
eXAT: an Experimental Tool for Programming
Multi-Agent Systems in Erlang

Antonella Di Stefano, Corrado Santoro
University of Catania - Engineering Faculty

Dept. of Computer Science and Telecommunication Engineering
Viale A. Doria, 6 - 95125 - Catania, Italy

EMail: {adistefa,csanto}@diit.unict.it

Abstract— This paper describes a research experiment carried
out at the University of Catania, aiming at testing and evaluating
the applicability of the Erlang language in programming multi-
agent systems. Indeed, we noticed that programming tools for
agents often require the programmer to write agent behavior by
means an imperative language (such as Java) while the intelligent
part has to written using a declarative language (such as JESS).
To avoid this lack of homogeneity, we wrote an experimental
agent platform, called eXAT (erlang eXperimental Agent Tool),
which provides abstractions and libraries to easily realize agents
by programming, with the same language, both the behavioral
and intelligent part. We would point of that our aim is not the
proposal of “yet another agent platform” but to state how a func-
tional programming language with multi-processing capability,
like Erlang, is able to provide mechanisms for easy development
of multi-agent systems. The current prototype implementation of
eXAT provides the minimal set of services needed for some test
applications, realized to assess the effectiveness of such an agent
platform and language, and to compare this solution to other
existing and well-known agent platforms.

I. INTRODUCTION

In designing and implementing intelligent agents, two main
aspects have to be taken into account [7]: agent behavior and
agent intelligence.

As the first aspect in concerned, as it is widely known, the
behavior of an agent is often modeled as a finite-state machine
(FSM) governed by a set of rules of the type:

(State, Event) → (Action, NewState)
For this reason, some agent programming platforms (such
as [11], [1]) provide libraries suitable for implementing this
kind of model in a flexible way. The concept of “behaviors”
provided by JADE [11], for example, facilitates a lot the
implementation of Java agents by allowing the specification
of the overall evolution of the agent computation by means of
JADE classes, which embed pre-defined and general purpose
elementary behaviors. But even if this mechanism allows an
easy implementation of FSMs for agents, it only automates the
change of stateand the action execution, while event checking
must be done by using traditional if/then/elseconstructs. This
means that, if the FSM is quite complex, the implementation
could result not to be efficient and its source code could be
difficult to read, understand and maintain.

The second aspect is related to the way in which the
needed intelligence is added to an agent. When implementing
intelligent agents, we need to include, in the agent platform (if

not yet present), a component (or a library) providing a suitable
artificial intelligence mechanism, such as an expert system.
Indeed Java-based agent platform, such as JADE or FIPA-OS,
are often integrated with the JESS package [2] (Java Expert
System Shell), while other non-Java agent implementation
usually embeds the CLIPS tool [6] (C-Language Integrated
Production System). These tools allow to realize expert sys-
tems by means of the specification of production ruleswith a
suitable logic programming language; this language is however
used only to program the intelligence of the agents, while other
parts (behaviors, communication, user interface, etc.) must be
realized with the language of the agent platform, which is,
in general, imperative (e.g. Java for JADE and FIPA-OS).
This leads to a mixture of programming languages that, in
our opinion, emphasizes two main problems:

• Lack of implementation homogeneity. The programmer
is obliged to implement intelligent agents using two pro-
gramming languages which are very different in syntax,
semantics and philosophy: one is imperativethe other is
declarative.

• Poor performances. The language used to implement the
expert system is interpretedby the rule processing engine
(JESS or CLIPS). If the system is realized in Java, which
is the common case, we have to consider not only the
overhead of the bytecode interpretation (even if reduced
by a JIT-compiler) but also the overhead of the JESS
interpreter (which is also written in Java).

