
A Contract Decommitment Protocol for Automated Negotiation in Time Variant
Environments

Federico Bergenti, Agostino Poggi and Matteo Somacher
Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma
Parco Area delle Scienze 181A, Parma, Italy

Tel. +39 0521 905712 – Fax +39 0521 905723
{Bergenti,Poggi,Somacher}@CE.UniPR.IT

Abstract

Negotiation is a fundamental mechanism in distributed
multi-agent systems. Since negotiation is a time-spending
process, in many scenarios agents have to take into
account the passage of time and to react to uncertain
events. The possibility to decommit from a contract is
considered a powerful technique to manage this aspect.
This paper considers interactions among self-interested
and autonomous agent, each with their own utility
function, and focuses on incomplete information. We
define a negotiation model based on asynchronous
message passing in which the negotiation doesn’t end
when an agreement is reached but when the consequences
of the contract have happened – i.e. the action is done. In
this model the agent utility functions are time dependent.
We present an extension of the contract net protocol that
implements the model.

1. Introduction

Negotiation has long been considered a fundamental
key in distributed multi-agent systems for coordinating
autonomous agents and managing their interactions [10].
These systems has no notion of global utility function and
negotiation is a powerful mechanism to share information
and to reach acceptable agreements among self-interested
and goal oriented agents, each with their own utility
function [4]. There are two correlated topics that has to be
examined in designing automated negotiation for multi-
agent systems: negotiation protocols, that define the set of
rules that govern the interaction, and strategies that agents
can follow during the protocol [3]. More complex and
powerful is the protocol and more sophisticated can be the
strategies.

Negotiation is a time-consuming process. Time has to
be taken into account when the overhead needed to find an
agreement might cause the negotiation to fail or when the

variations of the negotiable objects are significant during
the negotiation steps. If the agent utility function is time-
dependent, the model has to provide the mechanisms to
allow agents changing their strategies during the
negotiation [4][1].

Negotiation time has impact on the solutions also when
the environment realizes unexpected or uncertain events.
If the contract causes future consequences, the events may
not occur only during the negotiation but also after the
agents have reached an agreement. In some case to
decommit from a contract can be desirable for both
agents [8]. The possibility to decommit from a contract
has been studied with different approaches in distributed
problem solving, in auction optimization and automated
negotiation systems. The Leveled Commitment
Contracts [6] are been proposed to deal with this problem.
They specify in the contract the penalties that agents have
to pay if they decommit from the contract.

The recent increased interest in automated negotiation
research due to the growing up of the Internet applications
and Electronic commerce fixes some constraints in the
multi-agent systems design. These environments are very
dynamic and heterogeneous, they often does not provide
notion of global consistent knowledge or global goal and
need interoperability among different agents. Although
there is no universally best technique for deciding which
negotiation mechanism to adopt [3], because different
negotiation contexts need different solutions, unifying
interaction negotiation protocol and negotiation languages
is an important issue to make actually software agents
interacting in the real world. To reach feasibility it is
important that the negotiation model doesn’t have a big
impact on the agent design.

Our aim in this paper is to propose a general high-level
interaction protocol and a negotiation model that can be
followed by agents in distributed and heterogeneous
multi-agent systems with incomplete information,
eventually adding some constraints in respect of the
different peculiarities of the environments.

In the following section we present the negotiation
model based on asynchronous message passing. The basic
idea is that such model could support different levels of
reasoning and decision making in respect of the
multiagent system needs. It focuses on the communication
acts; reasoning about the strategy models is out of the
scope of the paper. In section 3 we present a unified
negotiation protocol that allows agents to reach an
agreement when it is feasible. It takes into account the
possibility that uncertain events occur and it provides to
agents the mechanism to change their strategies during the
negotiation. We show how some simpler yet powerful
negotiation protocols - i.e. English and Dutch auctions
and Contract Net - can be derived from that general
protocol fixing some constraints. In section 4 is presented
the FIPA [2] implementation of such protocol that uses
the communicative acts specified by the FIPA ACL
language to support the interaction between agents.

