Application of planning techniques for system configuration tasks

R. Barruffi(1), E.Lamma(1), P.Mello(2), M.Milano(1)

(1) DEIS, Università di Bologna

Viale Risorgimento 2, 40136 Bologna, Italy

{rbarruffi,elamma,mmilano}@deis.unibo.it

(2) Istituto di Ingegneria, Università di Ferrara

Via Saragat, 41100 Ferrara, Italy

{pmello}@ing.unife.it}

Abstract

The management of networked computer systems is rapidly growing in complexity due to the advent of Internet and Intranets. The paradigm has shifted from management of single systems to the management of complex domains, where an increasing number of machines are interconnected. In this context the traditional approach to performing configuration tasks, which consists of writing procedural applications, becomes inadequate. Planning techniques allow to dynamically synthesize action plans by using basic building blocks, coded with pre and post conditions. This approach is much more flexible in fact it’s possible to manage unexpected situations and updating of the system without changing the set of basic actions. As far as software for system management is concerned planning techniques almost represent a novel approach. In fact past efforts that we are aware of, though providing remarkable results, only tackled a limited subset of the problem. In order to solve complex configuration problems we need to build a powerful planner which intertwines the creation of partial plans (each corresponding to the achievement of a subgoal) with the resolution of threats among them (deriving from the interference among subgoals). The aim of this paper is to show the power and the limits of the application of an already existing planner to configuration tasks so as to understand which features are needed by a planner suitable for computer systems. We chose UCPOP [7], a regressive non-linear planner. As a case study, we have applied UCPOP to a typical configuration problem: an example of disk management on an HPUX system [8]. It consists of a non trivial goal which requires a multilevel plan of basic action. We need to fill the gap between the classical assumptions of a planning algorithm and the handling of a real system.

Future work will concern the study of how to overcome these limits and the investigation on how to use Constraint Satisfaction techniques [6] in order to increase the efficiency of the planner.

1 Introduction

The advent of Internet with all its world-wide information resources has made the complexity of networked computer systems rapidly increase.

Nowadays the system domains to be managed have become more and more complex, due to the vast number of machines from different manufactures, widely distributed and connected by a variety of networking technologies. Thus, the management workload has increased along with the number of computers interconnected and the relevant complex distributed applications and tasks that need to be performed.

One of the main management task that become more difficult in this scenario is the configuration of a distributed system. In fact, changing the real world means to modify, move, copy, create or delete any type of objects modelled in the managed system. Therefore the more the complexity of the managed objects grows the more the number of possible actions and their combinations spirals upwards.

The traditional approach to performing configuration tasks consists in writing situated actions which are procedural applications, scripts, one for each action that is likely to be requested. This is appropriate when the best action can be easily computed from the current state of the world without need for look-ahead activity since the actions don’t interfere with each other.

In a distributed system such an approach becomes inadequate since the complexity of the managed objects leads to a combinatorial explosion in the number of possible combinations and interactions between the actions to be considered. Thus, not only it requires long development time, but also it is not flexible enough to cope with unexpected situations.

Moreover, that approach doesn’t meet the requirements of a dynamic system since the actions designed when the real world is in a certain state becomes useless after any modification and update.

Dynamic planning represents a more flexible approach that overcomes those limits since it allows to achieve whatever goal by synthesising plans from a domain of basic actions. New actions can be added to this domain when any update of the system requires them, so that to avoid rewriting complex procedural applications.

The aim of this paper is to show the advantages and limitations of traditional planning techniques, when applied to non-trivial configuration tasks. Then, we outline some future directions which can be accomplished in order to overcome the limits of predictive planning techniques and to increase the efficiency of the planning algorithm.

Planning problems have to cope with alternative choices through large search spaces; this often means expensive backtracking mechanisms. Thus, we can exploit constraint satisfaction techniques [6] that a-priori reduce the search space by removing combination of assignments which cannot appear in any consistent solution. The idea behind constraint-based techniques is to avoid failures instead of recovering from them, thus reducing computationally heavy backtracking steps. Two attempts at integrating planning with constraint satisfaction techniques can be found in [3, 5].

