
PhD in Computer Science and Engineering
Bologna, April 2016

Machine Learning

Marco Lippi

marco.lippi3@unibo.it

Marco Lippi Machine Learning 1 / 81

Deep Learning:
a revolution for AI

Marco Lippi Machine Learning 2 / 81

The history of Artificial Neural Networks...

1943 McCulloch and Pitts – The Artificial Neuron
1958 Rosenblatt – Perceptron
1969 Minsky and Papert – Limits of the perceptron

AI Winter

1974 Werbos – First ideas of backpropagation
1984 Hopfield – Hopfield Networks

1986 Rumelhart, Hinton, Williams – Backpropagation

Kernel Machines and Statistical Learning boom...

2006 Hinton, Bengio, LeCun, Ng, ... Deep Learning

Marco Lippi Machine Learning 3 / 81

Bringing AI in the news...

Marco Lippi Machine Learning 4 / 81

Deep Learning

Breakthrough in many AI applications

Speech recognition

Image classification

Object detection

Video classification

Scene understanding

Natural language understanding

Machine translation

...

Marco Lippi Machine Learning 5 / 81

What is REALLY new ?

Deep Learning = neural networks with many layers ?

Deep neural networks were already known since Multi-Layer
Perceptron, so why has deep learning become popular only now ?

Main limitations of (deep) neural networks in the 90s:

1 Local minima

2 Vanishing gradients

3 Curse of dimensionality

4 Computational requirements

Marco Lippi Machine Learning 6 / 81

Local minima

Attractors for the classic backpropagation algorithm...

w

f(w)

A few solutions...

Multi-start with random initializations

Momentum term −→ w t
ij = w t−1

ij − η∆w t
ij +µ∆w t−1

ij

Marco Lippi Machine Learning 7 / 81

Vanishing gradients

The composition of several gradient contributions can make the
values either explode or vanish to zero (happening also for
activation functions)

GRADIENT
(1)

GRADIENT
(2)

GRADIENT
(3)

GRADIENT
(4)

INPUT

OUTPUT

Marco Lippi Machine Learning 8 / 81

Vanishing gradients

Consider an ANN with 4 layers and a single unit in each layer.

w1 w2 w3 w4x f(x)b1 b2 b3 b4

We name x the input, wj and bj the weight and bias of layer j .
The output of each layer can be computed as:

zj = σ(wjzj−1 + bj)

where z0 = x .

[Example by M. Nielsen]

Marco Lippi Machine Learning 9 / 81

Vanishing gradients

Let us compute the gradient of f with respect to b1 and b3:

∂f

∂b1
= σ′(z1) · w2 · σ′(z2) · w3 · σ′(z3) · w4 · σ′(z4) · ∂f

∂z4

∂f

∂b3
= σ′(z3) · w4 · σ′(z4) · ∂f

∂z4

Marco Lippi Machine Learning 10 / 81

Vanishing gradients

If we now consider the derivative of the sigmoid function:

we have that, with typical weight initialization (randomly sampled
from a Gaussian with mean 0 and standard deviation 1):

|wjσ
′(zj)| <

1

4

Marco Lippi Machine Learning 11 / 81

Vanishing gradients

Now going back to the gradient computation:

∂f

∂b1
= σ′(z1) · w2 · σ′(z2) · w3 · σ′(z3) · w4 · σ′(z4) · ∂f

∂z4

∂f

∂b3
= σ′(z3) · w4 · σ′(z4) · ∂f

∂z4

Lower layers tend to have either vanishing or exploding gradients !

Exhaustive analysis for Recurrent Neural Networks in [Hochreiter et el., 2001]

Marco Lippi Machine Learning 12 / 81

Curse of dimensionality

input combinations grows non-linearly with # input variables

[Figure by Y. Bengio]

Marco Lippi Machine Learning 13 / 81

Computational requirements

Training deep models in the 90s was extremely time-consuming...

... Now computers are faster !

Marco Lippi Machine Learning 14 / 81

Theoretical arguments

An ANN with a single hidden layer is a universal approximator...
... but it may require an exponential number of hidden neurons...
... and therefore it may be much more difficult to learn !

Analogy with digital circuits → N-bit parity:

requires N-1 gates with depth log(N)

requires exponential # gates with 2 layers only

Marco Lippi Machine Learning 15 / 81

Theoretical arguments

Advantages of deep architectures:

representing functions with a lower number of elements

more compact and more efficient model (fewer parameters)

Observation

The number of affordable parameters of a neural network depends
on the number of training examples that can be used to tune them

=⇒ Insufficiently deep architecture leads to poor generalization
(Occam’s razor)

Marco Lippi Machine Learning 16 / 81

Training deep models

Since the development of multi-layer perceptrons, only 1 or 2
hidden layers had obtained successful results...