2. The negotiation model

We define a negotiation model for the distributed
multi-agent systems with a finite set of agents A that are
self-interested and autonomous, each with their own utility
function. The information about the agent strategies and
knowledge is incomplete, so no notion of global utility
function is present in the system. Agents interact with
asynchronous message passing following an interaction
negotiation protocol that establishes the negotiation rules.
The agents, during the negotiation, try to reach an
agreement on a finite set X = {x1(t), x2(t), …, xn(t)} of
negotiation values that are time dependent in the more
general case. We call negotiables these negotiation values
and we express them through an integer number value.
Negotiables are general entities and they can represent
goods, tasks to be performed or resources to be allocated.

We suppose that each agent is able to calculate a utility
function U(x (t)):X:ℜ , based on its local information,
to evaluate if a negotiable can be agreed. In the model no
assumption are made about the linearity of the utility
functions and the negotiables are the only observable
elements. The agent Ai considers the agreement feasible
for a negotiable x (t0) if U(x (t0)).>Ti, where Ti∈ ℜ is
the threshold level that the agent Ai fixes before starting
the negotiation (in a more complex model also Ti could be
time dependent). We call acceptable negotiable space for
the agent i the bounded subspace Si⊆X of negotiables
satisfying the Ai utility function. The goal of the
negotiation process is to find a vector x (t0) satisfying all
the utility functions of the agents involved. If the
negotiation process between two agent A1 and A2

succeeds, the final vector fx (t0)∈Sf= S1∩S2.

The negotiation process starts with an agent proposing
an acceptable negotiable space Si (or a negotiable x (t)) to
another one. During the negotiation the agents exchange,
within the proposals, some negotiable spaces or
negotiables until the agreement is reached on a negotiable
value x (t0). The history of the negotiation process is
represented by the sequence of spaces and vectors
exchanged among the agents. The basic idea is to build an
observable environment that can be used by the agents to
manage strategies and decision-making techniques.

The negotiation process can involve only a subset of
the full negotiable space X and the dimension of the
negotiables could change during the negotiation. This
possibility increases the complexity of the model and
requires that agents are able to consider this in their
strategies.

Figure 1 illustrates negotiation process in which two
agents reach an agreement. Firstly the agent AA propose to
the agent AB a space SAinit; after some iteration one of the
two agents propose the agreement on the negotiable xf that
is in both acceptable negotiable spaces so can be
accepted.

The model described above makes no assumption
about agent beliefs and strategies, so we don’t approach
analysis of equilibrium or pareto optimality.

3. The interaction protocol

We assume we have a finite collection of agents that
play the role of initiator I = {i1, i2, …, in} of the protocol
and a finite collection of agents that play the role of
responder R = {r1, r2, …, rn}. The protocol is symmetric.
It is important to provide a symmetric negotiation

X1(t)

X0(t)

xf =(x0(tf), x1(tf))
SA init

SB
SA

SF

Figure 1. Example of a successful negotiation
process.

mechanism [5][10] where there are no special agents that
have a different responsibility in the negotiation process.
When the agent society needs a coordinator or a broker
the responsibility assignment needs to be resolved before
the negotiation starts [10]. This is the case of auctions that
need some added rules and establishes that the initiator
informs the other agents when negotiation ends.

The initiator agent is interested in starting the
negotiating and it can request or offer a good. The
negotiable objects [3] used in the protocol can be both
negotiables and negotiable spaces. During the bargaining
agents can iterate proposals exchanging objects
negotiation until one agent accepts a proposal containing a
negotiable x (t0). The protocol fixes implicitly some
negotiation rules, i.e., the order in which messages can be
sent, some others has to be chosen by agents before
starting the negotiation process adding the constraints
imposed by the environment. We describe the interactions
between two agents but the protocol can be used also,
without modifications, in one to many (i.e., auctions) or
many to many negotiation processes. Figure 2 shows the
state diagram that describes the protocol.

We consider that the negotiation process doesn’t end
when the agents reach an agreement but when the
consequences of the contract occur, i.e., the action

requested is done. This because the time interval from the
agreement instant to the action can be significant and
sometimes much longer than what needed by the previous
interactions. In the meanwhile, unexpected events can
arise invalidating the reasons for the agreement, moreover
the agent utility function, which is time-dependent, could
fall under the threshold level. In that case we don’t want
to restart the negotiation because we would loose the
information obtained from the process. Actually, if the
action has not already been done the agents could take
advantages in decommit from the contract [6][8]. We
don’t analyze here the impact of the decommitment in the
agent society because it is closely related to the strategies
and dependent on the reference scenario. So in the more
general case we don’t add penalties to the agent that
decommits from the contract. If needed, penalties can be
defined in the set o rules established between agents
before the negotiation.