2 Planning and management

Generally speaking, the simplest approach to planning consists in proving, by means of an inference engine, the existence of a sequence of actions that will achieve the goal conditions, that is the desired world state, starting from a completely known initial state.

Thus a planning algorithm has three input:

· a description of the world in some formal language

· a description of the goal required

· a description of the domain, that is the set of possible action that can be performed

In a few words a planner synthesises plans dynamically by using some basic blocks - elementary action, defined in a given domain by means of preconditions, which represent the state in which the world has to be before you can apply that action, and post-conditions which represent the effects the action causes on the world, so as to change its current state.

The application of planning techniques to the management of a system represents almost a novel approach since all the past efforts in this way, we are aware of, have not achieved relevant results and present too many limits.

2.1 Previous attempts

Particularly, one remarkable attempt at performing configuration tasks by using non-precompiled plans is represented by the Dolphin prototype, [1] then became part of the “Openview” product “IT/A”.

The Dolphin project represents a system management solution based on a technology called model-based reasoning. The main idea of this approach is to describe in a declarative way all the objects to be managed in a object-oriented modelling language. Thus the model represents the structuring component Those are the knowledge that the management system - a model processor called inference engine- has about the real world when it is requested to perform any management task including fixing - configuration - tasks.

In the models all the managed objects are described along with the relationships among them and the basic action descriptions necessary to change the state of the world. When the system administrator invokes the fixer with a goal that summarises the results he wants to achieve, the fixer checks if the goal is already true. If it is not, it starts to make a diagnosis whose result is a set of basic facts that have to be true in order to support the goal. All the facts that are not true represent a data structure called residue so that the next step will be to find action descriptions which can make the residue facts true in the real world. After having listed all the potentially useful actions to make each residue fact (subgoal) true it is necessary to choose for each subgoal the action whose pre-conditions are true in the real world and schedule it. Each time a new action is scheduled all its post-conditions have to be considered true before considering any other residue fact; it is necessary because it is likely that one postcondition matches another subgoal so that the same action satisfies more than only one residue fact. It can happen that one action requires as preconditions the effects of another action considered for a different residue goal. Therefore it is necessary to re-examine all the unsatisfied residue goals until either all of them are scheduled so that the whole goal can be fixed or until all the remaining subgoals are considered at least once since the last action was scheduled that means that no plan has been created.

In the first case the plan of actions can be executed.

This approach presents many limits.

First of all it only supports a total ordering of basic actions, each of them satisfies at least one subgoal and doesn’t allow to build chains of actions including actions whose preconditions are not yet satisfied.

Moreover this solution represents a linear planner thus it suffers from the limits of such planners that assume that goals don’t interfere each other, which is unlikely in complex systems.

Finally the plan is not always guaranteed to be successfully executed; in fact if any action reports a failure, the execution stops and no work-around or undo activities have been designed. This can bring the system in a inconsistent state.

The attempt of this work is to use a regressive non-linear planner called UCPOP [4] and to apply it to a significant example of configuration task not solvable by using the Dolphin fixer.

2.2 Features of UCPOP

UCPOP’s power comes from the fitness of its features to the performance of complex configuration problems. In fact it is able to create partial plans corresponding to the achievement of different subgoals and at the same time to cope with the resolution of threats due to the interference among subgoals.

Our choice felt on UCPOP for several reasons.

First of all it is a partial order planner whose algorithm practices least commitment planning, that means that decisions are made only if and when constraints force to do it. This allows to represent plans in a flexible way that enables to defer decisions. Only the essential ordering decisions are recorded so that the plans are represented as a partially ordered sequence of actions avoiding to commit prematurely to a complete totally ordered plan. The key step in allowing partial order planners to postpone decisions consists in introducing constraints and maintaining the consistency of these constraints during the refinement of the plan.

Moreover UCPOP is a non linear planner, thus it can cope with the possibility that different actions introduced for different subgoals interfere with each other; particularly, as we will better explain later, this is avoided by explicitly recording the dependencies between actions by means of causal links.