One exception: Convolutional Neural Networks (next lecture)

Breakthrough in 2006 with Deep Belief Networks (DBNs)
developed at the University of Toronto [Hinton et al., 2006]:

train one layer at time

exploit unsupervised learning

use supervisions only for a fine tuning of the network

Marco Lippi Machine Learning 17 / 81

Supervised vs. unsupervised learning

Supervised learning

data consists in observations X and labels Y
given an observation x ∈ X , the goal is to predict y ∈ Y
learn a function f : X → Y from a data set D = {(xi , yi)}Ni=1

Unsupervised learning

data consists in observations X
find regularities and patterns in data

understand which features are most important

learn a representation of data

Marco Lippi Machine Learning 18 / 81

Auto-Encoders (more on this later)

An Auto-Encoder is an ANN that learns a representation of the
input through which it is possible to reconstruct the input

[Figure by R. Salakhutdinov]

It is an example of unsupervised learning !

Marco Lippi Machine Learning 19 / 81

A generic architecture for deep learning

1 Train one layer per time to reconstruct the input
2 Unsupervised training for each layer

3 Once a layer is trained, pass to the upper one
4 Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20 / 81

A generic architecture for deep learning

1 Train one layer per time to reconstruct the input
2 Unsupervised training for each layer

3 Once a layer is trained, pass to the upper one
4 Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20 / 81

A generic architecture for deep learning

1 Train one layer per time to reconstruct the input
2 Unsupervised training for each layer

3 Once a layer is trained, pass to the upper one
4 Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20 / 81

A generic architecture for deep learning

1

1 Train one layer per time to reconstruct the input
2 Unsupervised training for each layer

3 Once a layer is trained, pass to the upper one
4 Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20 / 81

A generic architecture for deep learning

1

1 Train one layer per time to reconstruct the input
2 Unsupervised training for each layer

3 Once a layer is trained, pass to the upper one
4 Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20 / 81

A generic architecture for deep learning

1

2

1 Train one layer per time to reconstruct the input
2 Unsupervised training for each layer

3 Once a layer is trained, pass to the upper one
4 Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20 / 81

A generic architecture for deep learning

1

2

1 Train one layer per time to reconstruct the input
2 Unsupervised training for each layer

3 Once a layer is trained, pass to the upper one
4 Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20 / 81

A generic architecture for deep learning

1

2

3

1 Train one layer per time to reconstruct the input
2 Unsupervised training for each layer

3 Once a layer is trained, pass to the upper one
4 Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20 / 81

A generic architecture for deep learning

1

2

3

1 Train one layer per time to reconstruct the input
2 Unsupervised training for each layer

3 Once a layer is trained, pass to the upper one
4 Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20 / 81

A generic architecture for deep learning

1

2

3

SUPERVISIONS

1 Train one layer per time to reconstruct the input
2 Unsupervised training for each layer

3 Once a layer is trained, pass to the upper one
4 Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20 / 81

A generic architecture for deep learning

1

2

3

SUPERVISIONS

FINE
TUNING

1 Train one layer per time to reconstruct the input
2 Unsupervised training for each layer

3 Once a layer is trained, pass to the upper one
4 Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20 / 81

Representation learning

Deep learning is essentially representation learning

Most machine learning approaches work well for specific tasks
owing to a great effort in the design of good features

Finding appropriate features can be a time-consuming but
also subtle task even for specialists

Representation learning tries to automatically learn good
features from raw input data (even not knowing the task ?)

Deep learning tries to learn a hierarchy of multiple levels of
representation having increasing complexity

Marco Lippi Machine Learning 21 / 81

Discriminative vs. Generative models

Discriminative models

directly model P(Y |X ;W)

need to make assumptions about input x

Generative models

learn probabilistic model P(X ;W)

use learned parameters to init discriminative model

no knowledge on further discriminative task !

semi-supervised learning !

Marco Lippi Machine Learning 22 / 81

Why is unsupervised learning useful ?

For the same training error (at different points during training),
test error is systematically lower with unsupervised pre-training.
[Erhan et al., 2009]

Marco Lippi Machine Learning 23 / 81

Why is unsupervised learning useful ?

As discussed in [Erhan et al., 2009], unsupervised pre-training can
be seen as a form of regularizer (or prior)...