The protocol starts when the initiator agent issues a
propose to the responder agent moving from state 0 to
state 1. The initial proposal defines an initial negotiable
object and which agent has to do the action specified in
the contract, so it could express the intention to offer or to
request a good (service). The responder agent has four
possibilities:

− it can accept the proposal (going to state 6);
− it can reject the contract waiting for another

propose (going to state 3);
− it can refuse to negotiate withdrawing the

proposal (the protocol finishes with a non-
success state).

− it can reply with a propose (going to state 2)
refining the negotiable object;

The protocol is symmetric and in the state 2 also the
initiator has four possibilities after receiving the proposal
of the responder:

− it can accept the proposal (going to state 5);
− it can reject the contract waiting for another

propose (going to state 4);
− it can reply with a propose (going to state 1)

refining the negotiable object;
− it can refuse to negotiate withdrawing the

proposal (the protocol finishes with a non-
success state).

Now the negotiation process can take in several
iterations, between state 1 and state 2, to find the
negotiable that can be accepted by the agents. This is not
the case of a cooperative environment where agents try to
exchange the more information they can but it is important
in a competitive environment where the negotiation goal
for each agent is to obtain the best contract maximizing
their utility function that often is proportional reverse to
the others. If only one agent is responsible to modify the
negotiable objects the following two cases can arise: if the

I:propose

R:propose

R:propose

I:agree

I:propose

I:withdraw

I:withdraw

R:propose

I:done

I:withdraw
R:decommit

I:propose
R:withdraw

X

R:reject

I:propose

Vi

I:decommit
R:withdraw

R:done
Vr

R:agree

5

I:reject

R:propose

R:withdraw

6

2

3

4

0
I:propose

1

Figure 2. The negotiation interaction protocol

agent that proposes to do something (or to provide some
service) is the initiator, the iteration moves between state
1 and state 3, otherwise the iteration moves between the
state 2 and state 4. Actually state 1 is the state in which
the responder agent can accept the proposal and state 2 is
the state in which the initiator can accept the responder
proposal. Every time an agent rejects a proposal, the other
can stop the negotiation protocol withdrawing to continue,
so from states 3 and 4 is allowed the transaction to the
final unsuccessful state.

Let’s consider that the iteration ends and the agents
reached an agreement. The protocol goes to the state 5 or
to the state 6 with one agent that answers agree to the
current proposal.

If no unexpected event occurs the agent that took
charge of doing the action will inform the other that the
action is done and the protocols ends in the Vi state if the
initiator did the action (from state 6) or in the Vr state if
the responder did the action (from state 5). If something
goes wrong and the agents cannot provide what they
promised because some unrecoverable error occur in the
system, the protocol ends with a withdraw message
although the agreement was reached.

Before the action is done both the agents can decommit
from the contract. This simply cancels the previous
agreement. If agents are no more interested in the
negotiation they send a decommit message to the other
agent ending the protocol. The decommitment can also
used to refine the negotiable and continuing the
bargaining even though a previous agreement was
reached. The transactions from state 5 to state 1 and from
state 6 to state 2 are an implicit decommit of the agents
after they agreed a proposal. The transactions from state 6
to state 1 and from state 5 to state 2 are an implicit
decommit of the agents that had their proposal accepted.
In both cases the agents send to the other agent a further
proposal because they intend that it would be better for
both.

For deepening this aspect let’s consider the following
example: two agents reached an agreement about a service
that will be provided at a time in the future. In the
meanwhile a third agent offers the same service that is
more advantageous for the client. The possibility to
decommit allows the three agents to continue the
negotiation without restarting the process from the
beginning. Of course penalties can be considered if the
environment requires them.

