
Discovery and Session – Mobile Systems M 11

Mobile Systems M

Alma Mater Studiorum – University of Bologna

CdS Laurea Magistrale (MSc) in

Computer Science Engineering

Mobile Systems M course (8 ECTS)
II Term – Academic Year 2021/2022

06 – Discovery,

Messaging, and Events

Paolo Bellavista

paolo.bellavista@unibo.it

http://lia.disi.unibo.it/Courses/sm2122-info/

mailto:paolo.bellavista@unibo.it
http://lia.disi.unibo.it/Courses/sm2021-info/

Discovery and Session – Mobile Systems M

Resource/Service Discovery

Sometimes the term is used in a broad sense to indicate both the “real”

discovery and also the configuration operations needed to access

resources/services, as well as the resource/service requests

themselves

Key support features for any open, dynamic, loosely

coupled, and peer-to-peer system:

❑ Automated configuration

❑ Discovery of resources and services

❑ Resource/service delivery

Main discovery standards and solutions:

❑ Jini, Service Location Protocol (SLP), Universal Plug and Play

(UPnP), …

2

Discovery and Session – Mobile Systems M

Key Features

❑ Auto-configuration
➢ Device have to configure themselves to participate to

offering/requesting resources and services
➢ For instance, but not only, configuration of a temporary IP address in the

current locality

❑ Discovery of available resources and services

➢ Who offers resources and services (service provider) has to be
able to make advertising of them
▪ Of which resources and services

▪ Of how to make invocations, via which interfaces

➢ Clients have to be able to find (local) resources and services

❑ Access to resources and services

➢ Clients have to be able to communicate with service provider,
invoke services, transfer input parameters, and possibly receive
return results

➢ Also support to authentication and authorization

➢ Relevance of achieving good reliability and scalability

3

Discovery and Session – Mobile Systems M

Jini
(Sun Microsystem, now Apache River)

Service Broker

Service Provider

Java Service

Object

Service

Attributes

Client

Java Service

Proxy Object

Java Service

Proxy Object

Service

Attributes

Registration

Lookup

4

Discovery and Session – Mobile Systems M

Most relevant discovery solution for the Java world

❑ Service provider dynamically discovers one or more

lookup services (broker)

❑ Service provider registers a resource/service object

(modeled as Java object) and its attributes to the broker

❑ Client requests a service, typically by specifying

attributes of the looked-for service; one instance of object

to simplify resource/service access moves to client at runtime

❑ Lookup service can notify registered clients when

there is state change for their resources and services

❑ Client interacts with discovered resource/service via

obtained Java object

Apache River

5

Discovery and Session – Mobile Systems M

Reliability Management in River

❑ Possible failures (and not only, see versioning) are managed
through lease mechanism
➢ River assigns resources to clients with lease of given time

duration (less or equal to what requested by client)

➢ Once terminated the lease interval, client has to re-fresh lease
in order to continue accessing the resource/service

➢ Also lookup registration is made with lease: therefore, all leases
have an expiration deadline, for any user, in the case of “long”
service provider fault

❑ River supports redundancy at the infrastructure level
and resiliency against faults
➢ Possible to deploy several lookup services in the same

network

➢ Service providers can register their proxy objects in multiple
lookup services

➢ Also usage within transactions and automated rollback when
lease expires

6

Discovery and Session – Mobile Systems M

Scalability in Apache River

Scalability realized via dynamic organization in

“communities” or “federations”

❑ Groups of River resources/services can aggregate into a

community, typically the one of local services registered at least

in a local lookup service

❑ Different communities can be linked together in larger groups

through lookup service

➢ One community registers itself at other communities by

registering its own lookup service

➢ How to manage the nesting of lookup services?

7

Discovery and Session – Mobile Systems M

Service Proxy Object

in River is Dynamic

If compared with more traditional solutions for resource/service access,
anyway retrieved dynamically via intermediate stubs and skeletons:

❑ River overcomes limitations of stub/skeleton creation
at compile-time, which is for example typical of RPC

❑ River allow to clients to obtain service provider stubs at
provisioning time

❑ RPS stubs are similar to service proxy object that the River
server dynamically loads in the lookup service

❑ Service proxy object allows clients to use the discovered service
with NO a priori knowledge of its implementation details

8

Discovery and Session – Mobile Systems M

Service Location Protocol (SLP)

❑ SLP is the standard

approach of Internet

Engineering Task

Force (IETF) for

resource/service

discovery

❑ Basic idea: SLP makes

resources/services

visible through URL

registration at

intermediate agents

User

Agent (UA)

Service

Agent (SA)

Service

Service

Agent (SA)

Service

Directory

Agent (DA)

Application

9

➢RFC 2608 - Service Location Protocol, Version 2

➢RFC 2609 - Service Templates and Service Schemes

➢RFC 2614 - An API for Service Location Protocol

http://www.openslp.org/doc/rfc/rfc2608.txt
http://www.openslp.org/doc/rfc/rfc2609.txt
http://www.openslp.org/doc/rfc/rfc2614.txt

Discovery and Session – Mobile Systems M

SLP is based on 3 Types of Agents

Agents as entities capable of SLP message processing

❑ Service agent

➢ Performs broadcast (usually periodic) of advertisement messages

about its resources/services (associations with URLs)

❑ Directory agent (optional)

➢ Performs caching of advertisement messages (from service agents)

as a centralized repository

➢ Processes discovery queries received from user agents by returning

back the URLs that match

❑ User agent

➢ To discover resources/services at the client side

➢ Also efficient usage of multicast to service agent groups

Standard specification is relatively rich and flexible, but industry-mature

implementations not so widespread (OpenSLP, Sun SLP, Xerox printers, …)

10

Discovery and Session – Mobile Systems M

Universal Plug-and-Play (UPnP)

Standard specification started by Microsoft (at the beginning,

an internal proprietary solution)