Observation

Unsupervised pre-training amounts to a constraint on the region
in parameter space where a solution is allowed.

Experiments show that the effect of unsupervised pre-training is
most marked for the lower layers of a deep architecture.

Marco Lippi Machine Learning 24 / 81

Overfitting vs. underfitting

Overfitting:

Good training performance, bad generalization capability

Typically model too complex: too many parameters

Underfitting:

Bad training performance

Typically model too simple: too few parameters

Marco Lippi Machine Learning 25 / 81

Overfitting vs. underfitting

In a deep architecture, driving training error very low is simple,
even only with the top two layers with enough hidden units

Low training error and high test error ⇒ overfitting

Pre-training induces a data-dependent regularization

Note that, with small training set, unsupervised pre-training
can lower test error despite a larger training error

With larger training sets, with better initialization of the
lower hidden layers, both training and generalization error can
be significantly decreased with unsupervised pre-training.

Marco Lippi Machine Learning 26 / 81

Deep Belief Networks,
Restricted Boltzmann Machines,

and Energy-Based Models

Marco Lippi Machine Learning 27 / 81

Restricted Boltzmann Machines (RBMs)

h

v

Modeling two sets of random variables V and H:

V = V1, . . . ,Vm (visible)

H = H1, . . . ,Hn (hidden)

all Hi are independent when conditioning on V

all Vj are independent when conditioning on H

Marco Lippi Machine Learning 28 / 81

Restricted Boltzmann Machines (RBMs)

In classic RBMs all units are stochastic binary (0/1) units.

Prob(neuron = active) =
1

1 + e−input

Marco Lippi Machine Learning 29 / 81

Restricted Boltzmann Machines (RBMs)

Since there are no connections between units of the same layer, the
structure of the RBM induces a probability factorization, so that:

P(H = h|V = v) =
∏
i

P(hi |v)

P(V = v |H = h) =
∏
i

P(vi |h)

The probability distribution over such units is computed as:

P(hj = 1|v) = σ(cj +
∑
i

viWij)

P(vi = 1|h) = σ(bj +
∑
j

hjWij)

Marco Lippi Machine Learning 30 / 81

Restricted Boltzmann Machines (RBMs)

RBMs belong to the class of Energy-Based Models (EBMs):

P(x) =
e−Energy(x)

Z

where
Z =

∑
x

e−Energy(x)

is called the partition function.

We will discuss EBMs in more detail later on. . .

Marco Lippi Machine Learning 31 / 81

Restricted Boltzmann Machines (RBMs)

When some variables are observed and some others are latent,
the above definition can be re-written as:

P(x) =
∑
h

e−Energy(x ,h)

Z
=

e−FreeEnergy(x)

Z

being FreeEnergy(x) = − log
∑
h

e−Energy(x ,h)

For RBMs we have the following formulation:

Energy(v , h) = −
∑
i

bivi −
∑
j

cjhj −
∑
i

∑
j

viwijhj

FreeEnergy(v , h) = −
∑
i

bivi −
∑
i

log
∑
hi

ehi (ci+
∑

k vkwkj)

Marco Lippi Machine Learning 32 / 81

Restricted Boltzmann Machines (RBMs)

Classic learning method for RBMs: Maximum Likelihood

The likelihood of the visible data v can be written as a sum over
all possible configurations of hidden states

L = Pmodel(v) =
∑
h

p(v , h) =
1

Z
exp (

∑
ij

viwijhj)

Maximize likelihood of given data w.r.t. weights wij

This is equivalent to minimize the Kullback-Leibler
divergence between data and model distributions

Marco Lippi Machine Learning 33 / 81

Restricted Boltzmann Machines (RBMs)

We can compute the derivative of the log-likelihood w.r.t. wij :

∂ logL
∂wij

= 〈vihj〉data − 〈vihj〉model

from which we can derive a gradient update rule:

∆wij = ρ (〈vihj〉data − 〈vihj〉model)

where 〈·〉 indicate expectations over random variables.

First term: straightforward (observed)
Second term: needs some computations...

Marco Lippi Machine Learning 34 / 81

Restricted Boltzmann Machines (RBMs)

Classic method: alternating Gibbs sampling

<v h >

...

i j

...

0

...

...

...

...