An interaction protocol has to guarantee success in a
reasonable time and at reasonable computational cost.
Without defining some specific negotiation rules the
protocol can lead to negotiations that never terminates.
Furthermore if the environment is not time stationary this
risk could be more evident. When the agent utility
functions don’t are time dependent, if the offer made by
an agent is less preferable to that agent than the previous
ones and the agent withdraws when its utility function
falls under a threshold, we can consider that such
protocols guarantees success [9]. What is needed is to
provide rules and constraints for such more complex
environment that lead to the same assertions. Since the
rules are closely related to the scenario, in a general
protocol we have not to define them. However we could
generally impose that the sequence of proposals during the
negotiation process has to be monotonic to prevent
infinite loops in the bargaining.

3.1 The Contract Net protocol

The Smith’s Contract Net [7] is a fundamental high-
level communication protocol for a Distributed Problem
Solving and Distributed Artificial Intelligence systems. It
enables the distribution of tasks among the nodes (agents)
that operate in the system. Smith assigns two different
roles to the contractors:

− the manager, responsible for monitoring the
execution of the task;

I:propose

R:propose

I:agree

I:propose

I:withdraw

I:withdraw

R:propose

I:done

I:withdraw
R:decommit

I:propose
R:withdraw

X

R:reject

I:propose

Vi

I:decommit
R:withdraw

1

R:done
Vr

R:agree

5

I:reject

R:propose

R:propose

R:withdraw

6

2

3

4

0
I:propose

Figure 3. The Contract Net protocol derived
from the general interaction protocol

− the contractor, responsible for the actual
execution of the task.

Figure 3 shows how the Contract Net can be
implemented adding some constraints to the general
interaction protocol we propose, i.e., forbidding some
transactions. The forbidden transactions are shown with
dashed lines and the dashed circles are states that cannot
be reached during the negotiation. The states and the
transactions allowed are shown in red.

The initiator agent plays the role of manager and the
responder plays the role of contractor. The initial task
announcement message corresponds to the initial proposal
from state 0 to state 1. If the contractor makes the bid we
have the propose message that leads to the state 2
otherwise the protocol ends with the contractor that
refuses to negotiate. The bid could be accepted or rejected
by the manager. In the second case the protocol goes to
the state 5 where the initiator agent wait for knowing if the
task has been done.

3.2 The auctions

The auctions are non-symmetric and one-to-many
negotiation processes. Forbidding some transactions is
also possible to derive an auction protocol from the
general interaction one. In this case the auctioneer plays
the role of the initiator agent. The agents have to decide
when the auctioneer can or has to inform the others that
the auction ended.

The auction starts when the auctioneer calls for bids
sending to the agents involved in the bargaining a propose
message, moving from state 0 to state 1. The responder
agents makes the bid moving to the state 2, then the
auctioneer can accept (the protocol goes to the state 5) or
reject the bid (the protocol goes to the state 4).

In the auctions, the auctioneer explicitly stops the
protocol and according the type of action this can happen
into different states. Let’s consider two typical auction
styles, the English and the Dutch:

− according to English style a low initial price
rises gradually until a client declares its intention
to buy;

− in the Dutch style the auctioneer starts with a
price much higher than the real market value of
the goods, then she lowers the price gradually
until one of the clients accepts the suggested
price.

In the English style the auctioneer inform that the auction
ended when no bids are announced for the current
proposal: the transaction occurs from state 1 to the final
state. In the Dutch style the auctioneer stops the auction
because nobody accepts the proposed price (from the state
1) or when the good is sold (the protocol is in the state 5
where the bidder accepted the price of the auctioneer).

4. FIPA implementation

FIPA, the Foundation for Intelligent Physical Agents,
tries to actively support agent sociality recognising that a
way to ease the modelling of interactions between agents
is to exploit interaction protocols [2]. FIPA provides four
generic interaction protocols to support negotiation
between agents, based on the FIPA ACL specifications:
the FIPA contract net, the FIPA iterated contract net, the
FIPA auction English and the FIPA auction Dutch.

We provide a FIPA mapping of the general negotiation
protocol presented in this paper. Figure 4 shows the state
diagram representation of this version. As also shown in
the previous session, the auctions and the contract net can
be derived from this protocol.