❑ Primary goal: to enable advertisement, discovery, and

control of networked devices, services, consumer

electronics in typically domestic ad hoc envs (see the

current exploitation in media centers, tvs, hi-fi devices, …)

❑ UPnP uses, as underlying technologies:

➢ UDP or TCP/IP

➢ HTTP

➢ XML/HTML and SOAP

11

Discovery and Session – Mobile Systems M

Via UPnP a device can:

❑ Dynamically join a network, by obtaining an IP address that is
locally valid

❑ Making visible its capabilities, by need and on-demand

❑ Discover the presence and capabilities of other devices

❑ Dynamically leave a network

UPnP supports:

❑ Automated IP configuration

❑ Discovery of resources and services

❑ Description of resources/services based on XML

❑ Service control based on SOAP

❑ Event management (via Generic Eventing and Notification
Architecture - GENA)

❑ Presentation in HTML/XML

12

Universal Plug-and-Play (UPnP)

Discovery and Session – Mobile Systems M

IP Addressing in UPnP

By delving into finer technical details:

❑ UPnP uses Auto IP (the real protocol part for auto-

configuration) to enable devices to connect to the

network with NO need of explicit administration

❑ When a device connects to a network, it tries to obtain

an IP address from a DHCP server, if available

❑ If no DHCP server is available, an IP address is

automatically claimed from a fixed reserved range

for usage ONLY at local network

➢ An IP address from the link-local address range is selected

randomly (169.254.0.0/16 for IPv4)

➢ Request sent via Address Resolution Protocol (ARP) to check

whether other devices have already picked up that address

13

Discovery and Session – Mobile Systems M

Service Discovery in UPnP

UPnP exploits the Simple Service Discovery Protocol

(SSDP) as discovery protocol based on usage of

dedicated multicast address (239.255.255.250 on port 1900

via UDP)

Device

Control

Point

URL of

Device

Description

File

ssdp:discover
Device

Control

Point

ssdp:alive

(URL)

14

Discovery and Session – Mobile Systems M

Service Discovery in UPnP

❑ Device (e.g., UPnP-compliant projector) multicasts an

advertisement message (ssdp:alive) to exhibit its

services to active control points (e.g., tablets or home

gateways)

❑ Control point can perform multicast of search

messages (ssdp:discover)

➢ Any device that receives a multicast message may

reply with a unicast response message

❑ The URL of XML Device Description File is returned

back to the control point

15

Discovery and Session – Mobile Systems M

UPnP Architecture and Protocol Stack

16

Usage of

HTTP over

UDP, either

multicast

(HTTPMU)

or unicast

(HTTPU)

Discovery and Session – Mobile Systems M

Description of Device and

its Services in UPnP

❑ UPnP uses XML to describe resources and services

(standardization effort for interoperable representation)

❑ Advertisement message includes a URL related to the

XML device description file

❑ Device description file describes the capabilities of the device for

which advertisement is done

❑ Control point can dynamically obtain the device description file via

HTTP and process it

❑ Any device can offer one or more resources/services

❑ <service> element includes

➢ Service type and service ID

➢ Service URL for invocation via SOAP

➢ URL for event subscription to enable notifications

➢ An additional file (Service Description File) for any offered

service, with more specific and detailed descriptions
17

Discovery and Session – Mobile Systems M

Device Description File

for a Projector

<?xml version="1.0" ?>

<root xmlns="urn:schemas-upnp-org:device-1-0">

<device>

<deviceType>urn:schemas-upnp-
org:device:projector:1</deviceType>

<UDN>uuid:UPnP-Projector</UDN>

<serviceList>

<service>

<serviceType>urn:schemas-upnp-
org:service:control:1</serviceType>

<serviceId>urn:upnp-org:serviceId:control</serviceId>

<controlURL>isapictl.dll?control</controlURL>

<eventSubURL>isapictl.dll?control</eventSubURL>

<SCPDURL>projector-scpd.xml</SCPDURL>

</service>

</serviceList>

</device>

</root>

Service Description File

for a possible “projector

control” service

projector-desc.xml

18

Discovery and Session – Mobile Systems M

Service Control in UPnP

❑ The XML-based service description file (e.g., “projector

control”) contains:

➢ Action list with the operations that may be invoked on the

service

➢ Service state table including all exposed state variables (and

their data type)

❑ To invoke a given service control for which a device has

previously performed advertisement, control point

sends a SOAP message to the URL specified for that

service

➢ Control point can access and update state variables in the

table

❑ Service performs the requested control action and

returns the result via SOAP message

19

Discovery and Session – Mobile Systems M

Service Description File for

a Service of Projector Control

<?xml version="1.0" ?>

<scpd xmlns="urn:schemas-upnp-org:service-1-0">

<actionList>

<action>

<name>SetPower</name>

<argumentList>

<argument>

<name>Power</name>

<relatedStateVariable>Power</relatedStateVariable>

<direction>in</direction>

</argument>

</argumentList>

</action>

… Other actions …

</actionList>

projector-scpd.xml

20

Discovery and Session – Mobile Systems M

…

<serviceStateTable>

<stateVariable sendEvents="yes">

<name>Power</name>

<dataType>Boolean</dataType>

<defaultValue>0</defaultValue>

</stateVariable>

<stateVariable sendEvents="yes">

<name>File</name>

<dataType>string</dataType>

<defaultValue>default.ppt</defaultValue>

</stateVariable>

… Other state variables …

</serviceStateTable>

</scpd>

21

Service Description File for

a Service of Projector Control

Discovery and Session – Mobile Systems M

Event Subscription in UPnP

❑ Control point may register itself for receiving

notification events generated by advertised services

when state variables are modified

➢ Subscription URL included in device description file

❑ Messages that implement the notified event are expressed in XML

and formatted according to the General Event Notification

Architecture (GENA) standard; they include the modified state

variables that caused event generation

For example, projector service can notify events towards control point
when one of the following situations occur:
➢ Page up/down (change of pageNumber variable)

