PhD in Computer Science and Engineering
Bologna, April 2016

Machine Learning

Marco Lippi

marco.lippi3@unibo.it

Marco Lippi Machine Learning 1/81

Deep Learning:
a revolution for Al

The history of Artificial Neural Networks...

1943
1958
1969

1974
1984
1986

2006

McCulloch and Pitts — The Artificial Neuron
Rosenblatt — Perceptron

Minsky and Papert — Limits of the perceptron

Al Winter ©

Werbos — First ideas of backpropagation

Hopfield — Hopfield Networks

Rumelhart, Hinton, Williams — Backpropagation ©

Kernel Machines and Statistical Learning boom... @

Hinton, Bengio, LeCun, Ng, ... Deep Learning ©

Marco Lippi Machine Learning

3/81

Bringing Al in the news...

NYU “Deep Learning” Professor LeCun Will Head
Facebook’s New Artlf cial Intelligence Lab

=] < | mllmEIIJ
T IGoogIe Buys U.K. Artificial .
.. "intelligence Company

DeepMind

(OOGLE'S ARTIFICIAL BRA]N "

LEAR[\S TOF l \ DEOS ae &

/ ~ Scientists See Promise in Deep-Learning Programs

Marco Lippi Machine Learning 4/81

Deep Learning

Breakthrough in many Al applications

Speech recognition

Image classification

Object detection

Video classification

Scene understanding

Natural language understanding

Machine translation

e 6 6 6 66 o o o

Marco Lippi Machine Learning 5/81

What is REALLY new 7

Deep Learning = neural networks with many layers ?

Deep neural networks were already known since Multi-Layer
Perceptron, so why has deep learning become popular only now ?

Main limitations of (deep) neural networks in the 90s:
@ Local minima
@ Vanishing gradients
© Curse of dimensionality

@ Computational requirements

Marco Lippi Machine Learning 6/81

Local minima

Attractors for the classic backpropagation algorithm...

f(w)

A few solutions...
@ Multi-start with random initializations

t _ o, t—=1 t t—1
® Momentum term — w;; = wj nAw;; —‘rMAWI-j

Marco Lippi Machine Learning 7/81

Vanishing gradients

The composition of several gradient contributions can make the

values either explode or vanish to zero (happening also for
activation functions)

GRADIENT GRADIENT
(3)
GRADIENT

R

GRADIENT

WX (1)

A\ %),
(> X 4 ’ N o A"ll.'
QKX o‘(;’&,(’o‘: K%
SR
14

%,8.% @
XX “'
.\‘,;0{' A§ {

Y N‘«»“s\"‘}“’:‘:{ OUTPUT
. ///’}{\‘ .'/l:,{‘ﬂkﬁ‘ l"‘

N 1
(YIS
g

Marco Lippi Machine Learning 8/81

Vanishing gradients

Consider an ANN with 4 layers and a single unit in each layer.

O e O e O e Ot (0

We name x the input, w; and b; the weight and bias of layer ;.
The output of each layer can be computed as:

zj = o(wjzj1 + bj)

where zg = x.

[Example by M. Nielsen]

Marco Lippi Machine Learning 9/81

Vanishing gradients

Let us compute the gradient of f with respect to b; and bs:

of of
b o'(z1) - wa - 0'(2) - w3 -0'(z3) - wy - 0/ (24) - o
of of

=0'(z3) wy-0'(z) - o

Obs

Marco Lippi Machine Learning 10/81

Vanishing gradients

If we now consider the derivative of the sigmoid function:

o o
e
4
o4

we have that, with typical weight initialization (randomly sampled
from a Gaussian with mean 0 and standard deviation 1):

1
wio'(z)] < 5

Marco Lippi Machine Learning 11/81

Vanishing gradients

Now going back to the gradient computation:

of / / of
a—bl =0'(z1) - wp-0'(22) w3 -0 (z3) 07
of of
by 7 (B) oz

Lower layers tend to have either vanishing or exploding gradients !

Exhaustive analysis for Recurrent Neural Networks in [Hochreiter et el., 2001]

Marco Lippi Machine Learning 12/81

Curse of dimensionality

input combinations grows non-linearly with # input variables

1 dimension:
P 10 positions
[

2 dimensions: o
100 positions
[

3 dimensions:
> 1000 positions!

