Environment in Agent-Oriented Software
Engineering Methodologies

Ambra Molesini
ALMA MATER STUDIORUM—Universita di Bologna
viale Risorgimento 2, 40136 Bologna, Italy
ambra.molesini@Qunibo.it

Andrea Omicini, Mirko Viroli
ALMA MATER STUDIORUM—Universita di Bologna a Cesena
via Venezia 52, 47023 Cesena, Italy
andrea.omicini@unibo.it, mirko.viroli@unibo.it

Abstract

The key role of environment as a first-class abstraction in the engineer-
ing of MAS (multi-agent systems) is today generally acknowledged in the
MAS community. However, the support for the notion of environment in
today AOSE (agent-oriented software engineering) methodologies is still
either absent, weak, or incomplete at best.

In this paper we first review, classify and compare existing AOSE
methodologies according to their support for the notion of MAS environ-
ment. Then we suggest a general approach for extending existing AOSE
methodologies toward full environment support.

1 Introduction

Different perspectives exist on the role that environment plays within agent sys-
tems: however, it is clear at least that all non-agent elements of a multi-agent
system (MAS) are typically considered to be part of the MAS environment.
Such elements typically include databases, Web services, communication infras-
tructures, physical devices, as well as the topology of the physical or virtual
spatial domain [45]. Current practice in MAS considers the environment as an
implicit part of the MAS that is often dealt with in ad hoc way. Indeed, follow-
ing [45], we think that the environment should be considered as an ezplicit part
of MAS, to be modelled and designed as a first-class abstraction. Along this
line, MAS environment should be explicitly accounted for in the engineering of
MAS, working as a new design dimension for agent-oriented software engineering
(AOSE) methodologies.

While this general perspective on MAS environment is commonly shared
in the agent community [46], today AOSE methodologies actually provide lit-
tle or even no support to the modelling and design of MAS environment: for
instance, a number of them—such as PASSI [7] and INGENIAS [34]—just sup-
port environment modelling, while others do not consider MAS environment at

all. Even more, it is often difficult to understand how the concept of environ-
ment is actually supported by AOSE methodologies, also in the cases when it is
explicitly mentioned. In the PASSI meta-model, for instance, the modelling of
environment—from the agent’s viewpoint—is somehow “hidden” in the ontology
description, and is scarcely highlighted; then, typical environmental elements
like physical resources are represented as mere agent-related entities and are
strangely not related to the ontology description. At the best of our knowledge,
currently only three methodologies, SODA [25], OperA + Environment [9] and
ADELFE [3], provide explicit support for both modelling and design of the en-
vironment in a MAS: however, each of them introduces its own characterisation
of the environment, its constituents and topology.

Since a commonly shared viewpoint is lacking, it is seemingly useful first
of all to analyse several AOSE methodologies studying the support they pro-
vide for the environment. The aim of this study is to understand how the
different AOSE methodologies model and design the environment, and what
environment abstractions and topology abstractions they provide. Hence, our
aim here is not to present a general-purpose survey of AOSE methodologies,
but rather to review the most relevant representatives by adopting the environ-
ment viewpoint—understanding if and how they deal with the engineering of
MAS environment, in fact. As our first contribution, in this paper we classify
AOSE methodologies in three different groups: (strong-env) strong environment
viewpoint—methodologies that support both modelling and design of MAS envi-
ronment; (weak-env) weak environment viewpoint—methodologies that support
only the modelling of MAS environment; (no-env) no environment viewpoint—
methodologies that do not explicitly model MAS environment. Accordingly, we
first characterise the notion of environment in MAS (Section 2), then we detail
our classification of AOSE methodologies (Section 3).

Next, we focus on the second contribution of this paper: in Section 4, we
show how an explicit notion of MAS environment could be generally introduced
in any AOSE methodology. Starting from no-env AOSE methodologies, we
suggest how to transform them in weak-env methodologies (Subsection 4.2),
and subsequently in strong-env methodologies (Subsection 4.3). Related works
are presented in Section 5, then conclusions and future works follow in Section 6.

2 Environment

The MAS approach to software development is based on the idea of modelling
software as a composition of autonomous entities, i.e. agents, situated in a com-
mon computational and/or physical environment, and interacting with each
other and with resources in order to achieve individual and social goals.
Traditionally, the environment of a multi-agent system is however consid-
ered simply as the deployment context where agents are immersed in—which
includes e.g. the communication infrastructure, the network topology, the phys-
ical resources available. In this case, the environment of a MAS is basically
considered as an output of system analysis, and designers are passively subject
to it. On the other hand, it is now increasingly recognised that the environment
is a true design dimension of multi-agent applications [45]. It can encapsulate a
significant portion of the system’s complexity, in terms of services, mechanisms
and responsibilities that the agents can fruitfully be freed of. So, along the line

of [42], in this paper we adopt a notion of environment that is not limited to
the external (MAS) environment — the deployment context where the MAS has
to work within —, instead we mostly focus on the agent environment, that is,
the portion of the MAS that is external to the agents, but is anyhow part of the
MAS and subject to the work of MAS engineers.

Accordingly, as far engineering is concerned, we recognise at least two main
ingredients shaping the agent environment, which will be describe in detail in
this section: environment abstractions—entities of the environment encapsulat-
ing some functions—and topology abstractions—entities of MAS environment
that support the (either logical or physical) spatial structure.

2.1 Environment Abstractions

Following the work in [42], we start by considering a meta-model for MAS
where the agent abstraction is not the only one populating the MAS: rather,
we see also the MAS environment as decomposed in building blocks we call
environment abstractions. An environment abstraction is an entity of the MAS
environment encapsulating some functions or services for the agents. An agent
perceives the existence of such abstractions in the environment, and it has a
(possibly implicit) awareness of the opportunities they provide, and accordingly
interacts with them in order to achieve individual as well as social goals. From
the development viewpoint, environment abstractions are seen as loci where the
designer can enforce rules, norms, and functions, regulating the agent social
behaviour.

The notion of environment abstraction is a means for interpreting a number
of components and entities that existing researches in the MAS context intro-
duced which populates the MAS environment, both at the conceptual and at
the implementation levels—all of them sharing the idea of being the target of
agent interaction. Most existing infrastructures for agent environment are in
fact seen as providing some incarnation of environment abstractions for the ap-
plication at hand. Examples include tuple centres in TuCSoN [31], co-fields in
TOTA [24], shared virtual environments of the automatic guided vehicles appli-
cation in [47], stigmergic fields of the infrastructure for military operations in
[38], e-institution scenes in AMELI [15], and so on.

Figure 1 provides a visualisation of how the concept of environment ab-
straction fits the different layers of a MAS—as discussed in detail in [42] [48].
At the lower layer the whole MAS (agents and environment) is immersed in
a software and hardware deployment context; at the middleware layer, agent
infrastructures (e.g. Jade [21]) are coupled with environment infrastructures—
TOTA, TuCSoN, and the other above mentioned ones. At the application layer,
while the former provides the agent abstraction (circles in the picture) —agent
life-cycle, and typically direct agent communication—the latter provides en-
vironment abstractions (boxes in the picture), with which agents interact by
an action/perception mechanism resembling more closely physical action rather
than communication.

2.2 Topology Abstractions

Other than considering the various abstractions populating the environment, it
is also useful to consider its spatial structure, or topology. In particular, abstrac-

S Application Agents Application Environment
5 .
s Application
< Specific
‘{(’ Logic
=
Agent Middleware / : MAS
€ Action i i)
k5 Infrastructures Perception Environment Middlewares | yiqdieware
= / Infrastructures Layer
o
S e
=
3 sw
w Operating Systems, Virtual Machines & Other Middlewares | Deployment
Context
ERS Hardware & Network HW
3 S Deployment
£a Physical World ‘ Context

Figure 1: MAS layers with environment-based supports [42] [48]

tions that support topology as a first-class notion should be eventually consid-
ered part of AOSE methodologies—which is what we call topology abstractions.
As a general definition, a topology is seen as a collection of neighbourhood sets,
providing a structured notion of locality for the MAS, from local aspects up
to the whole shape of the MAS. When considering a MAS as made of situated
agents and environment abstractions, it is then natural to conceive MAS topol-
ogy as a collection of sets of agents and environment abstractions. This affects
notions like visibility among agents — whether an agent can see and communicate
with another one —, visibility between agents and environment abstractions —
whether an agent can see and interact with an environment abstraction —, and
agent mobility—which new neighborhhod can be reached by an agent. This
concept is rather important in MAS, because the visibility and accessibility of
other entities strictly identifies which goals can be delegated (to other agents),
and which services can be obtained (by environment abstractions), ultimately
defining agent capability of achieving its goals. In many cases, the concept of
topology is tied with the physical structure of the deployment context, including
both the network topology and the real physical environment—as in the case of
robot environment—but in general it can suitably take into account a virtual
notion of space.