On this basis, we studied the possibility of employing a
programming language for agent implementation able to deal
with all (or the majority of) the issues presented above. In such
a research, we chose Erlang [10], [4], a language which present
(in our opinion) some characteristics which seem well-suited
to support many design and implementation issues of multi-
agent systems. This paper describes our experience in this
research experiment, which resulted in the implementation of
an Erlang-based agent platform, called eXAT (just for erlang
eXperimental Agent Tool). It is composed of a set modules able
to provide the programmer with the possibility of developing
(with the same programming language) agent behavior, by
means of definition of FSMs, agent intelligence, through
the provided expert system engine, and agent collaboration,
by using the provided ACL module. Our current prototype

implementation of eXAT provides the minimal set of services
needed for some test applications, realized to assess the
effectiveness of such an agent platform and language, and to
compare this solution to other existing and well-known agent
platforms.

This paper is structured as follows. Section II provides an
overview of the characteristics of Erlang. Section III presents
eXAT by illustrating its structure and functionalities. Sec-
tion IV presents some case-studies, comparing their implemen-
tation in eXAT and in another agent platform (comparisons are
made with JADE [11]). Section V reports our conclusions.

II. OVERVIEW OF ERLANG LANGUAGE

Erlang is a functional language developed at Ericsson
laboratories, initially designed (in 1988) to implement the
control system of telephone exchange equipments [9], but now
enriched with a lot of libraries making it general-purpose. It
has the following characteristics:

• Functional Notation. Erlang programming is based on
functions which can have multiple clauses (like Prolog).
Function clauses can also have “guards”, i.e. boolean
expressions constituting pre-conditions which must be
met in order to activate that clause. As it is known, this
programming model allows a very easy implementation
of both FSM-based computation and rule production
systems, thus making Erlang an attractive choice for the
realization of agent systems.

• Portability. Erlang programs are platform-independent
since they are compiled into bytecoded executable; Erlang
environment (compiler plus runtime and libraries) is
available for many OS and platforms.

• Good performances. As reported in [8], [5], the Erlang
compiler performs a series of optimization and the byte-
code execution engine is particularly fast, thus making
Erlang a good choice for programming soft real-time
systems.

• Concurrency. Another important aspect of Erlang is
the possibility of spawning processesand making them
communicating each other by means of smart and flexible
language constructs. The process and communication
models are derived from CSP [16] and π-calculus [18],
which are also particularly suited for modeling agents.

• Distribution. Erlang is intrinsically distributed, i.e. it
allows a transparent communication among processes
belonging to different network nodes and offers language
constructs to add a replication-based fault-tolerance
mechanism to a distributed Erlang application. As an
example, the mnesia [17] module (provided with the
Erlang distribution) is a distributed DBMS where tables
can be partitioned and replicated in various Erlang nodes
(transparently for the programmer).

• Completeness. Erlang distribution is provided with a
very large set of modules and libraries. Among these,
the ones which are worth of note1 are those for building

1since are useful to implement a complete agent platform

user-interfaces, to implement HTTP-based interactions
(client- and server-side), to parse XML messages, to
realize CORBA services, etc.

As a typical example, an Erlang program which computes the
factorial of a number is written as:

fact (0) -> 1;
fact (N) -> N * fact (N - 1).

Or alternatively, using guards, as:

fact (N) when N == 0 -> 1;
fact (N) -> N * fact (N - 1).

Erlang has many similarities with Prolog since it handles
“atoms” and “lists” and uses the same naming scheme for
constants and variables: a constant atom always begins with
a lowercase letter, while a variable always starts in uppercase
and the symbol “ ” plays the role of “wildcard”. For example,
given the following function clauses:

foo (hello, X) ->
io:format ("Say ’Hello ˜w’\n", [X]);

foo (goodbye, X) ->
io:format ("Say ’Goodbye ˜w’\n", [X]);

foo (_, X) ->
io:format ("woops!\n").

calling foo(hello, world) will display “Say ’Hello
world’”, calling foo(goodbye, world) will display “Say
’Goodbye world’”, while any other call (e.g. foo(ciao,
mondo) will display “woops!”.