[Figure by Y. Bengio]

Marco Lippi Machine Learning 13/81

Computational requirem

Training deep models in the 90s was extremely time-consuming...

... Now computers are faster ! ©

10,000,000,000
Nehalen|
Dual Core tanium 2 elg
1,000,000,000 MG6 Benyn
tanium 2 @ .Q.uachore
tanium 2@ Xeon o cota o
ftanium 2@ @ p@niium 4HT
)
Xeon@g & @Dual
100,000,000 Pentium MO Y
Pentium 4 o maCeNtUm M
pentium I @ , o
o 000 Pentium
g5 1040 Pentium MVX @g 3
@ Pentium Pro ® oM oie
B Pentium gy 604
2 03
c 601 e
S 1,000,000 80486 om @
L 68040
8‘286. 68030
100,000 80286 @ 08020
M 68000
8086 @
10,000
8080 @
Boose M6800
14004
1,000 T T T T T T T
1970 1975 1980 1985 1990 1995 2000 2005 2010
Year

Machine Learni 14 /81

Marco Lippi

Theoretical arguments

An ANN with a single hidden layer is a universal approximator...
... but it may require an exponential number of hidden neurons...
... and therefore it may be much more difficult to learn !

Analogy with digital circuits — N-bit parity:

e requires N-1 gates with depth log(/N)

@ requires exponential # gates with 2 layers only

Marco Lippi Machine Learning 15/81

Theoretical arguments

Advantages of deep architectures:

@ representing functions with a lower number of elements

@ more compact and more efficient model (fewer parameters)

Observation

The number of affordable parameters of a neural network depends
on the number of training examples that can be used to tune them

= Insufficiently deep architecture leads to poor generalization
(Occam'’s razor)

Marco Lippi Machine Learning 16 /81

Training deep models

Since the development of multi-layer perceptrons, only 1 or 2
hidden layers had obtained successful results...

@ One exception: Convolutional Neural Networks (next lecture)

Breakthrough in 2006 with Deep Belief Networks (DBNs)
developed at the University of Toronto [Hinton et al., 2006]:

@ train one layer at time
o exploit unsupervised learning

@ use supervisions only for a fine tuning of the network

Marco Lippi Machine Learning 17 /81

Supervised vs. unsupervised learning

Supervised learning

@ data consists in observations X and labels)
@ given an observation x € X, the goal is to predict y €)
o learn a function f : X — Y from a data set D = {(x;, y;)}V,

Unsupervised learning
o data consists in observations X
o find regularities and patterns in data
@ understand which features are most important

@ learn a representation of data

Marco Lippi Machine Learning 18/81

Auto-Encoders (more on this later)

An Auto-Encoder is an ANN that learns a representation of the
input through which it is possible to reconstruct the input

[Feature Representation]
g:sg;ta);s: ’ Feed-forward,
top-down | Decoder Encoder | bottom-up

[Input Image }

[Figure by R. Salakhutdinov]
It is an example of unsupervised learning !

Marco Lippi Machine Learning 19/81

A generic architecture for deep learning

© Train one layer per time to reconstruct the input
@ Unsupervised training for each layer

© Once a layer is trained, pass to the upper one

@ Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20/81

A generic architecture for deep learning

O000O

© Train one layer per time to reconstruct the input
@ Unsupervised training for each layer

© Once a layer is trained, pass to the upper one

@ Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20/81

A generic architecture for deep learning

© Train one layer per time to reconstruct the input
@ Unsupervised training for each layer

© Once a layer is trained, pass to the upper one

@ Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20/81

A generic architecture for deep learning

© Train one layer per time to reconstruct the input
@ Unsupervised training for each layer

© Once a layer is trained, pass to the upper one

@ Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20/81

A generic architecture for deep learning

© Train one layer per time to reconstruct the input
@ Unsupervised training for each layer

© Once a layer is trained, pass to the upper one

@ Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20/81

A generic architecture for deep learning

© Train one layer per time to reconstruct the input
@ Unsupervised training for each layer