➢ Power on/off

➢ Files – change in ppt file list

➢ File – change in ppt file currently with ongoing presentation

UPnP does NOT allow subscription of control points to single state
variables; control point has to dynamically determine which state
variable has been changed and has generated notification event

22

Discovery and Session – Mobile Systems M

UPnP Presentation is based on HTTP

❑ Device may advertise a “presentation” URL for user

interface describing service access via Web:

➢ Download Web page from URL and visualization at browser

➢ Possibility for users to control the device

➢ Possibility to visualize device state

❑ Given the usage of XML for data definition and exchange, UPnP

potentially enables employment by a large set of resource-

limited devices: also automated XML transformations

(reductions) based on XSLT

➢ Most UPnP implementations support only presentation based on

HTML, slow transition towards XML

23

Discovery and Session – Mobile Systems M

UPnP Architectue and

Bridging Possibilities

24

Discovery and Session – Mobile Systems M

Details on

Service-Control Point Interaction

1. Control point sends SSDP search

request

2. Device replies with unicast UDP

NOTIFY, which contains the URL of

XML file with device description

3. Control point requests XML

description document via HTTP

4. Web server included in the device

replies to request and returns XML

document

5. To automatically receive notifications

of changes at device, control point

can register itself to the services of

interest via HTTP

Control

point

Device

1. M-SEARCH

(multicast)

2. NOTIFY (UDP

unicast)

3. HTTP GET

description.xml

4. HTTP

Response

5. HTTP

SUBSCRIBE

6. HTTP

Response (SID)

7. HTTP POST

(SOAP)

8. HTTP (SOAP

response)

9. Notify (GENA

unicast)

25

Discovery and Session – Mobile Systems M

6. Device replies with registration ACK

and returns unique Subscription

Identifier (SID)

7. Control point can command the

execution of operations at device,

with possible modification of state

variables

➢ URL to send control requests

included in the XML document

with device description

➢ Control point sends SOAP

request over HTTP

Control

point

Device

1. M-SEARCH

(multicast)

2. NOTIFY (UDP

unicast)

3. HTTP GET

description.xml

4. HTTP

Response

5. HTTP

SUBSCRIBE

6. HTTP

Response (SID)

7. HTTP POST

(SOAP)

8. HTTP (SOAP

response)

9. Notify (GENA

unicast)

26

Details on

Service-Control Point Interaction

Discovery and Session – Mobile Systems M

8. Device possibly changes state
variables and returns response
as a SOAP message

9. Device can notify clients of the
occurred state change, either
stemming from invoked actions
(as in the case of 8) or generated
by implicit modifications at device

➢Device performs notifications
via unicast NOTIFY messages
over HTTP

Control

point

Device

1. M-SEARCH

(multicast)

2. NOTIFY (UDP

unicast)

3. HTTP GET

description.xml

4. HTTP

Response

5. HTTP

SUBSCRIBE

6. HTTP

Response (SID)

7. HTTP POST

(SOAP)

8. HTTP (SOAP

response)

9. Notify (GENA

unicast)

27

Details on

Service-Control Point Interaction

Discovery and Session – Mobile Systems M

By Summarizing…

UPnP Middleware Features

❑ Service Discovery

➢ Support designed for peer-to-peer environments without

hierarchical structuring

❑ Adaptability

➢ IP addresses are dynamically allocated

➢ State modifications are made available via event notification

➢ No support (yet) for service routing/selection based on client

location

❑ Transparent support to communication

➢ Exploitation of Internet standards

➢ No support to multi-hop ad-hoc communications

❑ Data Transformation

➢ Possible data transformation from standard XML format to

proprietary formats that may be control-point-specific (e.g.,

proprietary Microsoft ones)
28

Discovery and Session – Mobile Systems M

Additional Useful Links

about UPnP

❑ S. Helal, “Standards for Service Discovery and Delivery,” IEEE

Pervasive Computing, Vol. 1, No. 3, pp. 95-100, July-Sept. 2002

❑ Jini Forum, at http://www.jini.org/

❑ Service Location Protocol Working Group (svrloc), at

http://www.ietf.org/html.charters/svrloc-charter.html

❑ UPnP Forum, at http://www.upnp.org/

❑ UPnP Forum, “Universal Plug and Play Device Architecture,” at

http://www.upnp.org/resources/documents.asp

❑ Intel, “UPnP Technology,” at http://www.intel.com/technology/UPnP/

29

http://www.jini.org/
http://www.ietf.org/html.charters/svrloc-charter.html
http://www.upnp.org/
http://www.upnp.org/resources/documents.asp
http://www.intel.com/technology/UPnP/

Discovery and Session – Mobile Systems M 30

Exercise on UPnP (1)

To design and implement a small application that uses UPnP to

discover the availability of file multimedia files offered in a locality

To try to respect, as much as possible, the design architectural choice of

out-of-band multimedia communication (direct between end

points) wrt discovery

Situation close to realistic scenario where UPnP is used as solution for configuration,

discovery, and service access in home-oriented networks, in particular for media

servers, rendering devices, data sources, control points, … (see the approach

supported by Digital Living Network Alliance – DLNA - http://www.dlna.org/)

http://www.dlna.org/

Discovery and Session – Mobile Systems M 31

Exercise on UPnP (2)

Please refer to docs and dev tools, largely available in the

community, such as:

❑ Microsoft, “Using the UPnP Control Point API”,

http://msdn.microsoft.com/en-us/library/ms898948.aspx

❑ https://macchina.io/docs/00400-

UPnPControlPointImplementationGuide.html

UPnP for Android:

❑ https://play.google.com/store/apps/details?id=com.bubblesoft.andr

oid.bubbleupnp&hl=it&gl=US

As usual, the exercise could be a starting seed for a possible

further project activity…

http://msdn.microsoft.com/en-us/library/ms898948.aspx
https://macchina.io/docs/00400-UPnPControlPointImplementationGuide.html
https://play.google.com/store/apps/details?id=com.bubblesoft.android.bubbleupnp&hl=it&gl=US