Lists are syntactically represented with square brackets,
i.e. “[term1,term2,. . .,termn]”, where each term may be
an atom, a tuple (see below) or another list. Reading elements
from a list is performed using the Prolog-like statement
“[H|T] = List”, extended in order to get more than one
element; for example, the statement:

[H1, H2, H3 | T] = [1, 2, 3, 4, 5].

will bound H1 to 1, H2 to 2, H3 to 3 and T to the sublist
[4, 5].

Erlang tuples are instead sequence of terms enclosed in
graph brackets, i.e. “{term1,term2,. . .,termn}”; operations
allowed on tuples are getting the length, and reading or writing
the nth element.

As far as multi-processing capability is concerned, Erlang
provides the spawn call to create a new process and some
language constructs to allow inter-process communication
(IPC). Erlang IPC mechanism is location transparent, i.e. it
works in the same way in both a centralized and distributed
environment. Sending data is performed by means of the
statement “Pid ! Data”, which sends Data to process
identified by Pid2. Reception is instead performed by using
the receive statement. As an example, an Erlang client-
server system can be written as reported in Figure 1. Please
note that, to implement an infinite loop, the server function
invokes itself: indeed this is not treated as a real function call

2“Data” can be any Erlang type, an atom, a list, a tuple.

%

% The client

%

do call (ServerName, Param) ->

ServerName ! { self (), Service, Param },
receive

RetValue -> RetValue

end.

%

%--

%

% The server

%

Service1 Proc (P) -> ...

Service2 Proc (P) -> ...

Server () ->

receive

{From, service1, P} ->

From ! Service1 Proc (P),

Server ();

{From, service2, P} ->

From ! Service2 Proc (P),

Server ();

...

end.

Fig. 1. A client-server example in Erlang

(which may lead to an uncontrolled growth of stack), but it is
optimized by the complier and replaced with a “jump” (this
is called “last-call optimization” [8]).

For a complete description of Erlang features and syntax
we recommend to browse the documentation and examples
present in the Erlang web site [4].

III. THE EXAT PLATFORM

eXAT is composed of the following main modules designed
by the authors:

• ERES. It is a rule processing engine [3] which can be
used to implement agent intelligence by means of an
expert system.

• ACL Module. It performs composition, parsing and
handling of FIPA-ACL messages.

• Agent Execution Module. It provides the functionalities
to program agents’ behavior and the engine to execute
them.

A. ERES

ERES is a rule processing engine [3] used to develop expert
systems in Erlang and thus suitable to program the intelligent
part of an agent. ERES takes advantage from concurrency by
allowing the creation of multiple concurrent engines, each one
with its own rules, status and behavior. Each ERES engine has

-module(animals).

-export ([myrule/2, start/0]).

myrule (Engine, {animal is, duck}) ->

eres:assert (Engine, {sound, duck, quack}), true;

myrule (Engine, {animal is, dog}) ->

eres:assert (Engine, {sound, dog, bau}), true;

myrule (Engine, {animal is, cat}) ->

eres:assert (Engine, {sound, cat, meow}), true.

start () ->

eres:new (animal engine, {animals,myrule}),
eres:assert (animal engine, {animal is, duck}),
eres:assert (animal engine, {animal is, dog}),
eres:assert (animal engine, {animal is, cat}).

Fig. 2. The ERES example

a knowledge basewhich stores a set of facts represented by
Erlang tuples. Rules are written as function clauses and rule
processing is based on checking that one or more facts, with
certain patterns, are present in the knowledge base and, if this
is the case, doing something.