Another feature of this planner is its high expressiveness, [7]. It manages action schemata with variables, conditional effects, disjunctive preconditions and universally quantified preconditions, effects and goals. Thus even if under heavy assumptions UCPOP handles complex domains representations as a networked system one. The main and strictest assumption necessary to handle universal quantification is that the world is supposed to be closed, made of a static, fixed universe of objects.

Finally it is demonstrated [7] that UCPOP is both sound and complete for its actions representation, i.e. the planner is always able to return a correct plan if such a plan exists. It is a regressive planner that searches the space of the plans backwards from the goal. The plan at each step is represented as a four tuple consisting of:

· the set (A) of actions already introduced in the plan;

· the set (O) of ordering constraints over A, which are necessary to allow the algorithm to practices least commitment planning without losing the consistency of the partially ordered set of actions;

· the set (L) of causal links, which represent explicated dependencies among actions. It is necessary to detect when a newly introduced action interferes with past decisions, shortly when it represents a “threat”, so that the planning algorithm can operate on it to avoid the failure of the plan by adding new ordering constraints;

· the set (B) of variable binding constraints necessary to work with action schemata.

The UCPOP algorithm starts with the “null plan” represented by two actions, the start action which doesn’t have preconditions and whose effects specify the initial state, and the “end” action which doesn’t have effects and whose preconditions specify the goals.

UCPOP then attempts to complete the initial plan by adding new actions and constraints, by making non deterministic choices in order to support “open” preconditions and resolving “threats” until all preconditions are guaranteed to be satisfied.

Eventually the output of UCPOP will be represented by the shortest plan among a set of feasible solutions (i.e. total ordered plans satisfying the set O of ordering constraints maintained consistent during the planning process) as opposed to a single total order sequence of actions which represents the solution found by a “total order planner” like the “Dolphin” one.

3 Application of UCPOP’s algorithm to a case of disk management

We have applied UCPOP to a non-trivial example of configuration task to test its power and its limits.

This is important in order to better understand which parts of it we can use and which parts need to be extended or redone to build a planner suitable to solve management tasks.

Particularly we will treat a case of disk management task by referring to disks partitioned in logical volumes, [8]. Logical volumes are collections of pieces of disk space from one or more disks which appears to the operating system as single disks.

They can hold file systems, swap spaces, dump spaces and raw data areas.

Logical volumes represent a more flexible and efficient manner to partition disks than traditional hard partitions; in fact they can be extended, reduced and spread across multiple disks.

The volume groups are pools of disks each of which has been previously initialised into a physical volume
Logical volumes are implemented by the Logical Volume Manager (LVM) which represents a set of commands to manage the whole disk storage of the system, allowing the allocation of disk space according to current need.

Logical volumes represent distinct units of the usable disk space from the volume group allocated by the LVM. Thus in such representation of the disk space a physical volume can contain parts of different logical volumes and in turn a logical volume can result spread across different physical volumes.

The management of this disk organization become very complex.

As a case study we have chosen the task of removing an entire volume group. It requires the removal of all the logical volumes and all the physical volumes.

The atomic action of removing a volume group includes also the removal of the last physical volume. Thus its preconditions are that no logical volume and only one physical volume has to be on it.

In turn removing a logical volume is possible only if there isn’t swap space on it and removing a physical volume contained in it requires that it doesn’t contain any logical part.

Such a goal represents a good example to show the capacity of UCPOP since solving it by using a procedural application means writing very complex scripts, in which all the needed actions are chained, with all the drawbacks that this approach involves i.e., long development time, no flexibility, no reusability of the software.

On the other hand, the previous attempts at using a declarative approach, as Dolphin fixer, can’t cope with such task since it can build only one-level plans and fails each time a precondition is not met and require an action not included in those that can directly satisfy a subgoal.

We have defined a domain by using the syntax of UCPOP’s action description language in which are defined most of the actions necessary to handle disks and volumes including the ones that will be chosen from the planner to achieve the goal described above.

Finally we defined the problem by using the same language; it expresses the goal we want to achieve, given a description of a simulated system and referring to the domain above (in the Appendix are reported the domain and the problem definition and the output of UCPOP when it builds the plan).

