshop
on Mobile Object Systems: Secure Internet Mobile
Computations, Brussels (B), July 1998

15. Jamali, N., Thati, P., Agha, G. A., An Actor-based
Architecture for Customising and Controlling Agent
Ensembles, IEEE Intelligent Systems, Special Issue on
Intelligent Agents, 1999, to appear.

16. Karjoth, G., Lange, D., Oshima, M., A Security Model for
Aglets, IEEE Internet Computing, 1(4), July/August 1997.

17. Karnik, N. M., Tripathi, A. R., Design Issues in Mobile-Agent
Programming Systems, IEEE Concurrency, 6(3):52-61, July-
Sept. 1998.

18. Lampson, B., Abadi, M., Burrows M., Wobber, E. P.,
Authentication in Distributed Systems: Theory and Practice,

ACM Transactions on Computer Systems, 10(4):265-310,
November 1992.

19. Lange, D., Oshima, M., Programming and Deploying Java
Mobile Agents with Aglets, Addison-Wesley Longman, Inc.,
1998.

20. Lazar, S., Weerakoon, I., Sidhu, D., A Scalable Location
Tracking and Message Delivery Scheme for Mobile Agents,
7th IEEE Workshops on Enabling Technologies: Infrastructure
for Collaborative Applications, Stanford (CA), June 1998.

21. Lea, D., Nagaratnam, N., Role-based Protection and
Delegation for Mobile Object Environments, 4th Workshop on
Mobile Object Systems: Secure Internet Mobile
Computations, Brussels (B), July 1998.

22. Milojicic, D., et al., MASIF The OMG Mobile Agent System
Interoperability Facility, 2nd International Workshop on Mobile
Agents, Lecture Notes in Computer Science, vol. 1477, 50-67,
Springer-Verlag, Sept. 1998.

23. Omicini, A., Zambonelli, F., Coordination of Mobile
Information Agents in TuCSoN, Journal of  Internet Research,
8(5):400-413, 1998.

24. Peine, H., Stolpmann, T., The Architecture of the Ara
Platform for Mobile Agents, Lecture Notes in Computer
Science, vol. 1219, 50-61, Springer-Verlag, 1997.

25. Sander, T., Tschudin, C.F., Towards Mobile Cryptography,
IEEE Symposium on Security and Privacy, May 1998.

26. White, J. E., Telescript Technology Mobile Agents, General
Magic White Paper, 1996.

27. Wilhelm, U., Staamann, S., Buttyan, L., Protecting the
Itinerary of Mobile Agents, 4th Workshop on Mobile Object
Systems: Secure Internet Mobile Computations, Brussels (B),
July 1998.