First of all we can notice that the FIPA version of the
protocol has two more states. This is due to the formal
semantic of the FIPA performatives. Actually these state
(state 7 and state 8) are transient states and when the
protocol goes by them the agents send two consequent
ACL performatives. This because when an agent wants to
decommit for doing another proposal it must invalidate
the rational effect of the accept_proposal by sending a
disconfirm communicative act to the other agent, then it

R:inform I:inform

R:propose

R:inform

R:propose

R:disconfirm

R:failure

I:propose

I:failure
I:inform

I:disconfirm R:cancel
I:cancel

I:accept
proposal

I:propose

1

6

X

3

Vi Vr

7

I:reject
proposal R:refuse

R:reject
proposal
R:not
understood

5

2

R:accept
proposal

R:propose

4

I:reject
proposal I:propose

0

8

I:propose

R:reject
proposal

Figure 4. The FIPA mapping of the protocol

can send another propose. The disconfirm message is
necessary to reject the contract because a new propose
would not cancel the manager intendments about the
previous proposal. Similarly if an agent wants to
decommit after she accepting a proposal for refining the
negotiable object it has to cancel the effect of the previous
message before sending the propose.

When the agents want to stop the negotiation process
because their offers continue to be rejected, they send an
inform and the protocol goes from state 3 or 4 to the
unsuccessful state.

This protocols differs from the FIPA negotiation ones
because it begins with a propose message instead of a
callforproposal. Actually a callforproposal is not
necessary when the initiator agent offers a service (or to
do an action). In the other cases the propose from state 0
to state 1 takes the place of the callforproposal. This
allows to send one less message and to finish the protocol
with 3 messages instead of 4 when no iteration is needed
and the agreement is reached. The sequence of messages
in that case would be: propose, accept_proposal,
inform(done).

5. Conclusions

In this paper we presented a negotiation model and a
general interaction negotiation protocol based on
asynchronous message passing that can be used in non-
stationary environments. Agents can decommit from the
contract to manage unexpected events. This allows agents
having time dependent utility functions. We showed how
auctions and some version of the Contract Net could be
provided simply adding constraints to the general
protocol. This is useful because it provides a skeleton
adaptable to different scenarios and the agents could build
strategies using mathematical instruments.

During the negotiation process the agents exchanges
set of vectors representing the negotiable values. What an
external observer would see is a space or a point moving
on the negotiable value space until the agreement is
reached or the bargaining ends without solutions.

We also provided a FIPA mapping of the general
interaction negotiation protocol that can be easily
employed by FIPA compliant agents.

Extensions of this research include analyzing and
providing BDI agent strategies that were out of the scope
of this work. It has also to be studied how, when and
under which constraints the protocol guarantees success.

6. Acknowledgement

This project is partially supported by the grant CNR
Applied Research Project 5% “Multimedialità”.

7. References

[1] J. Dix, S. Kraus and V. S. Subrahmanian “Temporal
Agents Programs”. In Artificial Intelligence 127(1),
pages 87-135, 2001.

[2] Foundation for Intelligent Physical Agents. FIPA ’99
Specification, Part 2: Agent Communication.
Available at: http://www.fipa.org

[3] N. R. Jennings, P. Faratin, A. R. Lomuscio,
S. Parsons, C. Sierra and M. Wooldridge “Automated
Negotiation: Prospects, Mehods and Challenges”. In
International Journal of Group Decision and
Negotiation. 10(2), pages 199-215, 2001.

[4] S. Kraus, J. Wilkenfeld, G. Zlotkin “Multiagent
Negotiation Under Time Constraints” Artificial
Intelligence journal, 1995.

[5] J. F. Nash “The Bargaining Problem”. Econometrica
21, pages 155-162, 1950.

[6] T. Sandholm and V. Lesser “Leveled Commitment
Contracts and Strategic Breach”. In Games and
Economic Behaviour 35, pages 212-270, 2001.

[7] R. G. Smith “The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem
Solver”. IEEE Transactions on Computers, C-29(12),
pages 1104-1113, 1980.

[8] W. Walsh and M. Wellman “Efficiency and
Equilibrium in Task Allocation Economies with
Hierarchical Dependencies”. IJCAI, Stockholm,
1999.

[9] M. Wooldridge and S. Parsons “Languages for
Negotiation”. ECAI, Berlin, 2000.

[10] G. Zlotkin and J. S. Rosenschein “Mechanisms for
Automated Negotiation in State Oriented Domains”.
In Journal of Artificial Intelligence Research 5, pages
163-238, 1996.