© Once a layer is trained, pass to the upper one

@ Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20/81

0]
=
c
—
(g0]
2
o
(D)
(D)
-5
—
2
(O]
—
3
-
O
Q
=
-
O
ik
(]
O
-
(D)
c
()
{eY0]
<

© Train one layer per time to reconstruct the input

@ Unsupervised training for each layer

© Once a layer is trained, pass to the upper one

@ Finally, perform fine-tuning with supervisions

20/81

Machine Learning

Marco Lippi

0]
=
c
—
(g0]
2
o
(D)
(D)
-5
—
2
(O]
—
3
-
O
Q
=
-
O
ik
(]
O
-
(D)
c
()
{eY0]
<

© Train one layer per time to reconstruct the input

@ Unsupervised training for each layer

© Once a layer is trained, pass to the upper one

@ Finally, perform fine-tuning with supervisions

20/81

Machine Learning

Marco Lippi

A generic architecture for deep learning

© Train one layer per time to reconstruct the input
@ Unsupervised training for each layer

© Once a layer is trained, pass to the upper one

@ Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20/81

A generic architecture for deep learning

()~ SUPERVISIONS

© Train one layer per time to reconstruct the input
@ Unsupervised training for each layer

© Once a layer is trained, pass to the upper one

@ Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20/81

A generic architecture for deep learning

- ()——SUPERVISIONS

;
FINE
TUNING .-

© Train one layer per time to reconstruct the input
@ Unsupervised training for each layer

© Once a layer is trained, pass to the upper one

@ Finally, perform fine-tuning with supervisions

Marco Lippi Machine Learning 20/81

Representation learning

Deep learning is essentially representation learning

@ Most machine learning approaches work well for specific tasks
owing to a great effort in the design of good features

e Finding appropriate features can be a time-consuming but
also subtle task even for specialists

@ Representation learning tries to automatically learn good
features from raw input data (even not knowing the task ?7)

@ Deep learning tries to learn a hierarchy of multiple levels of
representation having increasing complexity

Marco Lippi Machine Learning 21/81

Discriminative vs. Generative models

Discriminative models
e directly model P(Y|X; W)

@ need to make assumptions about input x

Generative models

@ learn probabilistic model P(X; W)

@ use learned parameters to init discriminative model
@ no knowledge on further discriminative task !
°

semi-supervised learning !

Marco Lippi Machine Learning 22/81

Why is unsupervised learning useful ?

For the same training error (at different points during training),
test error is systematically lower with unsupervised pre-training.
[Erhan et al., 2009]

3-layer net, budget of 10000000 iterations

I T T T T
—©— 0 unsupervised + 10000000 supervised
=—F— 2500000 unsupervised + 7500000 supervise

Online classification error

0 1 2 3 4 5 6
Number of examples seen x10°

Marco Lippi Machine Learning 23 /81

Why is unsupervised learning useful ?

As discussed in [Erhan et al., 2009], unsupervised pre-training can
be seen as a form of regularizer (or prior)...

Observation

Unsupervised pre-training amounts to a constraint on the region
in parameter space where a solution is allowed.

Experiments show that the effect of unsupervised pre-training is
most marked for the lower layers of a deep architecture.

Marco Lippi Machine Learning 24 /81

Overfitting vs. underfitting

Overfitting:
@ Good training performance, bad generalization capability

o Typically model too complex: too many parameters

Underfitting:
e Bad training performance

@ Typically model too simple: too few parameters

Marco Lippi Machine Learning 25 /81

Overfitting vs. underfitting

@ In a deep architecture, driving training error very low is simple,
even only with the top two layers with enough hidden units

@ Low training error and high test error = overfitting

@ Pre-training induces a data-dependent regularization

o Note that, with small training set, unsupervised pre-training
can lower test error despite a larger training error

e With larger training sets, with better initialization of the
lower hidden layers, both training and generalization error can
be significantly decreased with unsupervised pre-training.

Marco Lippi Machine Learning 26 /81

Deep Belief Networks,
Restricted Boltzmann Machines,
and Energy-Based Models

Restricted Boltzmann Machines (RBMs)

Modeling two sets of random variables V and H:
o V=W,...,V, (visible)
e H=Hi,...,H, (hidden)
o all H; are independent when conditioning on V

e all V; are independent when conditioning on H

28 /81

Marco Lippi Machine Learning

Restricted Boltzmann Machines (RBMs)

In classic RBMs all units are stochastic binary (0/1) units.