As an example we consider two MAS infrastructures from the literature,
TOTA [24] and CArtAgO [37], which explicitly deal with the notion of envi-
ronment topology. In TOTA the environment is seen as a dynamic network
of nodes, hence its structure is determined by the neighbourhood relations.
TOTA assumes networking capability for recognising connection and disconnec-
tion events. The specific nature of the network scenario determines how each
node can found its neighbours, and the overall logical structure of the TOTA
network. Nodes host agents, which can move step-by-step, and each node has
a local tuple space abstraction used to support the fabric of co-fields.

CArtAgO is a general-purpose infrastructure for environments, based on arti-

facts as an incarnation of the notion of environment abstraction—following the
A&A meta-model [36]. CArtAgO adopts the concept of workspace as a topology
abstraction that can be used to define the topology of the computational envi-
ronment. A workspace can be defined as an open set of artifacts and agents:
artifacts can be dynamically added to or removed from workspaces, agents can
dynamically enter or exit workspaces. A workspace is typically spread over
the nodes of an underlying network infrastructure. Workspaces define topolo-
gies to structure agents and artifacts organisation and interaction, in particular
workspaces are used as scopes for event generation and perception.

We note that even though the interplay between environment abstractions
and topology abstractions can be considered as a key point in the modelling and
design of the environment, existing MAS approaches generally do not explicitly
take into account either of them [2]. This happens in spite of the fact that a
large class of problems is characterised by unavoidable spatial features—several
domains deal with space itself (e.g. geographical location) or a model of it (e.g.
information flow in an organisational structure)—and by non-autonomous com-
putational entities in the environment playing a significant role in the overall
MAS goals. In particular, very few AOSE methodologies provide an explicit
support for this sort of environment representation.

3 AOSE Methodologies & Environment

In this section we review some of the most significant AOSE methodologies
according to their approach to the engineering of MAS environment. First of all
we classify the methodologies in three different groups, and explain the rationale
of this choice (Subsection 3.1). Then we overview the methodologies according
to the previous classification. In particular, Subsection 3.2 presents the so-called
strong-env methodologies, Subsection 3.3 illustrates weak-env methodologies,
while no-env methodologies are presented in Subsection 3.4.

3.1 Classification of AOSE Methodologies

As mentioned in the introduction, one of the goals of this paper is to study
AOSE methodologies in order to understand how they deal with the engineering
of MAS environment. In particular, we focus on how methodologies model and
design the environment, and on what kind of environment abstractions and
topology abstractions they provide MAS engineers with. Among the many
methodologies proposed in the AOSE field, in this paper we review a significant
set of them, including Gaia [52][51], PASSI [7][8], Tropos [18][4], Prometheus
[33][32], ADELFE [3][35], MESSAGE [5][17], INGENIAS [34][20] MaSE [11][49],
ROADMAP [22], OperA+Environment [9] and SODA [26][25].

Each of these methodologies has obviously its own strengths and drawbacks.
For example, Tropos is a good methodology for the requirements capturing and
analysis but it does not consider environment engineering, while SODA is good in
the environment engineering but does not say enough on requirements capturing.
In this paper, however, our aim is not to present a classical, general-purpose
survey and comparison of methodologies. Rather, we stick to the viewpoint
of engineering MAS environment, and try to provide the reader with a clear
overview of how existing AOSE methodologies deal with it. So, our classification

should not be taken as a statement of why a certain methodology is better
or worse than another, but just as a measure of how much it supports MAS
engineers in dealing with the environment.

Accordingly, though AOSE methodologies are quite heterogeneous, in this
paper it is obviously useful to classify them according to the extent by which
they tackle environment in MAS:

strong-env Strong environment viewpoint: this kind of methodologies allow
MAS engineers to both model and design the environment at every stage
of the methodology.

weak-env Weak environment viewpoint: methodologies belonging to this cat-
egory take into account only the modelling of the environment.

no-env No environment viewpoint: in short, these methodologies do not con-
sider environment at all, at least explicitly.

The difference between strong-env and weak-env methodologies is crucial here:
in the former case, MAS engineers can fully design the environment through
suitable dedicated abstractions provided by the methodology; in the latter case,
environment structure and behaviour are taken as given a priori, and MAS engi-
neers can only model them. In other terms, weak-env methodologies mostly deal
with a notion of MAS environment as the external environment, while strong-
env methodologies typically recognise the existence of an agent environment
within a MAS that can be suitably modelled and designed.

3.2 Strong-Env Methodologies

Methodologies in the strong-env category promote MAS environment as a first-
class abstraction [45] in the modelling and design of MAS since the early phases
of the development process. In this category we find ADELFE, SODA and
OperA+Environment.

3.2.1 ADELFE

ADELFE [3][35] has the Rational Unified Process (RUP) [23] tailored to take
into account specificities of the design of adaptive MASs. In particular, the
environment is studied since the WorkDefinition 2 (WD2, Final Requirements)
stage, where MAS environment is characterised in terms of the entities (pas-
sive or active) that interact with the MAS. An active entity can behave au-
tonomously and is able to dynamically interact with the system, instead a pas-
swe entity can be considered as a resource exploited by the system, which
cannot change in an autonomous way (these will later become objects of the
environment). In the subsequent stage, MAS context is studied through the
interactions between the entities and the system. Finally, the environment is
described in the terms of accessibility, continuity, determinism and dynamism.

In the WD3 (Analysis) stage, active entities are split in two sets: cooperative
entities (that will become agents), and the active entities that autonomously
evolve without having a goal. The latter are autonomous resource or active ob-
jects, and will remain simple objects in the environment. Afterwards, in WD3
interactions between entities (passive and active) are designed by means of stan-
dard UML [41] sequences or collaboration diagrams, as advised by RUP. Then,

the design of “environment abstractions” (passive and active entities) is done
according to the RUP guidelines, determining packages, classes and using tradi-
tional design patterns. This implicitly defines the behaviour of the environment
abstractions. Also, the topology of environment is implicitly defined by means
of an agent’s internal module called “representation module”, which enables
agents to create their own representation of the environment it perceives, and
also by means of the study of MAS context in WD2.

3.2.2 SODA

SODA [25]]26] is a methodology that focuses on interaction-related issues, like
the engineering of societies and environments for MASs. In SODA the environ-
ment is studied since the requirement analysis step, where it is first characterised
in terms of the “legacy systems” with which the MAS is required to interact. The
abstract entity relation is there used to model the relationship among require-
ments and legacy systems. In the analysis step, the environment is modelled
by means of functions, reactive activities that aimed at supporting other active
activities (called tasks). Functions can either come from the legacy-system en-
tities, or be designed ex-novo starting from the requirements. The structure of
the environment is also modelled in terms of topologies, which are topological
constraints over the environment. In particular, topologies could be also derived
from functions, and could influence the achievement of the MAS tasks. In the
analysis step the interactions among tasks and functions (and among functions
themselves) are captured by means of dependencies that represent any sort of
relationship among the abstract entities.

Then, in the architectural design stage, functions are assigned to re-
sources (which are the abstractions providing functions by means of operations),
topologies generate workspaces [37], and dependencies generate interactions.
Workspaces are conceptual loci in the environment. An operation is charac-
terised by a name and a set of parameters; roles (entities responsible for the
achievement of tasks) interact with resources, allocated in the workspaces per-
ceived by roles, by invoking operations and observing events generated from
them. Interactions are defined as rules, which aim at enabling and bounding
both the behaviour of the abstract entities (roles and resources) and the space
of interactions.