Discovery and Session – Mobile Systems M 32

Alternatively,

Solution based on Apache River

To design and implement a small application that uses Apache River to

discover the availability of multimedia files offered in a locality

To try to respect, as much as possible, the design architectural choice of

out-of-band multimedia communication (direct between end points)

wrt discovery

In this case, please refer to docs and development tools available at:

❑ River home page - https://attic.apache.org/projects/river.html

https://attic.apache.org/projects/river.html

Discovery and Session – Mobile Systems M 33

Decoupled Communications:

Messaging

As already stated, relevance of decoupling in

communication and interaction among mobile distributed

components

Sometimes message exchange is even used as the

general term to indicate the primary type of mobile

communication middleware (see S. Tarkoma, “Mobile

Middleware”) to highlight the importance of decoupling

Any mobile messaging solution must define:

❑ Principles and architecture

❑ Message syntax

❑ Protocol for message exchange

❑ Locator

Sometimes protocol term is used to include also syntax and locator…

33

Discovery and Session – Mobile Systems M 34

Messaging:

Principles and Architecture

Primary principle: loose coupling (via standard and open

protocols/formats)

In real systems, also extensibility. How to?

❑ Version identifiers included in messages (non-recognized

versions are considered as errors; back-compatibility?)

❑ Formats with extension points

❑ Forward compatibility with possibility to ignore message parts

that are not recognized (example of application of robustness

principle)

Usually middleware APIs to allow applications to use

communication facilities; sometimes middleware with

visibility of requirements for data exchange and their

semantics

34

Discovery and Session – Mobile Systems M 35

Messaging:

Message Syntax

Marshalling/unmarshalling management:

❑ Implemented at the application level

❑ Code may be automatically generated (typically based on

approaches like Interface Description Language – IDL – which is

considered at development time)

❑ Introspection (higher expressive power for developers but typically

more expensive at runtime)

How to agree on data format?

❑ Specification (usual approach of Internet protocols with messages

in binary format)

❑ Negotiation

❑ Receiver-makes-right (sender uses its native formats and specifies

metadata to indicate which formats are used)

Primary types of message formats:

❑ Binary (ASN.1, …) or text-based (XML, JSON, …)

35

Discovery and Session – Mobile Systems M 36

Messaging:

Protocols

In addition to the usual protocol properties for communication in

distributed systems (headers with metadata and payload, also

application-layer metadata, message types and with which exchange

patterns, …), special accent on connection management

❑ Protocols that “mimic” transport layer, with application-level connection

in 1:1 relationship with transport-level connection

❑ More often protocols that decouple the two aspects (persistent

session feature over multiple and temporary transport

connections; see TCP and change of dynamic IP address, or SIP…)

«Pure» end-to-end perspective or usage of mediators up

to the application level?

Wide usage of store-and-forward architectures and

protocols (decoupling in time, optimization of implementations for

reliability, violation of end-to-end principle)

36

Discovery and Session – Mobile Systems M 37

Messaging:

Protocols

Classical schemes for message exchange: one-way, two-way, request-

response, subscribe-notify, conversation, …

Relevant:

❑ Role at transport layer (initiator-listener), not

necessarily the same as for the application/messaging

levels

❑ Usual distinction blocking vs. non-blocking

➢ Polling method, usually with object (promise or future) given

to the sender; possible to make either inspect or blocking claim

➢ Callback

Which of the two schemes facilitates more the development of mobile

applications and/or for mobile systems?

37

Discovery and Session – Mobile Systems M 38

Messaging:

Locator

We are used to locators strongly tightened to network addresses

But also locators more articulated and complex, e.g., which include port

numbers (transport) or paths (URLs)

In mobile systems many types of locators, also non IP-

based, in particular in the past when IP was not so dominant

Anyway, even nowadays, possibility of:

❑ “Transparent” locators, typically implemented as URIs and

codified in XML (it increases the level of abstraction + decoupling)

❑ “Opaque” locators, as in CORBA. Need of middleware

to generate and use opaque locators

Is mobility management a network-layer issue? Of course, given what

we have already widely discussed in the course, NOT ONLY…

Often it is written that mobile hosts are managed as second-class

citizens; towards locators independent from network layer…

38

Discovery and Session – Mobile Systems M 39

Messaging:

Design for Mobility

Usual general considerations on:

❑ Valuable role of proxies, e.g., to split transport connections in two

parts (breaking the end-to-end principle)

❑ Problems of Network Address Translation (NAT) when mobile

nodes are willing to offer services (see also FTP and IRC…)

In addition:

❑ Ability to complete the scheme of message exchange even if

communicating entities move

❑ Exploitation of classic transport-level connections is usually

preferred

❑ Simple syntax and reduced message content, also considering

compression facilities

❑ Security at message level: with SSL-like approaches (connection-level

security), which kind of issues if end-to-end principle is broken? Message-

level security with security applied to (parts of) the payload, not to

headers; of course, also combination of connection and message

39

Discovery and Session – Mobile Systems M 40

Messaging:

Reliability

As usual:

❑ Distinction between end-to-end and hop-by-hop

❑ Basic technique with acknowledgement and re-

transmissions (also at the application level)

ACK types:

❑ Regular

❑ Cumulative

❑ Negative

❑ Piggy-backed

In-order delivery? Sometimes it can be sacrificed for

efficiency motivations

Indeed, reliability reduction due to performance motivations is a well-

known concept (DNS, NTP, SIP, … typically use UDP)

40

Discovery and Session – Mobile Systems M 41

Messaging Examples:

Java Message Service (JMS)

❑ Possibility to ask for only-once semantics for message

delivery (more precisely once-and-only-once for persistent usage,

at-most-once for non-persistent usage)