1

Prob(neuron = active) = 15 oot
e

Marco Lippi Machine Learning 29/81

Restricted Boltzmann Machines (RBMs)

Since there are no connections between units of the same layer, the
structure of the RBM induces a probability factorization, so that:

P(H=hV =v)= HP(h,-|v)

P(V =v|H = h) =[] P(vilh)
The probability distribution over such units is computed as:

P(hj = 1|V) = O'(Cj-f-z V,'VV,'J')

P(vi =1lh) = o(b; + > _ hjWj)
J

Marco Lippi Machine Learning 30/81

Restricted Boltzmann Machines (RBMs)

RBMs belong to the class of Energy-Based Models (EBMs):

e Energy(x)
Z

7 — Z efEnergy(x)

P(x) =

where

is called the partition function.

We will discuss EBMs in more detail later on. ..

Marco Lippi Machine Learning 31/81

Restricted Boltzmann Machines (RBMs)

When some variables are observed and some others are latent,
the above definition can be re-written as:
efEnergy(x,h) efFreeEnergy(x)

Pix) = Eh: z Z

being FreeEnergy(x) = — Iogz g~ Eneray(x.h)
h

For RBMs we have the following formulation:

Energy(v, h) va, chh —ZZV,'W,'J'/‘IJ'
i

FreeEnergy(v, h) Z biv; — Z log Z ehi(cit 22 viewig)

Marco Lippi Machine Learning 32/81

Restricted Boltzmann Machines (RBMs)

Classic learning method for RBMs: Maximum Likelihood

The likelihood of the visible data v can be written as a sum over
all possible configurations of hidden states

L = Prodel V) Zp v, h —exp (Z ViWijhj)

i

@ Maximize likelihood of given data w.r.t. weights w;;

@ This is equivalent to minimize the Kullback-Leibler
divergence between data and model distributions

Marco Lippi Machine Learning 33/81

Restricted Boltzmann Machines (RBMs)

We can compute the derivative of the log-likelihood w.r.t. wj;:

Odlog L

aW,'J'

= (Vihj) data — (Vihj) model

from which we can derive a gradient update rule:
Awjj = p ((Vihj)data — (Vihj) model)

where (-) indicate expectations over random variables.

First term: straightforward (observed)
Second term: needs some computations...

Marco Lippi Machine Learning 34 /81

Restricted Boltzmann Machines (RBMs)

Classic method: alternating Gibbs sampling

hlOO--0O0] [©O-O0| Q000

<Vihj>0 <Vihj>l e <Vihj>inf
v[O--Ol O--O
t=0 t=1 t=inf

h,(") randomly chosen to be 1 with probability o W,-’v(”) +¢i)

vj("+1) randomly chosen to be 1 with probability o(W;h(") + b;)

Awy = p ({vih))® — (vih;)>)

Proof of convergence to the real distribution (but slow...)

Marco Lippi Machine Learning 35/81

Restricted Boltzmann Machines (RBMs)

A much more efficient algorithm: constrastive divergence

0000

0000

<vith \fvihjf/v

t=0

Stochastic gradient descent with update rule:

Aw = p((vih)® = (vihj)?)

This is a very fast and efficient approach !

Marco Lippi

Machine Learning

Deep Belief Networks [Hinton et al., 2006]

A DBN consists in a stack of RBMs
Q00000 hs

RBM
0000000 h @oo}pooo} hz

A
REM !

v i 4
(OOOS?OOO) h; (OOOPOOO) hy @OOPOOO) hy
RBM i '

A 4 A 4 4
©O0O0CCO x ©COOOOCY x OOOCLOOY) x

@ Layer-wise pre-training of all layers

@ Fine tuning with backpropagation

Marco Lippi Machine Learning 37/81

Deep Belief Networks [Hinton et al., 2006]

Experiments performed on:
@ Image classification (Digits, Faces)

@ Document classification (Reuters corpus)

In both cases, a DBN was trained with 4 layers, with the final
feature encoder consisting in only 2 dimensions:

e 784 — 1000 — 500 — 250 — 2 (images)
e 2000 — 500 — 250 — 125 - 2 (text)

Marco Lippi Machine Learning 38/81

Deep Belief Networks [Hinton et al., 2006]

Image classification on the MNIST digit data set

A: PCA B: DBNs

Figure by [Hinton et al., 2006]]

Marco Lippi Machine Learning 39/81

Deep Belief Networks [Hinton et al., 2006]

Document classification on the Reuter corpus

A .. c
0451 o Autoencoder-10D
04 "
> 035 European Community
8 os Interbank markets monetary/economic
5 S . 2 . .
3 025 : A .
S
< o2
015
A Energy markets
E Disasters and
005
accidents
0 L R P
1 3 7 15 31 63 127 256 5111023 ¥
Number of retrieved documents .
4