Finally in the detailed design, resources are assigned to artifacts [29]. In
addition also the interactions are mapped onto artifacts. As a result, artifacts
construct and bound the space of interactions among agents and between agents
and other artifacts, and allow agent societies to be engineered. Workspaces
are the same defined in analysis phase, but in this phase a workspace can be
defined as an open set of artifacts and agents: artifacts can be dynamically
added to or removed from workspaces, agents can dynamically enter (join) or
exit workspaces.

3.2.3 OperA + Environment

The OperA+Environment approach [9] adopts the analysis from OperA [14],
a methodology that uses organisation structures and provides for open agent
systems. The authors have refined the OperA with the introduction of the
environment model and of the design phase.

Environment Behaviour of | Interaction Topology
Abstractions Abstractions Abstractions
ADELFE passive and implicitly explicitly implicitly
active objects designed designed defined
SODA legacy-systems, functions, explicitly explicitly workspaces
resources and artifacts designed designed
OperA + resources, services and explicitly explicitly | not supported
Environment coordination facilities designed designed

Figure 2: Strong environment viewpoint in AOSE methodologies

The environment model in the analysis phase specifies the resources that are
available for the agents, like databases, etc. The model also specifies the avail-
able services. These can be like white or yellow pages, but also the Mathematica
package that supports all kinds of calculations. In the model also specifies the
way the system can interact with the environment.

In the design phase the Infrastructure Model makes use of the design models
from two existing methodologies: SODA [27] and Gaia [50]. This model consists
of a resource model, a service model, and a model of coordination facilities. Each
resource model contains a specification of the resource (e.g. document, database,
or library) in terms of various qualities and quantities, access permissions, and
admissible actions. The service model defines which services (e.g. any activity
that processes information) can be delivered to a certain service request. The
services can be defined as abstract operations in terms of input and output
functionality. For each service, the model specifies the permissions needed to
use the service by an agent playing a certain role. It also specifies the quality
of service, such as the maximal delay in providing the service, the format of
messages it can process, and the protocols it can support. Finally, coordination
facilities are mechanisms that can be used by the agents to coordinate their
activities. Examples are synchronization, tuple spaces, subscribe notify design
pattern, or various types of protocols.

3.2.4 Strong-env Methodologies at a Glance

Table 2 summarises how the methodologies support the key elements of strong
environment viewpoint, and classifies them along four dimensions: environment
abstractions, behaviour of abstractions, interaction, and topology abstractions.

3.3 Weak-Env Methodologies

Methodologies in this category take into account the environment as an entity
which is given a priori, which MAS engineers can only model. Environment
modelling may occur at different stages of methodologies. In this category we
find Gaia, PASSI, MESSAGE, INGENIAS, Prometheus, and ROADMAP.

3.3.1 Gaia

Gaia [51][52] drives the designer in the development of MAS by means of the
identification of several organisational models and the interaction among them.
In Gaia, MAS environment is studied since the analysis phase, in particular the

environmental model is intended to make explicit the features of the environ-
ment in which the MAS will be immersed. The identification and modelling
of the environment involves determining all the entities and resources that the
MAS can exploit. Gaia suggests treating the environment in terms of abstract
computational resources (such as variables or tuples) made available to agents
for sensing, effecting or consuming. Following such identification, the environ-
mental model can be viewed as a list of resources characterised by the type of
the actions that the agents can perform on it. In the preliminary role model
roles are related to environment by means of permissions. Permissions discipline
how roles can access to environmental resources and possibly change or consume
them. In order to represent permissions, Gaia adopts the same notation used
for environmental resources. However, the attributes associated with resources
no longer represent what can be done with such resources (i.e., reading, writing,
or consuming) from an environmental perspective, but rather what the agents
playing the role are be allowed to do (or not to do) to accomplish the role’s
goal(s).

In the architectural design, the preliminary role model is completed by the
addition of roles generated by the architectural choice. For each new role, per-
missions associated to environmental resources are defined. In the detailed
design, agents are associated with roles, so that agents are related to environ-
mental resources.

3.3.2 PASSI

PASST (Process for Agent Societies Specification and Implementation, [7][8]) is
a step-by-step methodology for the design and development of multi-agent so-
cieties. In PASSI, the environment is studied since the Agent Society Model, in
particular in the Ontology Description Phase. In the Domain Ontology Descrip-
tion, agents know the environment through the abstractions of Concepts (cate-
gories, entities of the domain), Predicates (describing the state of the instance of
concepts that actually occur in the environment), and Actions (performed in the
domain), along with their mutual relationship. In the Communication Ontology
Description the agent interactions are represented: in each communication, it
is important to introduce the proper data structures (selected from elements
in Domain Ontology Description) within each agent in order to store the ex-
changed data. In the PASSI meta-model the concept of Resource also appears,
which represents a tangible entity of the environment with which agents can
interact, and which is a part of agents’ environment awareness. This concept
only relates with agents, and no relation exists with ontology elements.

In the Role Description Phase PASSI introduces a relationship called Re-
source Dependency: a role depends on another for the availability of an entity
(indicated by a resource name). However, it is unclear whether this resource is
the same that appears in the meta-model.

3.3.3 MESSAGE

MESSAGE [5, 17] has adopted the Rational Unified Process (RUP) as a generic
software engineering project lifecycle framework. MESSAGE adopts the ab-
straction of Resource as a Concrete Element in the system. Resource is used
to represent non-autonomous entities such as databases or external programs

used by Agents. Standard object-oriented concepts are adequate for modelling
Resources.

Then, in the analysis phase, several views take into account the concept of
resource. In particular the Organisation view shows Concrete Entities (Agents,
Organisations, Roles, Resources) in the system and its environment, as well as
coarse-grained relationships between them (aggregation, power, and acquain-
tance relationships). An acquaintance relationship indicates the existence of at
least one Interaction involving the entities concerned. In addition, the Domain
view shows the domain specific concepts and relations that are relevant for the
system under development. The Agent/Role view specifies for each agent/role
what resources it controls.

The purpose of the design phase is to define computational entities that
represent the MAS appearing at the analysis level. Analysis entities are thus
translated into subsystem, interface, classes, operation signatures, algorithms,
objects, object diagrams, and other computational concepts.

3.3.4 INGENIAS

INGENIAS [20][34] provides a notation for modelling MAS, and a well-defined
collection of activities to guide the development process of MAS from tasks to
code generation. INGENIAS uses the concept of viewpoint as MESSAGE. Each
viewpoint in INGENTAS is constructed following two sets of activities structured
into activity diagrams: one set aims at elaborating the view at the analysis
level, whereas the other focuses on the design. In particular the Environment
Viewpoint defines the entities with which the MAS interacts, which could be
Resources (such as CPU, File Descriptors or memory), Other Agents (from
existing organisations), and Applications (expressing the perception and action
of the agents, producing the events that can be observed).

In the Development Process INGENIAS suggests to identify in first place all
the software systems (usually non-agent based) that will coexist with the MAS.
By using the environmental model, it is possible to consider dependencies—in
terms of agents’ perceptions and actions—with legacy and proprietary systems
from the beginning.

3.3.5 Prometheus

Prometheus [32][33] is intended to be a practical methodology: it aims at being
complete and detailed, and to be usable by industrial software developer. In
Prometheus the environment is modelled since the System Specification phase.
In particular, the environment is defined by describing the percepts available to
the system, the actions that it will be able to perform, and any external data
that are available as well as any external bodies of code.

In the Architectural Design phase the environment appears in the design of
the overall structure of the systems: the overview diagram captures the agent
types, the boundaries of the system, and its interface in terms of actions and
perceptions, but also in terms of data and code that are external to the system.

In the Detailed Design phase the overview diagram is used to develop inter-
nals of agents and interaction protocols.