<v h >i j
1

... <v h >i j
inf

h

v
t=0 t=1 t=inf

h
(n)
i randomly chosen to be 1 with probability σ(W ′

i v
(n) + ci)

v
(n+1)
j randomly chosen to be 1 with probability σ(W.jh

(n) + bj)

∆wij = ρ (〈vihj〉0 − 〈vihj〉∞)

Proof of convergence to the real distribution (but slow...)

Marco Lippi Machine Learning 35 / 81

Restricted Boltzmann Machines (RBMs)

A much more efficient algorithm: constrastive divergence

<v h >

...

i j

...

0

...

...

<v h >i j
1

t=0 t=1

Stochastic gradient descent with update rule:

∆wij = ρ (〈vihj〉0 − 〈vihj〉1)

This is a very fast and efficient approach !

Marco Lippi Machine Learning 36 / 81

Deep Belief Networks [Hinton et al., 2006]

A DBN consists in a stack of RBMs

1 Layer-wise pre-training of all layers

2 Fine tuning with backpropagation

Marco Lippi Machine Learning 37 / 81

Deep Belief Networks [Hinton et al., 2006]

Experiments performed on:

1 Image classification (Digits, Faces)

2 Document classification (Reuters corpus)

In both cases, a DBN was trained with 4 layers, with the final
feature encoder consisting in only 2 dimensions:

784 – 1000 – 500 – 250 – 2 (images)

2000 – 500 – 250 – 125 – 2 (text)

Marco Lippi Machine Learning 38 / 81

Deep Belief Networks [Hinton et al., 2006]

Image classification on the MNIST digit data set

A: PCA B: DBNs
Figure by [Hinton et al., 2006]]

Marco Lippi Machine Learning 39 / 81

Deep Belief Networks [Hinton et al., 2006]

Document classification on the Reuter corpus

B: PCA C: DBNs
Figure by [Hinton et al., 2006]]

Marco Lippi Machine Learning 40 / 81

Deep Belief Networks [Hinton et al., 2006]

Digit reconstruction

Figure by [Hinton et al., 2006]]

1: original images, 2: DBN (top layer 30), 3-4: PCA

Marco Lippi Machine Learning 41 / 81

Deep Belief Networks [Hinton et al., 2006]

Faces reconstruction

Marco Lippi Machine Learning 42 / 81

Deep Belief Networks [Hinton et al., 2006]

Marco Lippi Machine Learning 43 / 81

Energy-based models

Assigning a value of energy to each configuration of:

observed variable X

predicted variable Y

Inference in an energy-based model:

Y ∗ = arg min
Y∈Y

E (X ,Y)

This can be computationally expensive according to |Y|

Marco Lippi Machine Learning 44 / 81

Energy-based models

From energies to probabilities via Gibbs distribution:

P(Y |X) =
e−βE(Y ,X)∫

y∈Y e
−βE(Y ,X)

If we explicit the model parameters W :

P(Y |X ,W) =
e−βE(W ,Y ,X)∫

y∈Y e
−βE(W ,y ,X)

Marco Lippi Machine Learning 45 / 81

Energy-based models

Problems that can be addressed:

1 Classification → find Y that is most compatible with X

2 Ranking → decide whether Y1 or Y2 more compatible with X

3 Detection → decide whether Y is compatible with X

4 Conditional Density Estimation → compute P(Y |X)

Marco Lippi Machine Learning 46 / 81

Energy-based models

How does learning work ?

Push down on the energy of the correct answer

Pull up on the energies of the incorrect answers, particularly
if they are smaller than the correct one

Slide by Yann LeCun

Marco Lippi Machine Learning 47 / 81

Energy-based models

Given a dataset D, the ingredients to be chosen are:

a particular form of energy E (W ,Y ,X)

an inference algorithm to find Y by minimizing the chosen
energy E for any given X

a loss function L(W ,D) measuring the quality of E

an optimization method for the loss function to find W ,
given E ,L,D

The loss is typically designed as the sum of two terms:

L(W ,D) =
1

N

N∑
i=1

L(Y i ,E (W ,Y,X i)) + R(W)

begin L a per-loss function and R a regularization term

Marco Lippi Machine Learning 48 / 81

Energy-based models

Examples of per-sample loss function:

Energy Loss
L(Y i ,E (W ,Y,X i)) = E (W ,Y i ,X i)

Negative log-likelihood (or cross-entropy) Loss

L(Y i ,E (W ,Y,X i)) = E (W ,Y i ,X i) + 1
β log

∫
y e
−βE(W ,y ,X i)

Hinge Loss

Log Loss

. . .