Leading economic’ Legal/judicial

e

indicators - & \ &
})
L A
‘ Government
Accounts/ borrowings
eamings

B: PCA C: DBNs

Figure by [Hinton et al., 2006]]

Marco Lippi

Deep Belief Networks [Hinton et al., 2006]

Digit reconstruction

s Q
8 Q
& q
5 q

Figure by [Hinton et al., 2006]]

1: original images, 2: DBN (top layer 30), 3-4: PCA

Deep Belief Networks [Hinton et al., 2006]

Faces reconstruction

Machine Learning

Deep Belief Networks [Hinton et al., 2006]

15t-layer features 2"]ayer features

Marco Lippi Machine Learning 43 /81

Energy-based models

Assigning a value of energy to each configuration of:
o observed variable X
o predicted variable Y

Inference in an energy-based model:

y* = in E(X,Y
arg min E(X., Y)

This can be computationally expensive according to ||

Marco Lippi Machine Learning 44 /81

Energy-based models

From energies to probabilities via Gibbs distribution:

efﬁE(va)
P(Y’X) = f oy e—BE(Y,X)
y

If we explicit the model parameters W:
e BE(W,Y.X)

P(Y’X7 W) - f ye—,BE(W,y,X)
ye

Marco Lippi Machine Learning 45/81

Energy-based models

Problems that can be addressed:

@ Classification — find Y that is most compatible with X

@ Ranking — decide whether Y7 or Y2 more compatible with X
© Detection — decide whether Y is compatible with X

Q Conditional Density Estimation — compute P(Y|X)

Marco Lippi Machine Learning 46 /81

Energy-based models

How does learning work 7

@ Push down on the energy of the correct answer

@ Pull up on the energies of the incorrect answers, particularly
if they are smaller than the correct one

push down

After

training

,XY)
b

E(W,-
E(W,-,

yi
Answer (Y) Answer (Y)

Slide by Yann LeCun

Marco Lippi Machine Learning 47/81

Energy-based models

Given a dataset D, the ingredients to be chosen are:
@ a particular form of energy E(W, Y, X)

@ an inference algorithm to find Y by minimizing the chosen
energy E for any given X

@ a loss function £(W, D) measuring the quality of E

@ an optimization method for the loss function to find W,
given E, L, D

The loss is typically designed as the sum of two terms:

N
Z E(W.2.X7) + R(W)

begin L a per-loss function and R a regularization term

Marco Lippi Machine Learning 48 /81

Energy-based models

Examples of per-sample loss function:

@ Energy Loss
LY E(W, Y, X)) = E(W, Y X

Negative log-likelihood (or cross-entropy) Loss '
LY, E(W,2,X7)) = E(W, Y/, X) + §log [, e PE(W»X)

Hinge Loss

Log Loss

Marco Lippi Machine Learning 49 /81

Energy-based models

Example

Minimize the log-likelihood on training examples
We can train the model with gradient descent:

AL(Y,W,X) 9E(Y,W,X) / OE(y, W, X)
ow oW PO 5w
OL(Y, W, X)
WeW=n—%w

How to choose the ys to compute the second-term integral 7
One solution is given by contrastive divergence !

Marco Lippi Machine Learning 50/81

Energy-based models

Boltzmann Machines have the following form:
E(v,h) == bvi— > ghi— > > viwh;
i J i
=YD vipivi— Y Y hiaih;
i i

In this case, free energy cannot be analytically computed, which
makes learning impractical !

In RBMs, the additional assumption of graph factorization allows
to drop the last two terms (no intra-layer links)

Marco Lippi Machine Learning 51/81

Restricted Boltzmann Machines (RBMs)

RBMs are universal approximators

Provided enough hidden units, an RBM can perfectly model any
discrete distribution

Adding one hidden unit guarantess to increase likelihood,
provided a proper choice of parameters. ..

Marco Lippi Machine Learning 52/81

Energy-based models

Deep Boltzmann Machines are a specific case of BMs
corresponding to an undirected graphical model.

Each layer is still an RBM (as in a DBN), but the energy
function is different:

E(v,h*, W2, h3;0) = —

Figure by [R. Salakhutdinov & G. Hinton, 2009]

Marco Lippi Machine Learning 53/81

Energy-based models

It should be remarked that a DBN is not a DBM !