The initial state described contains:

two volume groups;

three physical volumes;

three logical volumes;

On the volume group that the goal wants to remove there are two physical volumes, one of them containing a part of one of the logical volumes and the other one containing the rest of the same logical volume and another entire logical volume.

As you can read on the output printed by the algorithm, UCPOP starts analysing the goal (i.e. remove the volume group), then it introduces in the plan an action (rmVolGroup) that allows to achieve that goal. Starting from the goal it introduces actions backward in order to satisfy the preconditions not met (i.e., only one physical volume and no logical volume on the volume group) and so on until all the preconditions of the actions introduced in the plan are satisfied. Although the algorithm infers after two steps that it needs to remove both the logical volumes (rmLogVol), and only after five steps that it needs to remove one physical volume (rmPhVol), it correctly deduces that all of these action have to come in the plan before the rmVolGroup action and also that one of the two rmLogVol actions has to come before the rmPhVol action, precisely the one that removes the logical volume belonging to the physical volume to remove. All the other choices not constrained by preconditions are made in a non deterministic way, thus more feasible plans (i.e. legal total orders) are synthesised even if the plan display routine chooses one for clarity. The sequence of lines after each step represent its preconditions and the number on the left of the -> represents the step responsible of the satisfaction of such condition. 0 means that condition is met in the initial state.

The other lines show the statistic performances of UCPOP. It’s worth noting the number of partial plans created is greater than the number of plans explored which represent the backtracking steps performed by UCPOP. What we are intended to achieve by means of CS techniques is to further reduce these steps, for more details see the section 4.2.

Finally it is notable the time that UCPOP take to give the solution that in this case is less than 3 second.

4 Future directions

Our meaning is to extend UCPOP in order to fix problems coming from the clash between assumptions and reality. On the other hand we intend to apply constraints satisfaction techniques [6] to the planner in order to optimise the search through plan space by a-priori removing any combination of assignments which cannot appear in any consistent solution.

4.1 Possible extension of UCPOP to handle its restrictive assumptions

UCPOP suffers from the typical limits of a generative (predictive) planner. Basically they come from the assumptions that such planners make in the modelled world which make it inapplicable to many real cases, [4].

The common assumptions of a generative planner are:

· Atomic time in which an action has to be executed. Which means that the execution of an action is indivisible and uninterruptible; thus it is considered as an atomic transformation from one world state to another state. Such an assumption is unrealistic. However we mean to investigate the chance of defining the domain of the basic actions so that the atomic time abstraction is effectively applicable. Therefore we need to define a set of elementary actions which work as transactions thus perceived as atomic actions. (Possibly an action could require to lock some resources before its execution and then to unlock it).

· The only cause of change of the world is the action, in other words there are no other agents and the system is supposed to be static by default.

Realistically speaking, the world is not static thus it is likely that it changes after the building of the plan and before its execution. This might bring the system in a inconsistent situation or in a situation that it is not the one required.

There is the need of monitoring the state of the system during the execution of the plan to be always aware of inconsistent situation and, more in general, of failures of the plans.

One likely solution is to add actions to the domain which verify the state of the system which would be automatically included in the plan during the planning process. On the other hand, it’s not unlikely that the virtual machine, not directly the planner, will add the “verification actions” to the plan.

If one of such tested conditions is not verified the plan fails.

In this case we can operate by means of recovery activities, i.e., undo, warning messages, error handlers in order to keep always the system in a consistent state. On the other hand, in order to guarantee the achievement of the goal, it is necessary to repair the plan working around the failure or re-planning the whole sequence of actions.

Finally we will consider the possibility of taking into account those unexpected modifications of the world during the planning process. In order to do that it is necessary to have an event-tracking system to update the modelled system and to notify the planner of this event.

· Deterministic effects of any action which means that any effect is a deterministic function of the action and the state of the world when the action is executed. The agent always knows exactly the state of the system. This is an unacceptable assumption in a networked computer system. This limit can be viewed as a particular case of the last mentioned problem since the only thing we can do is to detect by means of “verification actions”, these non deterministic effect when they threat the execution of the plan.