❑ Decoupling in time thanks to durable destinations

❑ Partial time coupling for topics: it can be reduced via durable

subscriptions

❑ Possibility of non-blocking reception via listeners

❑ Usage of ConnectionFactory

❑ Messages sent within a session (via a given Session object)

towards the same destination benefit from in-order delivery

property

❑ Three types of ACK (lazy, automatic, and client-side)

41

Discovery and Session – Mobile Systems M 42

Design Goals in JMS

JMS is part of the J2EE platform. Goals:

❑ Compliance/similarity with APIs of existing messaging

systems

❑ Independency from vendors of messaging systems

❑ Coverage of most common facilities that are offered in

messaging systems

❑ It promotes the usage of

Java technology Java™ ApplicationJava™ Application

JMS APIJMS API

JMS
Provider

JMS
Provider

IBM
MQSeries

IBM
MQSeries

JMS
Provider

JMS
Provider

Progress
SonicMq
Progress
SonicMq

JMS
Provider

JMS
Provider

FioranoFiorano

JMS
Provider

JMS
Provider

JMS
Provider

JMS
Provider

BEABEA SUN MQSUN MQ

Discovery and Session – Mobile Systems M 43

“Graphical Summary” of JMS APIs

Discovery and Session – Mobile Systems M 44

Reliability through ACKs:

e.g., Automatic ACKs

❑ Producer-side and
consumer-side
perspectives

❑ Differences between
persistent and non-
persistent cases

❑ When is it possible to
have duplicated
messages?

❑ When is it possible to
have message losses?

❑ In addition, three
differentiated types of
ack

Discovery and Session – Mobile Systems M 45

Persistency:

Two Delivery Modes

❑ PERSISTENT

➢ Default

➢ It specifies to JMS provider to guarantee that the message is

not lost when in transit, e.g., because of a failure at the JMS

provider

❑ NON_PERSISTENT

➢ It does NOT request storing messages at the JMS provider
side

➢ Better performance results

SetDeliveryMode() method in the MessageProducer interface

➢ producer.setDeliveryMode(DeliveryMode.NON_PERSIS

TENT);

➢ Extended form: producer.send(message,
DeliveryMode.NON_PERSISTENT, 3,10000);

Discovery and Session – Mobile Systems M 46

Priority and Expiration

in Message Delivery

❑ 10 priority levels

➢ from 0 (lowest) to 9 (highest)

➢ default = 4

Usage of setPriority() method of MessageProducer
interface, e.g., producer.setPriority(7);

or the extended form producer.send(message,

DeliveryMode. NON_PERSISTENT, 7, 10000);

❑ Expiration: possibility to configure TTL via

setTimeToLive() of the MessageProducer interface

➢ producer.setTimeToLive(60000);

➢ Or extended form, producer.send(message,

DeliveryMode.NON_PERSISTENT, 3, 60000);

Discovery and Session – Mobile Systems M 47

Messaging Examples:

CORBA Messaging

CORBA Messaging specification includes:

❑ Asynchronous Messaging Interface (AMI)

❑ Possibility of both polling and callback (callback is passed as

CORBA object, therefore even not in the same addressing space of

client)

❑ Time Independent Invocation (TII) to specify which

CORBA objects play the role of router for the message

❑ Rationale: sender and recipient may be temporarily

disconnected

❑ They compose a store-and-forward network

CORBA locator = Interoperable Object Reference (IOR), with different

profiles depending on binding protocol

Messages in binary format = Common Data Representation (CDR)

Extreme flexibility in the choice of the protocol

47

Discovery and Session – Mobile Systems M 48

CORBA DII e AMI 48

Callback: client provides callback method to be invoked by

the support after service completion via a given fire-and-

forget (automatically invoked)

In place of: int somma (in int i, in int j, out int somma)

void sendcallback_somma (in int i, in int j)

void callback_somma (in int success, in int somma)

Usage of two methods

by changing only

client implementation

and NOT any

service part

Client invokes sendcallb…

ORB invokes callback_som…

CORBA AMI:

Callback Mode

Discovery and Session – Mobile Systems M 49

CORBA DII e AMI 49

Asynchronous polling: client decides when and whether to

interrogate a method to check completion of remote operation

(by collecting results); this method is created by the

messaging support

In place of: int somma (in int i, in int j, out int somma)

void sendpoll_somma (in int i, in int j)

void pollsomma (out int success, out int somma)

Result is collected on

request by invoking

pollsomma operation

that is autom. generated

by CORBA support

CORBA AMI:

Polling Mode

Discovery and Session – Mobile Systems M 50

Messaging Examples: Extensible

Messaging and Presence Protocol (XMPP)

Essentially designed for instant messaging

RFC 3920 is oriented and similar to the existing implementation of the

Jabber protocol; good popularity and widespread utilization thanks to

the adoption by Google, Twitter, Facebook, …

It includes publish/subscribe mechanisms (see the following

slides…) to update presence and state, and for service

discovery

Client-server model: client sends an XMPP dataflow to a server, after

parameter negotiation

Peer-to-peer model: servers coordinate together for delivery to recipients

Usage of so-called stanzas, of three types:

❑ Message stanza – one-to-one communication, similar to emails

❑ Presence stanza – simple pub/sub mechanism, communication is

transferred to all subscribers

❑ Info/Query stanza –request-response mechanism
50

Discovery and Session – Mobile Systems M 51

Messaging Examples: Extensible

Messaging and Presence Protocol (XMPP)

XMPP messages are streams codified in XML

Given the widespread adoption, good candidate to support messaging in

mobile systems, EVEN IF:

❑ Not specifically designed for mobile systems

❑ Expensive XML processing, expensive connection management in

particular in terms of energy

❑ Expensive re-connections to XMPP server (need to re-establish a

new session of interaction per any new transport connection,

transmission of XML data that is non-negligible at each session start)

Android implements a specialized and proprietary variant of it, with non-

XML-based protocol and NO creation of a new session per any new

connection

51

Discovery and Session – Mobile Systems M 52

Messaging Examples: Extensible

Messaging and Presence Protocol (XMPP)