10

Environment Abstractions | Topology Abstractions
Gaia abstract computational not supported
resources
PASSI resource, concepts, not supported
predicates and actions
MESSAGE resources not supported
INGENIAS resources, other agents not supported
and applications
Prometheus actions, perceptions, not supported
external data and code
ROADMAP | static objects and objects | zones, zones schema,
constraints

Figure 3: Weak Environment Viewpoint in AOSE methodologies

3.3.6 ROADMAP

The ROADMAP [22] methodology extends the first version of Gaia with sev-
eral features: support for requirements gathering, explicit models to describe
the domain knowledge and the execution environment, levels of abstraction dur-
ing the analysis phase, to allow iterative decomposition of the system, explicit
models and representations of social aspects and individual agent characteris-
tics, from the analysis phase to the final implementation, runtime reflection,
modelling mechanisms to reason and change the social aspects and individual
agent characteristics at runtime. The environment model is proposed to provide
a holistic description of the system environment and provides both the environ-
ment abstractions and the modelling of the topology. By formally describing
the environment, the authors create a knowledge foundation on which environ-
ment changes are handled consistently. The environment model is derived from
the use-case model. The model contains a tree hierarchy of zones in the envi-
ronment, and a set of zone schema to describe each zone in the hierarchy. A
zone schema includes a text description of the zone, and the following attributes:
static objects, objects, constraints, sources of uncertainty and assumptions made
about the zone. Static objects are entities in the environment whose existences
are known to the agents, with which the agents do not interact explicitly. Ob-
jects are similar entities with which agents interact. Sources of uncertainty in
the environment are identified and analysed. The zone hierarchy uses OO-like
inheritance and aggregation to relate zones and various objects inside zones.

3.3.7 Weak-env Methodologies at a Glance

Table 3 summarises the environment-related abstractions adopted by weak-env
methodologies. This table, unlike Table 2, only presents environment and topol-
ogy abstractions, while other columns are omitted: the behaviour of the ab-
stractions is omitted because here MAS environment is only modelled and not
designed, while interaction is omitted because it is explicitly designed in every
methodology.

11

3.4 No-Env Methodologies

Methodologies in this category do not deal with the concept of MAS environ-
ment. Tropos and MaSE can be taken as the representatives of this category.

3.4.1 Tropos

Tropos [4][18]is a requirements-driven methodology and adopts the abstractions
offered by i*, a modelling framework proposing concepts such as actor (actors
can be agents, positions or roles), as well as social dependencies among actors,
including goal, softgoal, task and resource dependencies. These concepts are
used in all software development phases of Tropos, from the early requirements
analysis down to the actual implementation. Resources are always involved in
dependencies among actors. A resource is not an abstraction that models the
environment, instead it could be thought of as an item for knowledge exchange
among actors: more precisely, a resource represents a physical or an informa-
tional entity that one actor may want and another could deliver.

3.4.2 MaSE

MaSE [11][49] guides a designer through the software lifecycle from a prose spec-
ification to an implemented agent system. MaSE is independent of a particu-
lar MAS architecture, agent architecture, programming language, or message-
passing system. The abstractions used by MaSE are goals, tasks, roles and
agents. Each goal is associated to the role that achieves it. Any mention of sep-
arate machines or other forms of distribution requires one role for each “side”
of the distributed relationship. Interfacing with an external source is the same.
One role may interface with the source while another may be required to bridge
the gap back to the system. This is also true for any database, file interface, or
user interface in the system. A user interface implies a role by itself, and should
be separated from other roles as if it were a distinct data source. Then role are
assigned to agents—so in the end everything is an agent in MaSE.

3.4.3 No-env Methodologies at a Glance

In this subsection we have shortly reviewed two different examples of method-
ologies that do not explicitly consider the environment, yet. Typically in this
kind of methodologies the environment is not totally forgot, instead it is typi-
cally represented by means of agents—so, not as a first-class entity. A common
viewpoint that we share [45] is that using agents for modelling everything means
somehow to pervert the nature of the agent abstraction itself. For instance, the
agent abstraction is not the most suitable one for modelling resources, for which
crucial agent concepts like autonomy and proactiveness simply do not apply.

4 Introducing Environment in AOSE Method-
ologies through Artifacts
In this section we present a viable approach to introducing the notion of en-

vironment within existing AOSE methodologies. First of all, we identify some
environment-related abstractions among the existing AOSE methodologies and

12

MAS infrastructures that could be general enough to fit most methodologies
(Subsection 4.1). Among the available alternatives, in this paper we experi-
ment with the abstractions introduced by the A&A meta-model [36] — namely,
artifacts and workspaces—, which are adopted by the SODA methodology, and
provided by the CArtAgO infrastructure. While this choice is obviously not the
only possible, in the remainder of this section we discuss how AOSE method-
ologies can be extended with artifacts and workspaces to generally deal with
the engineering of environment in MAS. We also suggest that this approach is
potentially applicable to every AOSE methodology, since it does not requires
many changes: the only modifications required concern the design of the inter-
action protocols that tie the agents to the environmental entities, and obviously
also the insertion of the proposed environmental models into all the phases of
the methodology to be extended

In the discussion that follows, we keep no-env and weak-env methodologies
distinct: whereas they both do not have a complete handling of environment,
they have anyway a different approach toward it. So, in the next subsections
we first show how to introduce environment in no-env methodology (Subsec-
tion 4.2), then discuss how to transform a weak-env methodology in a strong-env
one (Subsection 4.3).

4.1 Environment and Topology Abstractions

When dealing with the introduction of the environment in a methodology, the
first issue to consider is the choice of the most suitable environment abstraction.
The notion of environment abstraction as introduced in Section 2 is a high-level
notion: while it is a good way for discussing about the environment in general, it
might be practical to exploit a more concrete notion at the methodological level.
In fact, since it is an abstraction over the real entities used by infrastructures,
there is no clear definition of its concrete structure. Instead, it is useful to
answer questions such as “how to model the environment abstractions?”, and
“how to design the environment abstractions?”.

In order to choose a proper concrete environment abstraction it might be
useful to take inspiration from the abstractions already used by both exist-
ing infrastructures for MAS and AOSE methodologies. The entities provided
by infrastructures seem to be too specific because they are typically conceived
for a particular application domain, so they are not easy to adapt to general
modelling—as required by a general-purpose methodology. On the other hand,
AOSE methodologies—especially in the methodologies in the weak-env group—
use very different notions of environment abstractions, belonging to different
cognitive levels: from lower level ones such as external data and code, ontolo-
gies and objects, to higher level ones such as resources, abstract computational
resources, and artifacts.

This problem, associated with the typical openness requirements for MAS,
leads to see the agent interaction space as spanning over different levels. There,
agents cannot interact with the other components (agents and environment ab-
stractions) of the MAS in an uniform way: they communicate with each other
via high-level languages, while often using lower-level languages — one for each
different kind of environment abstraction — as a way to interact with the en-
vironment. From the general software engineering point of view this situation
is not acceptable because it produces an unnecessary complication in the engi-

13

neering of both the agent internal structure and the interaction protocols. The
proliferation of environment abstractions seems to be more a drawback than a
strength because it does promote a clear and common view of environment en-
gineering. In addition it also seems an obstacle in the path toward the creation
of a general purpose AOSE methodology.

Seemingly, one of the most promising environment abstraction is the notion
of artifact—as highlighted in Subsection 2.1. In fact, artifacts are generally
defined as both conceptual and runtime entities that mediate agent activities
[43], providing some kind of function or service that agents can fruitfully exploit
to achieve their individual or social objectives. In particular, in the Agents &
Artifacts (A&A) meta-model [28][30] recently proposed for MAS engineering,
artifacts—along with agents—are adopted as the basic building blocks to engi-
neer complex software systems. Artifacts are the basic abstractions to repre-
sent passive, function-oriented building blocks, which are constructed and used
by agents, either individually or cooperatively, during their working activities.
Many sorts of artifact can populate a MAS: in particular, artifacts are used to
mediate between individual agents and the MAS (individual artifacts), to build
up agent societies (social artifacts), and to mediate between a MAS and an ex-
ternal resource (environmental artifacts) [29]. In addition, artifacts have been
fruitfully introduced in a methodology (SODA) already, thus showing a possible
path for introducing artifacts within a methodology.