· Omniscience: the planner requires a complete knowledge of the initial state of the world.

It’s really inefficient if not impossible to make the virtual machine load all the hierarchical knowledge of the real system and interpreter it as first order predicates each time you need to perform an action.

We need to investigate the possibility of organising the knowledge into disjunctive subsets or more likely subsets with a dependencies tracking mechanism so that to load just a part of the whole information on the real world, that is necessary to achieve a goal.

Another solution could be to query the system in order to fetch the information from the real world during the planning process. Then this information represented as predicates is updated in the simulated system each time an effect of an action introduced in the plan changes it.

This could be done by mapping each predicates defined in the domain with functions for fetching the related information. These functions are called when, during the planning process, the associated predicates are tested as preconditions.

If the information required is not yet known by the planner, such functions run lower level functions that works as access modules (external libraries - DLL dynamically loaded libraries) to the real world.

4.2 Constraint Satisfaction Techniques in Planning

When a problem is run, UCPOP algorithm continually refines an incomplete plan until all goals and subsequent subgoals are satisfied. This implies the creation of alternative partial plans because of the many non deterministic choices that need to be done. To reduce the number of plans explored, UCPOP allows to define a rule based search controller to guide UCPOP’s non deterministic choices. Other solution can be tried in order to improve the efficiency of such an exponential algorithm.

One of them is to use effective heuristic search algorithm rather than breadth-first or iterative deepening depth-first search. Another one is to add constraints into the planning process so that to reduce the non deterministic choices.

There is a strong relationship between least commitment and constraint satisfaction.

In fact the introduction of constraints and the maintenance of their consistency during the planning process allows to postpone decisions until constraints force to make them.

Currently UCPOP uses constraints for two purposes.

The set of ordering constraints, O, allows to delay decisions about when individual actions have to be scheduled.

The set of variables binding constraints allows UCPOP to work with action schemata; thus the decision of which action to use to support an open condition can be delayed by adding codesignation and nocodesignation constraints and gradually refining them.

Maintaining the consistency of the set of ordering constraints is one example of how to passively use constraints in planning.

We want to actively use constraint satisfaction techniques in order to augment the search efficiency of the planner by avoiding failures instead of recovering from them, thus reducing computationally heavy backtracking steps. This can be done by constraint propagation.

Partial order planners usually compose partial plans that achieve different subgoals.

One of the main difficulties in the composition process is that different parts of a plan may interact harmfully, by generating the so called threats. A threat occurs when the effects of an action belonging to a partial order chain retracts preconditions of a second action in another chain and no ordering constraint prevent the first action from being executed before the latter.

Many ways of removing threats have been proposed, see [2], such as promotion, demotion, separation, establishment or introducing white knights. The general idea is to introduce new constraints that avoid harmful interactions. Different threats can be solved by several alternative sets of constraints that, furthermore, interact among themselves in different ways.

UCPOP detects threats by recording the dependencies between actions by means of causal links. Precisely causal links represent a data structure with three fields. Two pointers to plan actions (Ap, Ac) and a proposition Q which is both an effect of Ap and a precondition of Ac.

Thus when an action At newly introduced into the plan has (Q as an effect, and the ordering constraints set O doesn’t contains neither At<Ap nor Ap<At, At represents a threat.

For each threat UCPOP adds a consistent ordering constraint between At<Ap (i.e., demotion) and Ac<At (i.e., promotion)

Typically, planning algorithms, included UCPOP, don’t make use of the constraints that link postponed decisions while that decisions are still pending; in other words as long as a decision is postponed there is no explicit representations of the choices available and the consequences of those choices. This constraint based approach to perform least commitment planning can be called passive postponement [3].

Constraint satisfaction results in an active postponement of planning decisions since all postponed decisions are represented by constrained variables. The domain of a variable (i.e., the set of possible values) represents the possible choice for a decision; constraints on the variable compel the way in which each possible decision must be made. Thus planning problems can be seen as Constraint Satisfaction problems (CSPs) and, consequently, planning algorithms become application of CSP techniques to those problems. Particularly we mean to concentrate on threats and how to use active postponement to solve conflicts. Our idea is to introduce relation variables whose domains contain constraint symbols that link action variables, i.e. variables representing actions; in this way we actively postpone decision since the constraint between relation variables is taken into account during the computation. Furthermore a transitive closure of the network can be computed by performing the composition between each couple of relation variables that share an action variable.