As an example, Figure 2 shows the listing of a simple expert
system working on the following rules:

each “duck” sounds “quack”
each “dog” sounds “bau”

each “cat” sounds “meow”
We characterize an animal by the fact {animal is, animal

type} and the sound as the fact {sound, animal type, sound
type}. Rules are written as different clauses of function
myrule whose arguments are the engine name and a fact
to match. In the example, each clause of myrule checks for
a fact {animal is, X} and asserts the fact in accordance to
the rule. Function animals:start/03 activates the engine
animal engine and asserts the initial facts in the knowl-
edge base. Therefore, after rule processing, the knowledge
base of animal engine will be composed by the following
facts:

{animal_is,dog}, {sound,dog,bau},
{animal_is,cat}, {sound,cat,meow},
{animal_is,duck}, {sound,duck,quack}

An ERES engine can be also used to implement coordina-
tion among Erlang processes since each engine can behave as
a Linda tuple-space [12] 4. To this aim, ERES provides a set
of functions which are equivalent to Linda’s primitives in, out
and rd (this feature is used in eXAT to implement the message
reception queue of an agent).

3The notation xxx:yyy/n indicates a function yyy with arity (number of
parameters) n and defined in module xxx. In Erlang, a moduleis a package of
functions defined in the same source file: function foo() defined in module
bar is invoked as bar:foo().

4An engine without production rules is a simple tuple repository.

-module (agent bob).

-export ([action/3, start/0]).

action ([inform, alice, Receiver, Ontology, lisp, Content, Slots], State, Agent) ->

% ’inform’ from Alice ... do the action

start () ->

agent:new (bob, receiver, {agent bob, action}).

(a)

import jade.core.*;

import jade.core.behaviours.*;

import jade.lang.acl.*;

public class ReceiverAgent extends Agent

{
public void setup ()

{
AID aid[] = new AID[1];

aid [0] = new AID ("Alice", false);

addBehaviour (new ReceiverBehaviour (this, -1, MessageTemplate.and (

MessageTemplate.MatchPerformative (ACLMessage.INFORM),

MessageTemplate.and (MessageTemplate.MatchReceiver (aid),

MessageTemplate.MatchLanguage ("lisp"))

)

)

{
public void action () {

//.. do something

}
});

}
}

(b)

Fig. 3. Simple Message Matching

B. ACL Module

This module performs composition and parsing of ACL
messages, according to FIPA-ACL syntax. It provides a set
of library calls to send and parse ACL messages and to parse
SL0-based message contents [14]. Specification of ontologies
is a feature currently not implemented (in this prototype
version) but it will be provided in the final release of eXAT
which is still under preparation.

Sending an ACL message is performed by means of func-
tions of type:

acl:performative-name (Sender, Receiver,
Ontology, Language, Content, P)

P (which can be omitted) allows to specify additional
message parameters and takes the form [{name1,value1},. . .,
{namen,valuen}] (a list of tuples). Other primitives
allow to prepare and send a reply to a message
(acl:reply) and to parse a message content written in SL0
(acl:sl0 parsecontent/1), returning its structure as an
Erlang list of tuples (pairs {name, value}).

In the current prototype version, messages exchanged are
encoded in ASCII strings (according to [13]) and transmit-
ted by means of Erlang-native inter-process communication
mechanism. Future work will aim at implementing the mes-

sage transport protocols needed to build a FIPA-compliant
platform [15], in order to allow the interoperability with
other FIPA platforms. However, the Erlang-native IPC support
will be maintained since it works both in a centralized and
distributed environment and is the better (and fastest) mode
for message exchanging when a multi-agent application is
composed of eXAT agents alone.

C. Agent Execution Module

This module provides the engine to execute agents. Each
eXAT agent encapsulates:

• A behavior, represented by means of a FSM.
• A set of properties, in the form {name, value}

and accessed by agent:get property/1 and
agent:set property/2 primitives, used to handle
agent (instance)-specific values.

Behavior handling is based on FSM templates: they are
“skeletons” of finite-state machines which specify evolution
in terms of states and events but not the action, whose
implementation, which is agent-specific, is left to the agent
developer. This last process is performed by specifying the
function to execute for each couple (state, event). In practice,

-module (agent bob).