The second issue concerns the choice of the most suitable abstraction for
modelling MAS topology. As for the environment abstraction, there is the need
of a general-purpose abstraction able to capture different deployment contexts.
However, differently from the environment abstraction case, the topology ab-
stractions provided by both MAS infrastructures and AOSE methodologies are
few, and the level of abstraction provided by them is very low. Here, workspaces
— introduced by CArtAgO in the A&A meta-model and adopted also by SODA
— seem a suitable choice since they are enough general for abstracting every
topology, and are also closely tied with the concept of artifact.

4.2 From No-Env to Weak-Env Methodologies

The introduction of the environment in a methodology implies a significant
modification of the first phases of the methodology, and as a consequence a
partial modification of the other phases.

Requirement Specification

The first step is a thorough analysis of the requirements specification with the
following goals—see Figure 4-top:

(i) Detecting the presence of legacy systems that the system should interact
with. Legacy systems are computational systems that have already been
installed and are working, and that the designer of a new system should
exploit without the possibility of changing them. These systems obviously
will become part of the environment of MAS, since they often provide
several services to the system to be developed.

(i) Recognising those requirements concerning function-oriented and passive
entities, which should not become agents for they have no goals and au-

14

tonomy. However in some cases it is not so easy to understand when an
entity is not an agent, since the concept of “function-orientation” is not
always tied with the concept of passivity.

However it is widely accepted that a pheromone is part of the environment
because it is not an autonomous active entity.

So, recognising when a requirement deals with non-agent entities is a non-
trivial job as well, because typically a requirement deals both with sev-
eral (future) agents and non-agent entities, and such entities are closely
tied. As a remark, here such function-oriented entities are supposed to
be already implemented or anyway provided by someone, so they are only
modelled. The design of these entities is one of the topics of next subsec-

tion.

(i4i) Individuating topological constraints over the structure of the deployment
context. Typically in the early phase of requirement analysis, such con-
straints represent physical ties over the environment, but sometimes some

constraints could come from requirements.

It would be useful to keep track of the relations between requirements and
legacy systems / function-oriented entities in order to create those links that will
become the interaction protocols between agents and artifacts. The protocols
will be properly designed later in the design phase. In addition, also the relations
between requirements and constraints could be examined in order to facilitate

the definition of workspaces.

Requirement Specification relationship
: A
1
i
. 1 Function-Oriented
Requirements generate, i Legacy Systems

[Entities
1 /

T &

1 1 T

1 generate ,l

|)

! ! . generate !

I ' Topological K

1 .

1 ; Constraints /’

! /, -

| / T L

e e mh e e ——— :,’— _—— e = === -

\ .

' ! v /! | Mapping between

1 ! K ! requirement's

- 1 ! abstractions and

! : Workspaces I analysis’s abstractions

i ! allocated in |

1 1 1

1 I \ !

v 1 v

1
Task/Role/ i interaction
Agent Artifacts
Analysis

Figure 4: Relations between requirement’s abstractions (top) and analysis’s

abstractions (bottom)

15

Analysis

In the analysis phase, a model of environment composed of artifacts and
workspaces is built: both the legacy systems and the function-oriented entities
are modelled as artifacts (see Figure 4). According to [36], this means specifying
for each of them the usage interface (the operations provided by the artifact),
the operating instructions (how to access the artifact), and the function de-
scription (what services are provided by the artifact). Then the relationships
previously identified, between requirements and the function-oriented entities /
legacy systems, are now refined in more concrete relations between the system’s
abstract entities (adopted in the other original models of the methodology)
and artifacts (see Figure 4). Finally, the topological constraints generate the
workspaces for structuring the environment. Sometimes, intersection and nest-
ing of workspaces are here necessary in order to create articulated topologies
coming from very complex constraints. Moreover, artifacts are allocated to the
most suitable workspace(s) according to the specific topological constraints.

Design

In the design phase(s) of the methodology, the environment model does not
change, only the interaction protocols are designed starting from the relations
sketched out in the analysis phase. If the methodology schedules other phases
such as fast prototyping or code generation, these should be adapted in order
to support the generation of the new interaction protocols between agents and
the entities in the environment. As interactions with the environment are uni-
formly seen as interactions between agents and artifact, all the above phases
should apparently be no more complex than the design of MAS relying on stan-
dard agent communication protocols. In addition, if the methodology to be
extended presents deployment models, these should be changed so as to sup-
port the structure of environment coming from workspaces. Simply, that model
will need to be extended so that it can support the new “workspace” abstraction
and the relations between workspaces.

An Example: Tropos from No-Env to Weak-Env

As an example methodology to ground our discussion we consider Tropos, which
is a methodology where requirements are well structured and documented. Tro-
pos could represent an exception in the proposed method, since it adopts a
particular framework for the requirement analysis and needs a careful investi-
gations. Requirements analysis in Tropos is split in two main phases: Early Re-
quirements and Late Requirements analysis [4]. More precisely, during the first
phase, the requirements engineer identifies the domain stakeholders and models
them as social actors, who depend on one another for goals to be achieved, plans
to be performed, and resources—remember that this concept does not represent
an environment abstraction—to be provided.

Following our method, first of all in the Early Requirement analysis the
identification of legacy system is necessary. So while the requirements engineer
identifies the domain stakeholders he/she should also analyse the system specifi-
cation in order to discover those legacy systems the new MAS will interact with.
In particular the requirements engineer should identify the relationships among
the legacy systems and stakeholders (if any exist). If legacy systems are related

16

with actors’ goals, then such relations need to be traced. In addition, the re-
quirements engineer should also recognise if legacy systems are subject to some
particular constraints over the environment structure. Legacy systems are then
modelled as artifacts, and the topological constraints generate the workspaces.
All the relationships among the entities should be traced.

In the Late Requirements analysis, the conceptual model previously identi-
fied is extended including a new actor representing the system, and a number
of dependencies with other actors. These dependencies define all the functional
and non-functional requirements of the system-to-be. Following our approach,
this is the right stage for individuating the entities of (ii) and the other topolog-
ical constraints. In particular, the requirements engineer should check carefully
both the functional and non-functional requirements searching those function-
oriented entities that either provide services to actors or support them in the
achievement of their goals. Topological constraints typically come from non-
functional requirements, so they should be deeper studied for recognising all
the constraints over the environment structure. Subsequently, these entities be-
come respectively artifacts and workspaces, and the links among artifacts and
goal / actor should be traced.

The Architectural Design and the Detailed Design phases in Tropos focus on
the system specification, according to the requirements resulting from the above
phases. Architectural Design defines the system’s global architecture in terms
of sub-systems, interconnected through data and control flows. Sub-systems
are represented as actors, and data/control interconnections are represented as
dependencies. Following our approach, in this phase the interaction protocols
among actors/agents and artifacts should be refined according to the specific
architectural structure adopted. In particular the choice of a specific architec-
ture could lead to refine the actor model and as a consequence new and/or more
refined relations among actors and artifacts could be discovered. In a similar
way, the choice of the architecture could lead to identify new topological con-
straints over the environment and as a consequence a new refined workspaces
structure could be outlined.

The architectural design provides also a mapping of the system actors to a
set of software agents, each characterised by specific capabilities. The Detailed
Design phase aims at specifying agent capabilities and interactions. At this
point, usually, the implementation platform has already been chosen and this
can be taken into account in order to perform a detailed design that will map
directly to the code. Following our approach, in this phase the interaction
protocols among agents and artifacts should be designed.

Finally the Implementation activity in Tropos follows step by step, in a nat-
ural way, the detailed design specification on the basis of the established map-
ping between the implementation platform constructs and the detailed design
notions. Following our approach in this activity it is necessary to implement the
interaction protocol among artifacts and agents and to organise the environment
structure according to the workspaces structure.

In all, then, our method makes the introduction of the environment in Tropos
not so difficult. Similar considerations could be done also for MaSE, and possibly
for any other no-env AOSE methodology.

17

4.3 From Weak-Env to Strong-Env Methodologies

Weak-env methodologies already deal with some kinds of environment abstrac-
tions. In order to simplify their treatment, and also to make methodologies
homogeneous, as a first step we suggest the artifact-based wrapping of the dif-
ferent existing environment abstractions explained in Subsection 4.1. Then, in
order to complete the analysis phase we can then go back to the requirements,
and act in a similar way as discussed in the previous subsection. However, the
identification of legacy systems is not necessary here, since they have yet been
modelled according to the original environment model.