As soon as one variable assumes a value, this information is propagated to the other so that the resolution of one threat can be propagate to other threats, thus reducing the search space.

Acknowledgements

We would like to thank the System Management Dept. of the HP Labs in Bristol for supporting the project. Our special thank goes to Giuliano Di Vitantonio and Adrian Pell for useful discussions and suggestions.

References

[1] Adam Barry Feder, “A Dolphin Model Development Environment”, MIT Master Thesis, January 1995.

[2] D.Chapman, “Planning for Conjunctive Goals”, Artificial Intelligence, Vol.32, n.3, 1987, pp. 333-378.

[3] D.Joslin, M.Pollack, “Passive and Active Decision Postponment”, Proceedings of European Workshop of Planning, 1995.

[4] D.S. Weld, “An Introduction to Least Commitment Planning”, AI Magazine, vol. 15, 1994, pp. 27--61.

[5] Q. Yang, “A Theory of Conflict Resolution in Planning”, Artificial Intelligence, vol.58, pp.361--392, 1992.

[6] P.Van Hentenryck, “Constraint Satisfaction in Logic Programming”, MIT Press, 1989.

[7] J.S. Penberthy, D.S. Weld, “UCPOP: A Sound Complete Partial Order Planner for ADL”, IJCAI,

[8] Hewlett Packard “HPUX manuals”, version 10.10, chap 3.

[9] A. Barrett, K. Golden, S. Penberthy, D. Weld “UCPOP User’s Manual”, version 2.0, 1994.

Appendix

(in-package "UCPOP")

(defun system-management-domain ()

(reset-domain)

;; the next operator removes a volume group along with the last physical volume

(define (operator rmVolGroup)

:parameters ((volGroup ?vg)(machine ?m))

:precondition (:and(onMachine ?vg ?m)(onlyOnePV ?vg)(noneLV ?vg)(:exists(phisVol ?pv)(belongs ?pv ?vg)))

:effect (:and(rmVolGroup ?vg)(:not(onMachine ?vg ?m))(:not(belongs ?pv ?vg)))

)

;;Necessary HPUX commands : \/usr/sbin\/vgremove vg *removes the volume group

 ;; rm -r vgName *removes the directory containing the vg

;; the next operator check that there are no logical volumes on a given volume group

(define (operator rmAllLogVol)

:parameters (volGroup ?vg)

:precondition (:forall(logVol ?lv)(:not(on ?lv ?vg)))

:effect (noneLV ?vg)

)

;;Necessary HPUX commands: none

;; this operator removes a logical volume

(define (operator rmLogVol)

:parameters ((volGroup ?vg)(logVol ?lv))

:precondition (:and(on ?lv ?vg)(:not(:exists(swap ?sw)(swapSpace ?sw ?lv))))

:effect (:and(rmLogVol ?lv)(:not(on ?lv ?vg))(:forall (?pv)(:when(:and(phisVol ?pv)(logPart ?pv ?lv))(:not(logPart ?pv ?lv)))))

)

;;Necessary HPUX commands: \/etc\/umount lv * umounts the file system from the lv

;;\/usr/sbin\/lvremove -f lv *removes the logical volume

;; this operator check if there is only one physical volume on a given volume group

(define (operator onlyOnePhisVol)

:parameters(volGroup ?vg)

:precondition (:exists(phisVol ?pv)(:and(belongs ?pv ?vg)(:not(:exists (phisVol ?p)(:and (belongs ?p ?vg)(:neq ?pv ?p))))))

:effect (onlyOnePV ?vg)

)

;;Necessary HPUX commands: none

;; this operator removes a physical volume

(define (operator rmPhVol)

:parameters ((volGroup ?vg)(phisVol ?pv) (machine ?m))