-export ([action/3, start/0]).

action ([inform, alice, Receiver, Ontology, lisp, Content, Slots], State, Agent) ->

% ’inform’ from alice: ... do the action

action ([inform, Sender, Receiver, Ontology, lisp, Content, Slots], State, Agent) ->

% ’inform’ from another agent ... do the action

action (M, State, Agent) ->

acl:reply (M, notunderstood).

start () ->

agent:new (bob, receiver, {agent bob, action}).

Fig. 4. Multiple Message Matching

this is obtained by associating, to the FSM template, a FSM
Action as a function of the form:
action-function (Event, State, Agent)5

Association is performed when an agent is created (by
means of function agent:new/4) by specifying the name
of the FSM template and the name of the action function.
Association of actions to couples (state, event) is instead
performed by means of different clauses of the action function.
Events handled are (i) silent action, (ii) the timed silent action,
(iii) the arrival of an ACL messageand (iv) the assertion of a
fact in a given ERES engine. As for (i) and (ii), the parameter
Event assumes the value silent; if the event is (iii) the
parameter Event takes the ACL message received; finally, as
for (iv) Event is the tuple representing the fact asserted.

eXAT provides a set of ready-to-use FSM templates, starting
from a simple template which reacts to message reception,
to more complex templates implementing the standard FIPA
interaction protocols. In the following Section, some examples
will show how to use this mechanism to program some simple
agents; in particular, we will see both how to develop agent
with a ready-to-use FSM template and how to implement a
template from scratch.

IV. CASE STUDIES

In this Section, we report some examples of agents, illus-
trating and commenting their implementation in eXAT.

A. Message Matching

As a first example, we will write an agent that waits for
the arrival of a particular message and then it does something.
In particular, we would trigger the action of an agent called
“Bob” each time an “inform” message written in LISP arrives
from agent “Alice”.

Figure 3a shows the implementation, in eXAT, of agent
Bob: the function start/0 starts the agent by invoking the
function agent:new/4 which takes, as parameter, a name
to be given to the agent, the name of the FSM templateused
as behavior skeleton, and the function name implementing the
actions for the given FSM template6. For our purpose, the FSM

5Here Agent is the name of the agent to which the behavior is associated.
6As Figure shows, the function is given as the tuple

{modulename,functionname}.

template to use is receiver(provided as built-in by eXAT): it
has a single state and, each time a message arrives, triggers
the action and returns to that state.

Message matching is performed by means of the matching
mechanism of Erlang, provided that an ACL message is
represented in eXAT as the list:

[Performative-name, Sender, Receiver,
Ontology, Language, Content, Slots] 7

Therefore, performing the desired matching process implies
to specify, in the action function declaration, the parameters
Performative-name, Senderand Languageas actual parameters
(constant values) and all other parameters as variables, as
clearly reported in Figure 3a.

Figure 3b illustrates the same example written in
JADE. There, the objective is obtained by using the
MessageTemplate class (provided by JADE) which allows
to specify complex and/or/not matching expressions for incom-
ing messages.

At a first sight, Erlang implementation of the example is un-
doubtedly more readable than the Java one. Also if we consider
the development process, writing the matching expression for
eXAT is quite immediate, while, using JADE, the programmer
is obliged to transform (by hand) a linear expression into
an expression tree. Both these aspects—readability and ex-
pression transformation—are emphasized when the complexity
of the matching expression increases. Indeed, to perform a
complete comparison of both the approaches, an evaluation
of performances is needed. We plan to do it in our future
works, but, in any case, we can make a consideration which
should lead us to think that eXAT should have competitive
performances. Indeed, in both eXAT and JADE template
matching is performed by means of a series of “if ” , which are
executed each time a new message arrives. But the mechanism
provided by class MessageTemplate requires an additional
time to scan the expression tree and to invoke the methods
performing matching8.