Discovery and Session – Mobile Systems M 53

Messaging Examples:

Web Services

SOAP is built on top of interaction model based on

message exchange

❑ Architecture based on senders, receivers, and intermediate nodes

❑ Locator = HTTP URI

❑ Document-style SOAP: messages as XML-based documents

that have to be processed

❑ Possibility of different protocol bindings, but definitely

the most used one is HTTP, utilization of POST method

(employed more as transport protocol, while ignoring its

application semantics)

❑ In mobile environments, where HTTP is sometimes the only protocol

practically usable because of firewalls and NAT, this use/misuse of

HTTP could be considered as legitimate and become largely

adopted…

❑ Also specification for binding to email and XMPP

53

Discovery and Session – Mobile Systems M 54

Messaging Examples:

Representational State Transfer (REST)

REST is substantially a solution architectural style,

Resource Oriented Architecture (Roy Fielding, UCI PhD

Thesis, 2000)

To promote client-server and stateless interaction,

oriented to the usage of caching opportunities, also

with possibility of code-on-demand to clients

Any resource has a persistent identifier; idea to

transfer NOT resources but their representations via

HTTP protocol

Constraint: exchange of self-descriptive messages (languages for

representation, negotiation of supported modes, …)

54

Discovery and Session – Mobile Systems M 55

Messaging Examples:

Representational State Transfer (REST)

Locator = HTTP URI

Three types of metadata included in HTTP headers:

❑ Resource metadata – about resources, e.g., timestamp about last

modification

❑ Representation metadata – about transferred representation, e.g., its media

type

❑ Control metadata – about message, e.g., its length and caching possibility

Notable example: RESTful Web services

RESTful Web service as a simple Web service implemented by using HTTP

and REST principles, thus resource collection with 3 well-defined

aspects:

❑ URI base for service, e.g., http://example.com/resources/

❑ Internet media type for data used in the service (usually JSON or XML)

❑ Set of service operations supported via HTTP method invocations (e.g.,

via POST, GET, PUT or DELETE)
55

Discovery and Session – Mobile Systems M 56

Messaging Examples:

Representational State Transfer (REST)

Notable example: RESTful Web services

Examples of today’s REST usage:

❑ Majority of Web blogs (download of XML files in RSS/Atom format,

which contain links to other resources)

❑ Simple Storage Service (S3) by Amazon.com

❑ OpenStreetMap (REST interface)… and many many others

56

Resource GET PUT POST DELETE

URI for resource

collection, e.g.,
http://example.com/re

sources/

To list all collection

members

To replace

the whole

collection

To create a new

element to be

inserted in the

collection

To remove

the whole

collection

URI for single

element, e.g.,
http://example.com/re

sources/ef7d-xj36p

To obtain the

representation of the

targeted element,

espressed in the

appropriate Internet

media type

To replace or

create an

element of

the

collection

To consider the

element as a

collection and to

create a new

element

internally to it

To remove

an element

from the

collection

http://example.com/resources/
http://example.com/resources/ef7d-xj36p

Discovery and Session – Mobile Systems M 57

Messaging Examples:

Representational State Transfer (REST)

Discovery and Session – Mobile Systems M 58

Event Management and

Publish/Subscribe Systems

❑ Event delivery from publishers to subscribers

➢ Events as messages with content

➢ One-to-many, many-to-many (traditional message systems are queue-

based and one-to-one)

➢ Often implemented based on messaging systems and on store-

and-forward solutions

❑ Comm. paradigm of frequent usage, in particular in mobile systems

➢ Decoupling in space and time

❑ Event system as logically centralized system

➢ Anonymous communication

➢ Possibility to use filters (on headers or entire messages)

➢ Basic primitives: subscribe, unsubscribe, publish, also with filters

❑ Different topologies for routing and different semantics associated

to event sending/notification

❑ Associated operations are typically non-blocking (polling, callback)

58

Discovery and Session – Mobile Systems M 59

Notification

Consumer

Notification

Engine

Subscription

Manager

Subscriber

Notify

Publisher

Situation

Receives

notifications

Subscriptions

Notifies

message

instances

Executes matching

and sends

notifications to

proper consumers

Handles

subscriptions

under publisher’s

delegation

Subscriptions

Pub/Sub Service

59

General Architecture for

Publish/Subscribe Systems

Discovery and Session – Mobile Systems M 60

Event Router and Topologies

Event router or broker
❑ Works as mediator (decoupling) between publishers and subscribers

❑ Usage of routing table (also with filters) for local event dispatching or

to indicate to which «near» router to forward in the case of distributed

brokers (to achieve scalability, reliability, and high availability)
❑ Filters may be also based on content => content-based routing

❑ Other non-functional requirements: notification within time deadlines (bounded

delivery time), QoS, fault-tolerance, ordering (causal order, total order)

Possible router topologies:

❑ Centralized

❑ Hierarchical (notifications always sent to master, i.e., root of the distribution

tree)

❑ Cyclic, acyclic (peer-to-peer, cyclic allows redundancy but need of minimum

spanning tree techniques to prevent from cycles)

❑ Based on rendez-vous point (special router that works as rendez-vous,

typically for pre-determined types of events)

Partially related: have you ever heard of Distributed Hash Tables (DHTs)?

Discovery and Session – Mobile Systems M

Interest Propagation

and Subscriptions

One of the primary functions of a router is to propagate

notifications to near routers that are interested in that

event. To this purpose, how to propagate interests and subscriptions?

Properties to be achieved: reduced forwarding overhead, high

performance, fast support to variations

❑ Simple routing: any router knows all subscriptions in the global

systems (subscription flooding), possibly with optimization of NO

forwarding if subscription message has been already circulated

❑ Covering-based routing: forwarding of only the more general

subscription filters (which possible issues with unsubscription?)