:precondition (:and(belongs ?pv ?vg)(pvMachine ?pv ?m)(:exists (phisVol ?p)(:and(belongs ?p ?vg)(:neq ?p ?pv)))(:not(:exists(logVol ?lv)(logPart ?pv ?lv))))

:effect (:and(rmPhVol ?pv)(:not(belongs ?pv ?vg)))

)

;;Necessary HPUX commands: \/usr/sbin\/vgreduce vg pv on machine *removes the pv

;; this operator adds a new Physical volume on a Volume group

(define (operator addPhVol)

:parameters ((volGroup ?vg)(phisVol ?pv)(machine ?m))

:precondition (:and(:forall (volGroup ?v)(:not (belongs ?pv ?v)))(onMachine ?vg ?m))

:effect (:and(belongs ?pv ?vg)(:when(onlyOnePV ?vg)(:not(onlyOnePV ?vg)))(pvMachine ?pv ?m))

)

;;Necessary HPUX commands: \/usr/sbin\/vgextend vg pv on machine *adds the pv

;; this operator create a new LogicalVolume

(define (operator createLogVolume)

:parameters ((volGroup ?vg)(logVol ?lv)(phisVol ?pv)(machine ?m) ?sizeLV)

:precondition (:and(:not(on ?lv ?vg))(onMachine ?vg ?m)(:not(lvMachine ?lv ?m)))

:effect (:and(on ?lv ?vg)(lvMachine ?lv ?m)(:when (noneLV ?vg)(:not(noneLV ?vg))))

)

;;Necessary HPUX commands: \/usr/sbin\/lvcreate -L sizeLV -n lv *adds the lv

;; this operator create a new VolumeGroup

(define (operator createVolGroup)

:parameters ((volGroup ?vg)(phisVol ?pv) ?sizeVG (machine ?m))

:precondition (:and(:not(onMachine ?vg ?m))(:not(exists(volGroup ?v)(belongs ?pv ?v)))(pvmachine ?pv ?m))

:effect (:and(belongs ?pv ?vg)(onMachine ?vg ?m)(onlyOnePV ?pv))

)

;;Necessary HPUX commands: \/usr/sbin\/vgcreate -s ?sizeVG vg pv (on ?m) * create a new volume group around a physical volume

;;mkdir ?nameVG (on ?m) * create a new directory

 ;;\/etc\/mknod ?nameVG \/group c 64 0x "vg0000"

;; the next operator creates a new file system

(define (operator makeFileSys)

:parameters ((machine ?m)(filesys ?fs)(logVol ?lv) ?fsType ?dir ?nameLV)

:precondition (lvMachine ?lv ?m)

:effect (:and (mountedON ?lv ?fs)(fsMachine ?fs ?m))

)

;;Necessary HPUX commands: \/usr/sbin\/newfs -F ?fstype ?nameLV (on machine ?m)

 ;;\/etc\/mount ?nameLV ?dir

;; the next operator creates a new swap space

(define (operator createSwapSpace)

:parameters ((machine ?m)(swap ?sw)(logVol ?lv) ?nameLV ?priority)

:precondition (lvMachine ?lv ?m)

:effect (:and (swapSpace ?sw ?lv)(swMachine ?sw ?m))

)

;;Necessary HPUX commands: \/etc\/swapon -p ?nameLv (on ?m)

)

(define (problem rm-volgroup)

:domain #'system-management-domain

:inits ((volGroup vg1)(volGroup vg2)(logVol lv1)(logVol lv2)(logVol lv3)(phisVol pv1)(phisVol pv2)(phisVol pv3)(machine m1)(filesys fs1)(mountedOn fs1 lv1)(onMachine vg1 m1)(onMachine vg2 m1)(belongs pv1 vg1)(belongs pv2 vg1)(belongs pv3 vg2)(pvMachine pv1 m1)(pvMachine pv2 m1)(pvMachine pv3 m1)(lvMachine lv1 m1)(logPart pv1 lv1)(lvMachine lv2 m1)(logPart pv1 lv2)(logPart pv2 lv2)(lvMachine lv3 m1)(logPart pv3 lv3)(on lv1 vg1)(on lv2 vg1)(on lv3 vg2)(swap sw)(swapMachine sw m1)(swapspace sw lv3))