7Slots is a list of tuples which represents all the other parameters of an
ACL message.

8In Erlang the “if”s needed to perform matching are generated by the
compiler and placed in-sequence in the preamble of the bytecoded function,
thus no further scan of structures is needed.

init s1

stop

fact asserted/send "request"

"inform" received

-module (buyeragent).

-export ([template/4, events/2]).

template (Fact, init, Agent, AgentFun) ->

apply (AgentFun, [Fact, init, Agent]),

s1;

template ([inform | T] = M, s1, Agent, AgentFun) ->

apply (AgentFun, [M, s1, Agent]),

stop.

events (Agent, AgentFun) ->

[{init, [{eres, goods, {price, computer, fun (X) -> X < 1000 end }}] },
{s1, [{acl}] }].

(a) (b)

Fig. 5. User-Defined FSM Template

B. Matching Multiple Messages

As a second example, we add to the previous example an
action to be performed when an “inform” is received from any
agent but “Alice”, and another action, that is replying with
a “not-understood” message, which is performed when any
message except “inform” is received. This is achieved again
by means of the receiverFSM skeleton and by using multiple
clauses of the action to distinguish the tree cases. As Figure 4
shows, the first clause is the same as that of the previous
example. The second clause implements the second case; the
clause differs from the first for the absence of a matching value
for Senderand thus it is activated by any “inform” message
written in LISP9. Finally, the third clause does not specify any
matching for messages and thus it is activated in all the other
cases (not considered by first and second clauses); as a result,
this third clause sends a “not-understood” reply.

This example shows how easy is, in Erlang/eXAT, to add
more cases by simply adding appropriate function clauses.

C. User-Defined Templates

In this last example we will show how to develop a user-
defined FSM template whose events are tied to an ERES
engine. Let us suppose an agent behaving as shown by the
finite-state-machine in Figure 5a. This agent waits for the
assertion of the fact {price, computer, X}, with X < 1000, in
the ERES engine “goods” (state init); then it sends a “request”
message to a Seller agent (state s1) and finally waits for a
response, that is the reception of an “inform” message (final
state stop), and then stops.

To implement this agent, we write the FSM template in
a module called buyeragent, following the conventions
needed by the eXAT execution engine for FSMs. The latter
requires that a module implementing a FSM template has to
define state transitions with multiple clauses of a function with
the pre-determined name template/4 and have to return the
map of the events associated to states as a result of function
events/2. The template/4 function has the form:

9Messages from “Alice” do not activate this clause since they match the
first clause.

template (Event, State, Agent, AgentFun)
Its return value must be the next state of the FSM Here

Agent and AgentFun are respectively the agent name and
the agent function (implementing the actions) which are
associated to this template. Events returned by events/2
are instead specified as a list of tuples of the type
{state name, list of events}.

Given this, our FSM template is depicted in Figure 5b. The
declared event for state init is the assertion of a fact in the
ERES engine “goods” and thus expressed by the tuple:
{eres, goods, {price, computer, fun (X) -> X < 1000 end }}

The expression for matching fact contains a lambda function
(the “fun” statement) which is used to express that the third
term of the triggering fact must be a number less than
1000. When such a fact will be asserted, the first clause of
template/4 will match: it will call the action function of
the agent (apply statement) and return s1 as the next state of
the FSM. In this latter state, the defined triggering event is
the reception of an ACL message; in particular, the second
clause of template/4 will be activated when an “inform”
speech act will be received: the agent action function will be
called, which will process the incoming message, and the state
returned will be stop, thus ending agent execution.

After developing the needed FSM template, it can be used
as we have seen in the first and second example to implement
the complete behavior specified in Figure 5a. In particular, the
agent using this FSM template will have to implement sending
of the “request” message and interpreting of the “inform” reply
received.