Marco Lippi Machine Learning 49 / 81

Energy-based models

Example

Minimize the log-likelihood on training examples
We can train the model with gradient descent:

∂L(Y ,W ,X)

∂W
=
∂E (Y ,W ,X)

∂W
−
∫
y
P(y |W)

∂E (y ,W ,X)

∂W

W ←W − η∂L(Y ,W ,X)

∂W

How to choose the ys to compute the second-term integral ?
One solution is given by contrastive divergence !

Marco Lippi Machine Learning 50 / 81

Energy-based models

Boltzmann Machines have the following form:

E (v , h) = −
∑
i

bivi −
∑
j

cjhj −
∑
i

∑
j

viwijhj

−
∑
i

∑
j

vipijvj −
∑
i

∑
j

hiqijhj

In this case, free energy cannot be analytically computed, which
makes learning impractical !

In RBMs, the additional assumption of graph factorization allows
to drop the last two terms (no intra-layer links)

Marco Lippi Machine Learning 51 / 81

Restricted Boltzmann Machines (RBMs)

RBMs are universal approximators

Provided enough hidden units, an RBM can perfectly model any
discrete distribution

Adding one hidden unit guarantess to increase likelihood,
provided a proper choice of parameters. . .

Marco Lippi Machine Learning 52 / 81

Energy-based models

Deep Boltzmann Machines are a specific case of BMs
corresponding to an undirected graphical model.

Each layer is still an RBM (as in a DBN), but the energy
function is different:

E (v , h1, h2, h3; θ) = −vTW 1h1 − h1
T
W 2h2 − h2

T
W 3h3

Figure by [R. Salakhutdinov & G. Hinton, 2009]

Marco Lippi Machine Learning 53 / 81

Energy-based models

It should be remarked that a DBN is not a DBM !

In a DBN, there is only a bottom-up phase

In a DBM, a bottom-up and a top-down phase are combined

Figure by [R. Salakhutdinov & G. Hinton, 2009]

Marco Lippi Machine Learning 54 / 81

Energy-based models

Training a DBM:

quite hard with classic maximum likelihood

could be done with layer-wise pre-training as for DBNs

a joint training exploiting regularization has been proposed in
[Desjardins et al., 2012]

Results (image/speech recognition):

DBNs are easier to train

DBMs might achieve better performance

Marco Lippi Machine Learning 55 / 81

Energy-based models

RBMs with Gaussian visible units (GRBMs)

when dealing with real-valued input

natural images, speech, . . .

learning more difficult as reconstruction is unbounded !

got unsatisfactory results. . .

E (v , h) =
∑
i∈vis

(vi − bi)
2

2σ2i
−

∑
j∈hid

cjhj −
∑
i ,j

vi
σi
hjwij

Hint for training: typically one should first normalize the input

E (v , h) =
1

2
(v − b)T (v − b)− cTh − vTWh

Marco Lippi Machine Learning 56 / 81

Energy-based models

RBMs with Gaussian visible and hidden units

Learning becomes even more difficult

E (v , h) =
∑
i∈vis

(vi − bi)
2

2σ2i
−

∑
j∈hid

(hj − cj)
2

2σ2j
−
∑
i ,j

vi
σi
hjwij

Marco Lippi Machine Learning 57 / 81

Energy-based models

Mean-covariance RBM (mcRBM)

Explicitly modeling mean and covariance of input elements

This is captured by two distinct hidden groups

E (v , hm, hc) = E c(v , hc) + Em(v , hm)

Marco Lippi Machine Learning 58 / 81

Energy-based models

Spike and slab RBM (ssRBM)

Each hidden neuron is associated with:

a binary variable (spike) hi

a real-valued vector (slab) si

E (v , s, h) =
1

2
vTBv −

N∑
i=1

(vTWsihi +
1

2
sTi αi si + cihi)

Marco Lippi Machine Learning 59 / 81

Auto-Encoders

Marco Lippi Machine Learning 60 / 81

Auto-Encoders

Different Auto-Encoders with different encoding/decoding blocks...

[Figure by R. Salakhutdinov]

Marco Lippi Machine Learning 61 / 81

Auto-Encoders

Example: try to minimize the reconstruction error

E (W) =
1

2

N∑
n=1

‖σ(W T zn)− xn‖2

Is it going to learn the identity function ?
Do we need any additional constraint ?