Requirement Specification

The recognition of function-oriented entities—as highlighted in point (%) of re-
quirement specification in the previous subsection—here is not simply aimed at
modelling entities already implemented in the environment, but also at discov-
ering new function-oriented entities that are necessary to the MAS but have
not already been identified. Obviously, the relations of these new entities with
other abstract entities should be soon devised out: first, by outlining the links
between function-oriented entities and other requirements, then sketching out
the more refined relations between function-oriented entities and the abstract
entities adopted by the methodology—see Figure 4-top.

Subsequently, if the methodology does not deal with topological aspects,
these should be introduced finding out the topological constraints from the
requirements.

Analysis

In this phase the function-oriented entities are modelled as artifacts. In ad-
dition the discovery of new artifacts is also possible during this phase, when
the requirements are well structured and modelled by means of appropriate ab-
stract entities such as roles, tasks, goals and so on. In this case, it is easier to
understand whether an active entity needs some kinds of services which are not
present yet in order to achieve one or more objectives.

Finally, workspaces are generated from topological constraints, and allocat-
ing artifacts and agents inside them. As for artifacts, during the analysis phase
new workspaces could be discovered so as to better structure the environment.

Design

In the design phase, the discovery of new artifacts is also possible. In this phase
the choices about how to structure the system are made, and the detection of
new services is not so difficult. As an example, let us suppose to use a group
of roles/agents for the achievement of particular complex task/goal. Borrowing
a group of roles/agents as a responsible of one task/goal leads to manage the
problem of how to coordinate these entities so as to achieve the task/goal. In this
case, the solution could be the adoption of a suitable coordination artifact [30,
44] for managing coordination among roles. This artifact could not be discovered
in the previous phases because it comes from a specific design choice—whereas
other choices could lead to other solutions, as for example the design of complex
coordination protocols among agents/roles without using artifacts.

18

Then, first of all the interaction protocols between agents and artifacts are
designed starting from the relations sketched out in the analysis phase; more-
over, the required artifacts are designed. The “external behaviour” of an artifact
is defined by means of interaction protocols in which it is involved. The internal
design could be made by following a traditional software engineering design, as
for example the object oriented design, since an artifact looks like an object.
Since specific guidelines for the internal artifact design have not been defined
yet, the only possible choice is the adoption of traditional design techniques.
However, some guidelines about the design of operating instructions are pre-
sented in [44].

If the methodology supports other phases such as fast prototyping or code
generation, these should be adapted in order to support the generation of the
new interaction protocols between the systems and artifacts, as well as also
the code generation for the artifacts and for the workspaces. In addition, if the
methodology presents deployment models, these should be changed for support-
ing the structure of environment as it comes from workspaces.

An Example: Gaia from Weak-Env to Strong-Env

For the sake of concreteness, we sketch here how to transform Gaia in a strong
environment methodology. In Gaia the environmental model can be viewed as
a list of resources, each denoted by a symbolic name, characterised by the type
of actions that the agents can perform on it, and possibly associated with ad-
ditional textual comments and descriptions [52]. Following our approach, first
of all the resources already belonging to the environmental model should be
wrapped by means of artifacts; then the requirements should be investigated
looking for other function-oriented entities and for all the existing legacy sys-
tems. Both should become artifacts. In addition the requirements engineer
should recognise if legacy systems are subject to some particular topological
constraints over the environment structure. Such constraints eventually gen-
erate the workspaces. All the relationships among the role identified in the
Preliminary Role Model and the artifacts should be traced during the construc-
tion of the Preliminary Interaction Model. Finally during the Analysis phase
topological aspects could be deduced also from organisational rules, generating
workspaces and allocating roles and artifacts inside them.

In the architectural design, the choice of the best system architecture is
made, leading to the refinement of the role model—adding new specific roles
coming from the choice of the architecture—and the interaction model. Fol-
lowing our approach, in this phase the choice of the particular architectural
structure typically leads to the discovery of new artifacts needed to support
the new role activities. In addition, the architecture choice leads to refine the
interaction model and as a consequence new and / or more refined interaction
protocols among roles and artifacts could be discovered. In a similar way the
choice of the architecture could lead to identify new topological constraints over
the environment and as a consequence a new refined workspaces structure could
be delineated.

Finally in Gaia, in the detailed design stage, roles are assigned to agents,
and artifacts should be internally designed according to a traditional software
engineering design. In addition the interaction protocols among agents and
artifacts should be designed.

19

Again, this example shows how artifacts and workspaces could be adopted
inside a weak-env methodology to make it a strong-env one.

5 Related Work

Literature dealing with both environment and agent-oriented methodologies is
not abundant. Works of that sort are usually more focussed on sociality fea-
tures, so they typically present some comparison among methodologies (one
example is in [19]) and simply point out whether a methodology supports the
concept of environment or not. As an example in [40] a good framework for the
evaluation of the methodologies is presented, accounting for a large number of
agent features (organisations, roles, beliefs, desires and so on) as well as some
criteria for the evaluation of the development process—however, environment is
not considered at all.

At the same time, so little research has been devoted to the issue of how
to introduce the notion of environment in a methodology—an AOSE method-
ology, in particular. At the best of our knowledge, there is only one work
[12] investigating how to introduce an environmental model in a methodology.
The methodology considered there is O-MaSE (Organisation-Based Multiagent
System Engineering [10]), an evolution of MaSE dealing with the design of
organisational MAS. Authors describe an approach to the modelling of MAS
interactions with its environment: the key concepts in their approach are capa-
bilities and the environment model. In particular, the environment is modelled
as a set of objects/agents, and a set of relations between such objects/agents.
Through a set of capabilities belonging to agents, agents have access to a set of
operations that they may perform upon environment objects, whose effect are
governed by environmental laws. This work is obviously very interesting in this
context, and in the conclusions the authors argue about a possible integration
of the concepts of their AEI (Agent-Environment Interaction) Model into ex-
isting methodologies: however, they do not specify how to introduce their key
concepts into other methodologies, so their approach turns to be too strict in
scope. Also, even in principle, such a process looks not so easy: in fact, the
meta-model of AEI is largely tailored upon the MaSE meta-model, and some of
the elements implicitly require the MaSE specific agent model. As a result, the
introduction of environment according to AEI seems to be potentially invasive,
since it would involve the creation of a new model for the environment and also
affects the agent model: in fact, adopting the AEI meta-model would tie agents
with the concept of “capabilities”, thus requiring a substantial change to the
original agent model of the methodology to be extended. Even more, AEI does
not consider topology at all.

Another interesting work is the methodology proposed by Simonin and
Gechter [39] that establishes the link between the representation of the prob-
lem, expressed as environmental constraints, and agent behaviours, which are
regulation items of the environmental perturbations. The environment is mod-
elled by means of the definition of its structure (the topology) and the laws that
govern its dynamics. Then no environment abstractions are considered by the
methodology for representing the environment, so it is not clear how and where
the environment laws are enforced.

Finally, also the work on methodology fragmentation conducted by IEEE-

20

FIPA Methodology Technical Committee [16] is very interesting in our
enviroment-AOSE perspective. In fact, the Committee has developed a method
for assembling pieces out of the methodology processes starting from a meta-
model of methodologies. An interesting fragment ([1]) is provided by the
ADELFE methodology: there, in fact, the environment model is extracted from
the methodology and a new fragment is create. However, the fragment uses
the specific environment abstractions adopted by ADELFE, which appear not
general enough to be widely applied to other methodologies. In addition the
fragment is not yet well documented, and it is then not so clear what is actually
needed for merging the fragment within a methodology like SODA.

6 Conclusions and Future Work

The key role of environment as a first-class abstraction in the engineering of MAS
is today generally acknowledged in the MAS community. In this work we have
highlighted the importance of both environment abstractions and topologies for
the complete modelling of MAS environment.