V. CONCLUSIONS AND FUTURE WORK

This paper described eXAT, an agent-platform written in
Erlang, a functional language with multi-processing capa-
bilities, in programming multi-agent systems. Our objective
is to provide a system able to support both behavioral and
intelligent aspects of an agent in a single platform. This is
achieved in eXAT thanks to characteristics and capabilities of
the Erlang language.

Case studies proved that it seem to be more simple to
program agents using eXAT rather than using e.g. a Java-

based platform, and that the derived source code is also more
readable. However, other parameters need to be taken into
account and compared in order to assess the effectiveness of
eXAT. Such an evaluation will be the aim of our future work.
Among these, at least tree aspects are, in our opinion, very
important:

• Performances.Nothing we said about performances. Al-
though Erlang authors’ claim that Erlang has “good per-
formances”, an evaluation of execution speed of an agent
programmed in eXAT with respect to the same agent
written in Java is needed. Indeed, we plan to perform
such an evaluation when the implementation of at least
one standard MTP will be completed in eXAT. Otherwise,
evaluation could be meaningless because would compare
platforms with non-homogeneous implementations.

• Functional Programming.Imperative programming lan-
guages, such as Java, C, C++, Pascal, are undoubtedly
more widespread than functional languages. This means
that to switch from imperative to functional programming
requires a training cost if the programmer is not already
skilled. This must be taken into account in evaluating pros
and cons of eXAT.

• Development of “real” agents.eXAT is used till now
to realize some simple agents needed to test the imple-
mented functionalities of the platform, but it was never
used to build a complete and real multi-agent application.
We plan to do this in parallel with the implementation
of the missing features of eXAT, in order to assess the
effectiveness of the solution provided while we are still
developing the agent platform.

REFERENCES

[1] http://fipa-os.sourceforge.net/. FIPA-OS Web Site.
[2] http://herzberg.ca.sandia.gov/jess/. JESS Web Site.
[3] http://www.diit.unict.it/users/csanto/eres.html. ERES Web Site.
[4] http://www.erlang.org. Erlang Language Home Page.
[5] http://www.erlang.se/publications/index.shtml. Erlang Publications Web

Page.
[6] http://www.ghg.net/clips/CLIPS.html. CLIPS Web Site.
[7] Tveit A. A survey of agent-oriented software engineering. Proc. of the

First NTNU CSGS Conference (http://www.csgsc.org), May 2001.
[8] J. Armstrong, B. Dacker, R. Virding, and M. Williams. Implementing a

Functional Language for Highly Parallel Real Time Applications, 1992.
[9] J. L. Armstrong. The development of Erlang. In ACM Press,

editor, Proceedings of the ACM SIGPLAN International Conference on
Functional Programming, pages 196–203, 1997.

[10] J. L. Armstrong, M. C. Williams, C. Wikstrom, and S. C. Virding.
Concurrent Programming in Erlang, 2nd Edition. Prentice-Hall, 1995.

[11] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent
systems with a FIPA-compliant agent framework. Software - Practice
and Experience, 31(2):103–128, 2001.

[12] N. Carriero and D. Gelernter. Linda in Context. Comm. ACM, 32(4),
April 1989.

[13] Foundation for Intelligent Physical Agents. FIPA ACL Message Repre-
sentation in String Specification, available at http://www.fipa.org.

[14] Foundation for Intelligent Physical Agents. FIPA SL Content Language
Specification, available at http://www.fipa.org.

[15] Foundation for Intelligent Physical Agents. FIPA Specification, available
at http://www.fipa.org.

[16] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall
International, 1985.

[17] H. Mattsson, H. Nilsson, and C. Wikstrom. Mnesia: A Distributed
Robust DBMS for Telecommunications Applications. In Proceedings
of the First International Workshop on Practical Aspects of Declarative
Languages (PADL’99), 1999.

[18] R. Milner. Communicating and Mobile Systems: the Pi-Calculus.
Cambridge Univ Press, 1999.