:goal (rmVolgroup vg1)

)

When you run the problem UCPOP find a plan to solve the problem. It print:

Initial:((VOLGROUP VG1) (VOLGROUP VG2) (LOGVOL LV1) (LOGVOL LV2)(LOGVOL LV3) (PHISVOL PV1) (PHISVOL PV2) (PHISVOL PV3) (MACHINE M1) (FILESYS FS1) (MOUNTEDON FS1 LV1) (ONMACHINE VG1 M1) (ONMACHINE VG2 M1) (BELONGS PV1 VG1) (BELONGS PV2 VG1)(BELONGS PV3 VG2) (PVMACHINE PV1 M1) (PVMACHINE PV2 M1) (PVMACHINE PV3 M1) (LVMACHINE LV1 M1) (LOGPART PV1 LV1) (LVMACHINE LV2 M1) (LOGPART PV1 LV2) (LOGPART PV2 LV2) (LVMACHINE LV3 M1) (LOGPART PV3 LV3) (ON LV1 VG1) (ON LV2 VG1) (ON LV3 VG2) (SWAP SW) (SWAPMACHINE SW M1) (SWAPSPACE SW LV3))

Step 1 : (RMLOGVOL VG1 LV2) Created 4

 0 -> (PHISVOL PV2)

 0 -> (LOGPART PV2 LV2)

 0 -> (ON LV2 VG1)

 0 -> (NOT (SWAPSPACE SW LV2))

 0 -> (VOLGROUP VG1)

 0 -> (LOGVOL LV2)

Step 2 : (RMPHVOL VG1 PV2 M1) Created 6

 0 -> (BELONGS PV2 VG1)

 0 -> (PVMACHINE PV2 M1)

 0 -> (PHISVOL PV1)

 0 -> (BELONGS PV1 VG1)

 0 -> (NOT (LOGPART PV2 LV3))

 4 -> (NOT (LOGPART PV2 LV2))

 0 -> (NOT (LOGPART PV2 LV1))

 0 -> (VOLGROUP VG1)

 0 -> (PHISVOL PV2)

 0 -> (MACHINE M1)

Step 3 : (ONLYONEPHISVOL VOLGROUP VG1) Created 5

 0 -> (PHISVOL PV1)

 0 -> (BELONGS PV1 VG1)

 0 -> (NOT (BELONGS PV3 VG1))

 6 -> (NOT (BELONGS PV2 VG1))

Step 4 : (RMLOGVOL VG1 LV1) Created 3

 0 -> (ON LV1 VG1)

 0 -> (NOT (SWAPSPACE SW LV1))

 0 -> (VOLGROUP VG1)

 0 -> (LOGVOL LV1)

Step 5 : (RMALLLOGVOL VOLGROUP VG1) Created 2

 0 -> (NOT (ON LV3 VG1))

 4 -> (NOT (ON LV2 VG1))

 3 -> (NOT (ON LV1 VG1))

Step 6 : (RMVOLGROUP VG1 M1) Created 1

 0 -> (ONMACHINE VG1 M1)

 5 -> (ONLYONEPV VG1)

 2 -> (NONELV VG1)

 0 -> (PHISVOL PV1)

 0 -> (BELONGS PV1 VG1)

 0 -> (VOLGROUP VG1)

 0 -> (MACHINE M1)

Goal : (RMVOLGROUP VG1)

 1 -> (RMVOLGROUP VG1)

Facts:

Complete!

UCPOP Stats: Initial terms = 32; Goals = 2 ; Success (6 steps)

 Created 1125 plans, but explored only 769

 CPU time: 2.6700 sec

 Branching factor: 1.419

 Working Unifies: 4410

 Bindings Added: 1153

#plan<S=7; O=0; U=0>

#Stats:<cpu time = 2.6700>

� When a conditional effect represent a threat another approach called “confrontation” [4, 7] is possible.

 We didn’t mention it for sake of simplicity

PAGE
10