However, we have observed that in the AOSE field a small number of method-
ologies actually deal with environment as a first-class abstractions, while some
others provide MAS engineers with only one model of the environment, and a
few others do not consider environment as a first-class abstraction at all, yet.
Furthermore, even in the case of methodologies actually modelling MAS envi-
ronment, such feature is often somehow hidden or not-well documented. In our
survey, we have tried to understand in depth how each methodology handles
MAS environment, and which sorts of environment abstractions it adopts. The
first result of our work is then a classification of methodologies in three different
categories: strong-environment viewpoint (methodologies that consider environ-
ment as a first-class abstraction), weak-environment viewpoint (methodologies
that only model environment) and no-environment viewpoint (methodologies
that do not consider environment).

As a further contribution, we have then proposed a possible method for
introducing the treatment of environment in no-env methodologies—thus trans-
forming them in weak-env methodologies; afterwards, we have shown how to
transform weak-env methodologies in strong-env methodologies. To this end,
we have shown how to exploit artifacts as a general-purpose environment ab-
straction, and workspaces as an abstraction for modelling topologies. These
abstractions have already been fruitfully used in a strong-env methodology.

Further investigations are obviously necessary in order to fully demonstrate
the general applicability of our method. Accordingly, we plan to actually apply
our approach to different methodologies, and to make it as detailed as possible
in order to make its application easy and immediate. In particular we plan to
create some specific fragments for treating MAS environment in each phase of
the development process. This should simplify the introduction of the environ-
ment in the no-env methodologies, as well as the improvement of the weak-env
methodologies. In addition, this could promote the definition of an effective
pattern for the creation of new methodologies dealing with MAS environment
as a first-class abstraction.

21

References

[1] ADELFE. http://www.pa.icar.cnr.it/ cossentino/FIPAmeth/docs/adelfe_july05.pdf.

[2] Stefania Bandini, Sara Manzoni, and Carla Simone. Supporting the appli-
cation of situated cellular agents in non-uniform spaces. Future Generation
Computer Systems, 21(4):627-631, 2005.

[3] Carol Bernon, Valérie Camps, Marie-Pierre Gleizes, and Gauthier Picard.
Engineering adaptive multi-agent systems: The ADELFE methodology. In
Henderson-Sellers and Giorgini [19], chapter VII, pages 172-202.

[4] Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia, John Mylopoulos, and
Anna Perini. Tropos: An agent-oriented software development methodol-
ogy. Autonomous Agent and Multi-Agent Systems, 8(3):203-236, May 2004.

[5] Giovanni Caire, Wim Coulier, Francisco J. Garijo, Jorge Gomez, Juan
Pavon, Francisco Leal, Paulo Chainho, Paul E. Kearney, Jamie Stark,
Richard Evans, and Philippe Massonet. Agent oriented analysis using Mes-
sage/UML. In Michael Wooldridge, Gerhard Weiss, and Paolo Ciancarini,
editors, Agent-Oriented Software Engineering II, volume 2222 of LNCS,
pages 119-135. Springer, 2002. 2nd International Workshop (AOSE 2001),
Montreal, Canada, 29 May 2001. Revised Papers and Invited Contribu-
tions.

[6] Cristiano Castelfranchi and W. Lewis Johnson, editors. Proceedings of the
1st International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2002), Bologna, Italy, 15-19 July 2002. ACM Press.

[7] Massimo Cossentino. From requirements to code with the PASST method-
ology. In Henderson-Sellers and Giorgini [19], chapter IV, pages 79-106.

[8] Massimo Cossentino, Luca Sabatucci, and Antonio Chella. Patterns reuse
in the PASSI methodology. In Andrea Omicini, Paolo Petta, and Jeremy
Pitt, editors, Engineering Societies in the Agents World IV, volume 3071
of LNAI pages 294-310. Springer-Verlag, June 2004. 4th International
Workshop (ESAW 2003), London, UK, 29-31 October 2003. Revised Se-
lected and Invited Papers.

[9] Mehdi Dastani, Joris Hulstijn, Frank Dignum, and John-Jules Ch. Meyer.
Issues in multiagent system development. In Castelfranchi and Johnson [6],
pages 922-929.

[10] Scott A. DeLoach. Engineering organization-based multiagent systems.
In Alessandro F. Garcia, Ricardo Choren, Carlos José Pereira de Lucena,
Paolo Giorgini, Tom Holvoet, and Alexander B. Romanovsky, editors, Soft-
ware Engineering for Multi-Agent Systems IV, Research Issues and Prac-
tical Applications, volume 3914 of LNCS, pages 109-125. Springer, 2006.
4th International Workshop on Software Engineering for Large-Scale Multi-
Agent Systems (SELMAS 2005), St. Louis, Missouri, USA, 15-16 May 2005.
Revised Selected Papers.

22

[11] Scott A. DeLoach and Madhukar Kumar. Multi-agent systems engineer-
ing: An overview and case study. In Henderson-Sellers and Giorgini [19],
chapter XI, pages 317-340.

[12] Scott A. DeLoach and Jorge L. Valenzuela. An agent-environment inter-
action model. In Lin Padgham and Franco Zambonelli, editors, Agent-
Oriented Software Engineering VII, volume 4405 of LNCS. Springer, 2007.
7th International Workshop (AOSE 2006), Hakodate, Japan, 8 May 2006.
Selected Revised and Invited Papers.

[13] Frank Dignum, Virginia Dignum, Sven Koenig, Sarit Kraus, Munindar P.
Singh, and Michael Wooldridge, editors. Proceedings of the 4th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2005), Utrecht, The Netherlands, 25-29 July 2005. ACM Press.

[14] Virginia Dignum. A Model for Organizational Interaction, based on Agents,
founded in Logic. PhD thesis, University of Utrecht, 2003.

[15] Marc Esteva, Bruno Rosell, Juan A. Rodriguez-Aguilar, and Josep Llufs Ar-
cos. AMELI: An agent-based middleware for electronic institutions. In
Nicholas R. Jennings, Carles Sierra, Liz Sonenberg, and Milind Tambe,
editors, 3rd international Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2004), volume 1, pages 236-243, New York,
USA, 19-23 July 2004. IEEE Computer Society.

[16] FIPA Methodologies. Home page. http://www.pa.icar.cnr.it/ cossentino/FIPAmeth/.

[17] Francisco J. Garijo, Jorge J. Gomez-Sanz, and Philippe Massonet.
The MESSAGE methodoly for agent-oriented analysis and design. In
Henderson-Sellers and Giorgini [19], chapter VIII, pages 203-235.

[18] Paolo Giorgini, Manuel Kolp, John Mylopoulos, and Jaelson Castro. Tro-
pos: A requirements-driven methodology for agent-oriented software. In
Henderson-Sellers and Giorgini [19], chapter II, pages 20—45.

[19] Brian Henderson-Sellers and Paolo Giorgini, editors. Agent Oriented
Methodologies. Idea Group Publishing, Hershey, PA, USA, June 2005.

[20] INGENIAS. Home page. http://grasia.fdi.ucm.es/ingenias/metamodel/.
[21] JADE-board. http://sharon.cselt.it/projects/jade/, 2000.

[22] Thomas Juan, Adrian R. Pearce, and Leon Sterling. ROADMAP: extend-
ing the Gaia methodology for complex open systems. In Castelfranchi and
Johnson [6], pages 3-10.

[23] Philippe Kruchten. The Rational Unified Process: An Introduction.
Addison-Wesley Professional, 3rd edition, December 2003.

[24] Marco Mamei and Franco Zambonelli. Programming stigmergic coordina-
tion with the TOTA middleware. In Dignum et al. [13], pages 415-422.

23

[25]

[29]

[30]

[31]

[32]

Ambra Molesini, Andrea Omicini, Enrico Denti, and Alessandro Ricci.
SODA: A roadmap to artefacts. In Oguz Dikenelli, Marie-Pierre Gleizes,
and Alessandro Ricci, editors, Engineering Societies in the Agents World
VI, volume 3963 of LNAI pages 49-62. Springer, June 2006. 6th Inter-
national Workshop (ESAW 2005), Kusadasi, Aydin, Turkey, 26-28 Octo-
ber 2005. Revised, Selected & Invited Papers.