@ In a DBN, there is only a bottom-up phase

@ In a DBM, a bottom-up and a top-down phase are combined

Deep Belief Network ~ Deep Boltzmann Machine

Energy-based models

Training a DBM:
@ quite hard with classic maximum likelihood
@ could be done with layer-wise pre-training as for DBNs

@ a joint training exploiting regularization has been proposed in
[Desjardins et al., 2012]

Results (image/speech recognition):

@ DBNs are easier to train

@ DBMs might achieve better performance

Marco Lippi Machine Learning 55/81

Energy-based models

RBMs with Gaussian visible units (GRBMs)

@ when dealing with real-valued input

@ natural images, speech, ...

@ learning more difficult as reconstruction is unbounded !
@ got unsatisfactory results. . .

i — bi)? i
E(V7h): Z(‘/20_2)— Z thj_zéhjwij

ievis i jehid i
Hint for training: typically one should first normalize the input

E(v,h) = %(v —b)"(v—b)—c"h— v Wh

Marco Lippi Machine Learning 56 /81

Energy-based models

RBMs with Gaussian visible and hidden units

@ Learning becomes even more difficult

(vi — bi)? (hi —g) Vi
E(v,h) = Z ET Y Z 1202J _Z;ihjwij

i€vis ! Jj€hid J ij

Marco Lippi Machine Learning 57/81

Energy-based models

Mean-covariance RBM (mcRBM)

@ Explicitly modeling mean and covariance of input elements

@ This is captured by two distinct hidden groups
E(v,h™ h°) = E(v,h®) + E™(v,h™)

Marco Lippi Machine Learning 58 /81

Energy-based models

Spike and slab RBM (ssRBM)

Each hidden neuron is associated with:
@ a binary variable (spike) h;
@ a real-valued vector (slab) s;
1 N 1
E(v,s,h) = EVTBV — Z(VTWS,'h,' + EsiTa,-s,- + cihi)
i=1

Marco Lippi Machine Learning 59 /81

Auto-Encoders

Auto-Encoders

Different Auto-Encoders with different encoding/decoding blocks...

[Binary Features z]
@ ﬁ Encoder
filters W.
o(W'z z=0(Wx o
function

filters D @ ﬁ

[Binary Input x]

[Figure by R. Salakhutdinov]

Marco Lippi Machine Learning 61/81

Auto-Encoders

Example: try to minimize the reconstruction error

N

E(W) = 33 o(WT2) — sl

n=1

Is it going to learn the identity function ?
Do we need any additional constraint 7

Minimizing reconstruction error corresponds to maximizing the
mutual information between input X and learnt representation Y

Marco Lippi Machine Learning 62 /81

Auto-Encoders

If # hidden units is smaller than # input units:

o feature selection

o dimensionality reduction

If # hidden units is greater than # input units (over-complete):

@ typically induce sparsity in parameters
@ biological inspiration for sparse connectivity
@ with larger spaces units are less entangled

@ dealing with larger feature space might be easier

Marco Lippi Machine Learning 63 /81

Auto-Encoders

There exist several types of Auto-Encoders

@ Ordinary Auto-Encoders
miny, ||x — o(Wh)]|3

@ Sparse Auto-Encoders
ming [|x — o(Wh)|I3 + AllAllx

@ Denoising Auto-Encoders
miny, | x — o(Wh)||3 where h = o(WTX)

Marco Lippi Machine Learning 64 /81

Denoising Auto-Encoders (DAEs)

Hidden code
[represenmﬁon) KL({reconstruction | raw input)

olelo)(elelelele)

Corrup‘red input Raw input reconstruction

[Figure by Larochelle et al., 2010]

DAEs are trained to reconstruct stochastically corrupted input,
with uncorrupted input still used as target

Marco Lippi Machine Learning 65 /81

Denoising Auto-Encoders (DAEs)

Therefore, a DAE has two intertwined goals:
@ encoding and recostructing the input
@ removing the effect of noise

The training criterion is a reconstruction log-likelihood:

—log P(x|c(X))

Marco Lippi Machine Learning 66 /81

Stacked Denoising Auto-Encoders (SDAEs)

Very similar to DBNs:

o Greedy layer-wise training

@ Bottom-up stacking

@ Fine-tuning on top
T '

©C000) (]

Target

[Figure by Larochelle et al., 2010]

Marco Lippi Machine Learning 67 /81

DAEs and overfitting

By adding noise to the input units of the network, DAEs:
e perform a sort of regularization
@ make the network more robust to noise

@ basically, they reduce overfitting

If there were no problem of computational requirements,
overfitting could be reduced by averaging over a set of models.