Note

Minimizing reconstruction error corresponds to maximizing the
mutual information between input X and learnt representation Y

Marco Lippi Machine Learning 62 / 81

Auto-Encoders

If # hidden units is smaller than # input units:

feature selection

dimensionality reduction

If # hidden units is greater than # input units (over-complete):

typically induce sparsity in parameters

biological inspiration for sparse connectivity

with larger spaces units are less entangled

dealing with larger feature space might be easier

Marco Lippi Machine Learning 63 / 81

Auto-Encoders

There exist several types of Auto-Encoders

Ordinary Auto-Encoders
minh ‖x − σ(Wh)‖22

Sparse Auto-Encoders
minh ‖x − σ(Wh)‖22 + λ‖h‖1

Denoising Auto-Encoders
minh ‖x − σ(Wh)‖22 where h = σ(W T x̃)

Marco Lippi Machine Learning 64 / 81

Denoising Auto-Encoders (DAEs)

[Figure by Larochelle et al., 2010]

DAEs are trained to reconstruct stochastically corrupted input,
with uncorrupted input still used as target

Marco Lippi Machine Learning 65 / 81

Denoising Auto-Encoders (DAEs)

Therefore, a DAE has two intertwined goals:

1 encoding and recostructing the input

2 removing the effect of noise

The training criterion is a reconstruction log-likelihood:

− logP(x |c(x̃))

Marco Lippi Machine Learning 66 / 81

Stacked Denoising Auto-Encoders (SDAEs)

[Figure by Larochelle et al., 2010]

Very similar to DBNs:

Greedy layer-wise training

Bottom-up stacking

Fine-tuning on top

Marco Lippi Machine Learning 67 / 81

DAEs and overfitting

By adding noise to the input units of the network, DAEs:

perform a sort of regularization

make the network more robust to noise

basically, they reduce overfitting

If there were no problem of computational requirements,
overfitting could be reduced by averaging over a set of models.

This brings to the idea of dropout !

Marco Lippi Machine Learning 68 / 81

Tricks of the Trade

Marco Lippi Machine Learning 69 / 81

Ensemble learning

Observation

Putting together a collection of classifiers typically improves
performance (e.g., see bagging and boosting)

Training a large number of deep neural networks and then
combining their outputs would be computationally unfeasible

Marco Lippi Machine Learning 70 / 81

Dropout

The key idea of dropout is to randomly drop units and their
connections during training.

[Figure by Srivastava et al., 2014]

Marco Lippi Machine Learning 71 / 81

Dropout

The mechanism transforms a deep network in a thinned one.

Observation

A neural network with n units can be seen as the combination of
2n possible thinned neural neural networks

Combining classifiers almost always improves performance

Training different architectures with different parameters
and/or inputs would be too expensive !

Marco Lippi Machine Learning 72 / 81

Dropout

Ok, dropping units and connections during training...
...But what about test ? Which network shall we use ?

Use a single network without dropout

Re-scale weights by the dropout ratio

[Figure by Srivastava et al., 2014]

Marco Lippi Machine Learning 73 / 81

Dropout

It can be applied to any deep network, thus also to DBNs

[Table by Srivastava et al., 2014]

Impact measured on performance on several tasks

Dropout networks constantly outperform those without

Marco Lippi Machine Learning 74 / 81

Dropout

[Figure by Srivastava et al., 2014]

Marco Lippi Machine Learning 75 / 81

Activation functions

Sigmoid

σ(x) =
1

1 + e−x

Extremely popular since the
pioneering ANN works

Interpretation in terms of
saturation firing rate of a neuron

Marco Lippi Machine Learning 76 / 81

Activation functions

Sigmoid

σ(x) =
1

1 + e−x

Problems:

Saturation zones kill the gradient

Output is not zero-mean

exp() computationally expensive

Marco Lippi Machine Learning 77 / 81

Activation functions

Tanh

σ(x) = tanh(x)

It is zero-centered

Still has saturation zones

Marco Lippi Machine Learning 78 / 81

Activation functions

Rectified Linear Unit (ReLU):

f (x) = max(0, x)

more biologically plausible

faster to compute

no vanishing gradient problem

sparsity of the solution (few
neurons activated)

suffers of a dead zone

Marco Lippi Machine Learning 79 / 81

Activation functions

Leaky ReLU:

f (x) = max(0.01x , x)

some gradient also for the
negative side

Marco Lippi Machine Learning 80 / 81

Other issues

Learning rate decay

Mini-batch dimension

Momentum

Dropout rate

. . .

See “Practical Recommendations for Gradient-Based Training of
Deep Architectures” by Yoshua Bengio (2012)

Marco Lippi Machine Learning 81 / 81