Ambra Molesini, Andrea Omicini, Alessandro Ricci, and Enrico Denti.
Zooming multi-agent systems. In Jorg P. Miiller and Franco Zambonelli,
editors, Agent-Oriented Software Engineering VI, volume 3950 of LNCS,
pages 81-93. Springer, 2006. 6th International Workshop (AOSE 2005),
Utrecht, The Netherlands, 25-26 July 2005. Revised and Invited Papers.

Andrea Omicini. SODA: Societies and infrastructures in the analysis
and design of agent-based systems. In Paolo Ciancarini and Michael J.
Wooldridge, editors, Agent-Oriented Software Engineering, volume 1957 of
LNCS, pages 185-193. Springer, 2001. 1st International Workshop (AOSE
2000), Limerick, Ireland, 10 June 2000. Revised Papers.

Andrea Omicini. Formal ReSpecT in the A& A perspective. In Carlos Canal
and Mirko Viroli, editors, 5th International Workshop on Foundations of
Coordination Languages and Software Architectures (FOCLASA’06), pages
93-115, CONCUR 2006, Bonn, Germany, 31 August 2006. University of
Malaga, Spain. Proceedings.

Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Agens Faber: Toward
a theory of artefacts for MAS. Flectronic Notes in Theoretical Computer
Sciences, 150(3):21-36, 29 May 2006. 1st International Workshop “Coordi-
nation and Organization” (CoOrg 2005), COORDINATION 2005, Namur,
Belgium, 22 April 2005. Proceedings.

Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Coordination arti-
facts as first-class abstractions for MAS engineering: State of the research.
In Alessandro F. Garcia, Ricardo Choren, Carlos Lucena, Paolo Giorgini,
Tom Holvoet, and Alexander Romanovsky, editors, Software Engineering
for Multi-Agent Systems IV: Research Issues and Practical Applications,
volume 3914 of LNAI pages 71-90. Springer, April 2006. Invited Paper.

Andrea Omicini and Franco Zambonelli. Coordination for Internet applica-
tion development. Autonomous Agents and Multi-Agent Systems, 2(3):251—
269, September 1999.

Lin Padgham and Michael Winikof. Prometheus: A methodology for devel-
oping intelligent agents. In Fausto Giunchiglia, James Odell, and Gerhard
Weiss, editors, Agent-Oriented Software Engineering III, volume 2585 of
LNCS, pages 174-185. Springer, 2003. 3rd International Workshop (AOSE
2002), Bologna, Italy, 15 July 2002. Revised Papers and Invited Contribu-
tions.

Lin Padgham and Michael Winikoff. Prometheous: A practical agent ori-
ented methodology. In Henderson-Sellers and Giorgini [19], chapter V,
pages 107-135.

24

[34]

[35]

[36]

[37]

[40]

Juan Pavon, Jorge J. Gomez-Sanz, and Rubén Fuentes. The INGENIAS
methodology and tools. In Henderson-Sellers and Giorgini [19], chapter IX,
pages 236-276.

Gauthier Picard, Carole Bernon, and Marie-Pierre Gleizes. Cooperative
agent model within ADELFE framework: An application to a timetabling
problem. In Nicholas R. Jennings, Carles Sierra, Liz Sonenberg, and Milind
Tambe, editors, Proceedings of the 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), volume 3,
pages 1506-1507, New York, USA, 19-23 July 2004. ACM Press.

Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Programming MAS
with artifacts. In Rafael P. Bordini, Mehdi Dastani, Jiirgen Dix, and Amal
El Fallah Seghrouchni, editors, Programming Multi-Agent Systems, volume
3862 of LNAI pages 206-221. Springer, March 2006. 3rd International
Workshop (PROMAS 2005), AAMAS 2005, Utrecht, The Netherlands,
26 July 2005. Revised and Invited Papers.

Alessandro Ricci, Mirko Viroli, and Andrea Omicini. CArtAgO: A frame-
work for prototyping artifact-based environments in MAS. In Danny
Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, Environments
for MultiAgent Systems, volume 4389 of LNAI pages 67-86. Springer,
February 2007. 3rd International Workshop (E4MAS 2006), Hakodate,
Japan, 8 May 2006. Selected Revised and Invited Papers.

John A. Sauter, Robert S. Matthews, H. Van Dyke Parunak, and Sven
Brueckner. Performance of digital pheromones for swarming vehicle control.
In Dignum et al. [13], pages 903-910.

Olivier Simonin and Franck Gechter. An environment-based methodol-
ogy to design reactive multi-agent systems for problem solving. In Danny
Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, Environments
for Multi-Agent Systems II, volume 3830 of Lecture Notes in Computer Sci-
ence, pages 32—49. Springer, 2006. 2nd International Workshop (E4MAS
2005), Utrecht, The Netherlands, July 25, 2005, Selected Revised and In-
vited Papers.

Arnon Sturm and Onn Shehory. A framework for evaluating agent-
oriented methodologies. In Paolo Giorgini, Brian Henderson-Sellers, and
Michael Winikoff, editors, Agent-Oriented Information Systems, volume
3030 of LNCS, pages 94-109. Spinger, 24 June 2004. 5th International
Bi-Conference Workshop, AOIS 2003, Melbourne, Australia, July 14, 2003
and Chicago, USA, October 13, 2003, Revised Selected Papers.

UML. Home page. http://www.uml.org/.

Mirko Viroli, Tom Holvoet, Alessandro Ricci, Kurt Schelfthout, and Franco
Zambonelli. Infrastructures for the environment of multiagent systems. In
Autonomous Agents and Multi-Agent Systems [46], pages 49-60.

Mirko Viroli, Andrea Omicini, and Alessandro Ricci. Engineering MAS en-
vironment with artifacts. In Danny Weyns, H. Van Dyke Parunak, and Fa-
bien Michel, editors, 2nd International Workshop “Environments for Multi-

25

[44]

[45]

[46]

[49]

[51]

[52]

Agent Systems” (E4MAS 2005), pages 62-77, AAMAS 2005, Utrecht, The
Netherlands, 26 July 2005.

Mirko Viroli, Alessandro Ricci, and Andrea Omicini. Operating instruc-
tions for intelligent agent coordination. The Knowledge Engineering Re-
view, 21(1):49-69, March 2006.

Danny Weyns, Andrea Omicini, and James Odell. Environment as a first-
class abstraction in multi-agent systems. In Autonomous Agents and Multi-
Agent Systems [46], pages 5-30.

Danny Weyns and H. Van Dyke Parunak. Special issue on environments
for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
14(1):1-116, February 2007.

Danny Weyns, Kurt Schelfthout, Tom Holvoet, and Tom Lefever. Decen-
tralized control of E’GV transportation systems. In Dignum et al. [13],
pages 67-74.

Danny Weyns, Giuseppe Vizzari, and Tom Holvet. Environments for
situated multi-agent systems: Beyond infrastructure. In Danny Weyns,
H. Van Dyke Parunak, and Fabien Michel, editors, Environments for Multi-
Agent Systems II, volume 3830 of Lecture Notes in Computer Science, pages
1-17. Springer, February 2006. Second International Workshop, E4AMAS
2005, Utrecht, The Netherlands, July 25, 2005, Selected Revised and In-
vited Paper.

Mark F. Wood and Scott A. DeLoach. An overview of the multiagent
systems engineering methodology. In Paolo Ciancarini and Michael J.
Wooldridge, editors, Agent-Oriented Software Engineering, volume 1957 of
LNCS, pages 207-221. Springer-Verlag, 2001. 1st International Workshop
(AOSE 2000), Limerick, Ireland, 10 June 2000. Revised Papers.

M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia methodology for
agent-oriented analysis and design. Autonomous Agents and Multi-Agent
Systems, 3(3):285-312, September 2000.

Franco Zambonelli, Nicholas Jennings, and Michael Wooldridge. Multia-
gent systems as computational organizations: the Gaia methodology. In
Henderson-Sellers and Giorgini [19], chapter VI, pages 136-171.

Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. De-
veloping multiagent systems: The Gaia methodology. ACM Transactions
on Software Engineering and Methodology (TOSEM), 12(3):317-370, July
2003.

26