This brings to the idea of dropout !

Marco Lippi Machine Learning 68 /81

Tricks of the Trade

Ensemble learning

Observation

Putting together a collection of classifiers typically improves
performance (e.g., see bagging and boosting)

Training a large number of deep neural networks and then
combining their outputs would be computationally unfeasible

Marco Lippi Machine Learning 70/81

i
>
(@)
o
(©)
e

a

The key idea of dropout is to randomly drop units and their

connections during training.

oo
NI

S XL o\X XL
YA

X «04 S .64 48
.fo» »«b.fo» A
‘ D

SO0

A

(b) After applying dropout.

a) Standard Neural Net

[Figure by Srivastava et al., 2014]

71/81

Machine Learning

Marco Lippi

The mechanism transforms a deep network in a thinned one.

Observation

A neural network with n units can be seen as the combination of
2" possible thinned neural neural networks

@ Combining classifiers almost always improves performance

@ Training different architectures with different parameters
and/or inputs would be too expensive !

Marco Lippi Machine Learning 72/81

Dropout

Ok, dropping units and connections during training...
..But what about test ? Which network shall we use ?

@ Use a single network without dropout

@ Re-scale weights by the dropout ratio

w
Present with AlwaM
probablhty D present

a) At training time (b) At test time

[Figure by Srivastava et al., 2014]

Marco Lippi Machine Learning 73/81

It can be applied to any deep network, thus also to DBNs

Data Set Domain Dimensionality Training Set Test Set
MNIST Vision 784 (28 x 28 grayscale) 60K 10K
SVHN Vision 3072 (32 x 32 color) 600K 26K
CIFAR-10/100 Vision 3072 (32 x 32 color) 60K 10K
ImageNet (ILSVRC-2012) Vision 65536 (256 x 256 color) 1.2M 150K
TIMIT Speech 2520 (120-dim, 21 frames) 1.1M frames 58K frames
Reuters-RCV1 Text 2000 200K 200K
Alternative Splicing Genetics 1014 2932 733

[Table by Srivastava et al., 2014]

@ Impact measured on performance on several tasks

@ Dropout networks constantly outperform those without

Marco Lippi Machine Learning 74 /81

25\ o ,,,,,

ut

2.0R-- ST
* :
AP eAR.
2
7 1.5 B .
& With dropou

‘MM»\
1.0f L

i ; ; ;
0 200000 400000 600000 800000 1000000
Number of weight updates

[Figure by Srivastava et al., 2014]

Marco Lippi Machine Learning 75/81

Activation functions

Sigmoid

1

7= e

@ Extremely popular since the
pioneering ANN works

@ Interpretation in terms of
saturation firing rate of a neuron

Marco Lippi Machine Learning 76 /81

Activation functions

Sigmoid
1
7= T
Problems:
@ Saturation zones kill the gradient

@ OQutput is not zero-mean

@ exp() computationally expensive

Marco Lippi Machine Learning 77/81

Activation functions

Tanh
! 05 //
’/
o(x) = tanh(x) /
B 3 2 i //U/ i 3 3 i
i /
o It is zero-centered e
@ Still has saturation zones -

Marco Lippi Machine Learning 78 /81

Activation functions

Rectified Linear Unit (ReLU):

f(x) = max(0, x)

@ more biologically plausible "
o faster to compute "
@ no vanishing gradient problem ?
@ sparsity of the solution (few)
neurons activated) E
o suffers of a dead zone & "‘ : o

Marco Lippi Machine Learning 79/81

Activation functions

Leaky RelLU:
f(x) = max(0.01x, x)
10 /
8 //
@ some gradient also for the) //
negative side 1
2 //
=] : =

Marco Lippi Machine Learning 80/81

Learning rate decay

Mini-batch dimension

°
°

e Momentum
@ Dropout rate
°

See “Practical Recommendations for Gradient-Based Training of
Deep Architectures” by Yoshua Bengio (2012)

Marco Lippi Machine Learning 81/81