❑ Merging-based routing: it allows to merge different entries in

routing table for the sake of table size optimization (usually combined

with covering, here also unsubscription issues)

Notifications are usually distributed over reverse paths (wrt

subscription paths)
61

Discovery and Session – Mobile Systems M

Decision about Message Routing

Depending on what is used to take message routing decisions,

classification into:

❑ Channel/topic-based: depending on the channel (usually named

channel) on which the event is published. Pub/sub agreement on the

channel name, also possibility of associated multicast address

❑ Subject-based: depending on event subject, single field of info

❑ Header-based: depending on a set of fields. For example, SOAP

supports header-based routing for its messages

❑ Content-based: possibly depending on the whole message

content. Higher expressive power, higher costs

Also context+content-based routing, particularly suitable for mobile

systems/services with event filters that are context-dependent

62

Discovery and Session – Mobile Systems M 63

Java Model for Distributed Events

Also Java has a built-in model for event distribution,
based on RMI, e.g., used in Jini/River

❑ Based on Remote Event Listener (consumers are registered
to receive given types of events from given objects, notify()
method)

❑ Remote Event object returned back during
notification (data, reference to source object, handback object,
unique identifier)

❑ Lease mechanism

❑ The specification includes possibility to define
Distributed Event Adaptors that implement filters and
QoS policies
➢ Idea to exploit handback object, returned by the event source, to

transfer state and behavior (e.g., to implement event filters)

63

Discovery and Session – Mobile Systems M 64

Java Model for Distributed Events

package net.jini.core.event;

public class RemoteEvent {

public long getID();

public long getSequenceNumber();

public java.rmi.MarshalledObject getRegistrationObject();

}

Events generated in local components may transfer even quite complex
object state. NOT distributed events: only info on how state
retrieval is possible at runtime

❑ Remote event as serializable object that can be transferred between
listeners

❑ Idea, “stolen” from Xt Intrinsics and Motif solutions: to register clients by
including handback objects, returned back with any event

For example, a Jini taxi driver subscribes to taxi bookings while passing through a
city area (handback includes location); when it receives an event, it can be
informed of old location (at the moment of registration)

Possibility to register other objects for notification delegation: in this case,
handback can work as “reminder” with info of subscribers (stock broker model)

64

Discovery and Session – Mobile Systems M 65

Java Model for Distributed Events

Event registration
Jini/River does NOT specify how to register listeners at event sources;

only specification to use a class as return value from subscription:
package net.jini.core.event;

import net.jini.core.lease.Lease;

public class EventRegistration implements java.io.Serializable {

public EventRegistration(long eventID, Object source,

Lease lease, long seqNum);

public long getID();

public Object getSource();

public Lease getLease();

public long getSequenceNumber();

}

Therefore, the developer of event source has to implement:
public EventRegistration

addRemoteEventListener(RemoteEventListener listener);

65

Discovery and Session – Mobile Systems M 66

Java Model for Distributed Events

Java model for local events work with objects that are all in the same
addressing space

Jini as community of distributed objects that cooperate through
proxies

For remote events, “inversion of proxy direction”
❑ For example, Jini client uses its proxy for service access and

through it registers itself as listener

➢ Need for a proxy method to add event listeners

❑ Proxy will invoke the “real” method for listener adding over the
discovered resource

❑ Invocation of registration of local event to proxy; invocation of
proxy for remote resource registration

As if real resource obtains a proxy for the client
to use in the notification chain

66

Discovery and Session – Mobile Systems M 67

OMG Distributed Data Service (DDS)

❑ OMG specification (neither based on CORBA nor highly

interoperable) for data distribution service designed for
real-time systems

❑ Specification defines APIs for so-called
publish/subscribe data-centric communication; in other
terms, DDS middleware offers abstraction of global data space that
is accessible to all interested applications

❑ Usage of combination of Topic objects and keys to
univocally identify instances within a datastream of the
same topic

❑ Support to content filtering and QoS negotiation

❑ Suitable for distributed propagation of signals, data, and
events

CORBA Event Service (NOT data-centric and with NO QoS support);

CORBA Notification Service (filters, QoS, but mandatory usage of CDR
and IIOP)

67

Discovery and Session – Mobile Systems M 68

Partitions are namespaces to allow the logical splitting of a DDS

domain

Publisher/Subscribers can decide at runtime (and NOT at instantiation

time as for JMS Topics) on which partitions to publish/subscribe data

Content Subscription:

DDS Partitions

For a DataReader to receive

messages from a DataWriter,

there is the need to share both

the same Topic and the same

partition

Partitions are considered to

enforce a QoS policy

Discovery and Session – Mobile Systems M 69

❑ To allow a Subscriber receiving publications from a Publisher,

QoS properties have to be compatible

❑ Protocol of Request/Offer negotiation

QoS Negotiation in DDS

QoS:Durability

QoS:Presentation

QoS:Deadline

QoS:Latency_Budget

QoS:Ownership

QoS:Liveliness

QoS:Reliability

DomainParticipantPublisher
Subscriber

DataWriter

DataReader

Requested

QoS
Requested

QoS
Offered

QoS

Requested

QoS
Requested

QoS
Requested

QoS
incompatible QoS

NON-established communication

DDS supports different modes for message sending (e.g., best-effort,

reliable) and personalized management of data persistence

Discovery and Session – Mobile Systems M 70

DDS identifies two QoS policies for message reliability:

❑ BEST_EFFORT – NOT guaranteed that all messages are received,

NOT guaranteed delivery order

❑ RELIABLE – guranteed that all messages are received and delivery

order. Via Publishers that re-send data to Subscribers if needed and via

Subscribers that send reception feedback (ack)

In reliable case, all sent messages are kept in a history queue while

waiting for being confirmed (publisher side) and processed by application

(subscriber side); queue size can be defined, through HISTORY policy

It is also possible to define how many resources (e.g., memory, max

instances) to use to maintain data, through RESOURCE_LIMITS policy

Quality as Reliability

Discovery and Session – Mobile Systems M 71

❑ Through Durability policy it is possible to define whether and how

many data to be maintained at publisher side in order to enable

their future successive request

❑ DDS supports 3 persistency types:

➢ VOLATILE – No Instance History Saved

➢ TRANSIENT – History Saved in Local Memory

➢ PERSISTENT – History Saved in Permanent storage

DomainParticipant
Publisher

DataWriter

Local
Memory

Durability=Transient

Durability=Persistent

Permanent
Storage

Quality as Durability

Discovery and Session – Mobile Systems M 72

DDS supports a wide set of other policies to define:

❑ Ordering of received messages (DESTINATION_ORDER -

BY_RECEPTION_TIMESTAMP, BY_SOURCE_TIMESTAMP – eventual

consistency, …)

❑ Message priority (LATENCY_BUDGET)

❑ Exclusiveness on some given data types (OWNERSHIP)

❑ Data authentication and security (USER_DATA)

❑ Time constraints on message sending/delivery rates

(TIME_BASED_FILTER)

❑ Fault detection and heartbeat (LIVELINESS)

More detailed technical documents at :

➢ Getting Started Guide

www.rti.com/eval/rtidds44d/RTI_DDS_GettingStarted.pdf

➢ RTI DDS User’s Manual

www.dre.vanderbilt.edu/~mxiong/tmp/backup/RTI_DDS_UsersManual.pdf

DDS Quality: Additional Policies

Discovery and Session – Mobile Systems M

General Event

Notification Architecture (GENA)

As already stated, used primarily in

UPnP

❑ Control point is listener of

modifications of device state

➢ 0 obtains address

➢ 1 discovers device

➢ 2 determines XML descriptor

▪ Obtains URL for eventing

➢ 4 registers itself

Extreme simplicity:

Notification sending/reception via

HTTP over TCP/IP or multicast

UDP

UPnP vendorUPnP vendorUPnP vendor

UPnP ForumUPnP ForumUPnP Forum

UPnP Device ArchitectureUPnP Device ArchitectureUPnP Device Architecture

IPIPIP

HTTPHTTPHTTP
GENAGENAGENA

TCPTCPTCP

UPnP vendorUPnP vendorUPnP vendor

UPnP ForumUPnP ForumUPnP Forum

UPnP Device ArchitectureUPnP Device ArchitectureUPnP Device Architecture

IPIPIP

HTTPHTTPHTTP
GENAGENAGENA

TCPTCPTCP

Discovery and Session – Mobile Systems M

GENA: Subscription

Control point has to register itself before being able to receive any event

Device accepts subscription: it immediately sends a special event (initial) to

control point with the value of all state variables

SUBSCRIBE publisher path HTTP/1.1

HOST: publisher host:publisher port

CALLBACK: <delivery URL>

NT: upnp:event

TIMEOUT: Second-requested subscription duration

HTTP/1.1 200 OK

SID: uuid:subscription-UUID

TIMEOUT: Second-actual subscription duration

Discovery and Session – Mobile Systems M

GENA: Notifications

When a state variable changes value at a device:

NOTIFY delivery path HTTP/1.1

HOST: delivery host:delivery port

CONTENT-TYPE: text/xml
NT: upnp:event

NTS: upnp:propchange

SID: uuid:subscription-UUID

SEQ: event key

<e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">

<e:property>

<variableName>new value</variableName>

</e:property>

Other (possible) names of variable and associated values

</e:propertyset>

Discovery and Session – Mobile Systems M 76

Web Services Event&Notification

Two key mechanisms to implement pub/sub for Web
services: WS-Eventing and WS-Notification
(standardization in 2006)

❑ WS-Eventing is the specification of protocol with which
Web services have to make/accept registrations for
event notification
➢ Mechanisms to create/remove subscriptions

➢ Mechanisms to define expiration time and to allow renewal

➢ Support to filters (different languages for filter definition may be
used)

❑ WS-Notification is the specification to allow Web
services to disseminate data to other Web services
➢ Also possibility of organizations oriented to interests (called

topics) and interest-based filtering

➢ Distributed topologies for notification brokers

76

Discovery and Session – Mobile Systems M 77

Web Services Event&Notification

77

Possible subscription

from third parties

(direct, with NO

broker)

More usually, subscription

through broker for

better decoupling

Discovery and Session – Mobile Systems M

Programming Example of

WS-Event&Notification

For example, how to implement WS subscriber by using IBM WebSphere:

❑ As usual, need to obtain WSDL file for notification broker and subscription

manager services (resp. NotificationBroker.wsdl and SubscriptionManager.wsdl)

❑ If not yet available at client, need to execute wsimport to generate client stub

❑ Look up at notification broker (need for reference to notification broker service)

❑ Instantiation of subscription request object and configuration of

consumer reference

❑ Instantiation of subscribe object to include subscription details, like reference to

notification consumer

import org.oasis_open.docs.wsn.b_2.Subscribe;

import javax.xml.ws.wsaddressing.W3CEndpointReference;

import javax.xml.ws.wsaddressing.W3CEndpointReferenceBuilder;

// Crea oggetto subscription request. DEVE contenere

// ConsumerReference e PUO’ includere filtro, InitialTerminationTime

// e SubscriptionPolicy

Subscribe subscribeRequest = new Subscribe();

W3CEndpointReference consumerReference = new

W3CEndpointReferenceBuilder().address(consumerURI).build();

subscribeRequest.setConsumerReference(consumerReference);

78

Discovery and Session – Mobile Systems M

Definition of topic expression as registration filter

It is possible to associate a Filter object to registration request to indicate which

events are relevant (filter based on topic, message content, or both). For

example, topic-based filter (with IBM helper classes):

import com.ibm.websphere.sib.wsn.jaxb.base.FilterType;

import com.ibm.websphere.sib.wsn.jaxb.base.TopicExpressionType;

// To prepare the topic expression

topicExpression = topicNamespacePrefix + ":" + topicExpression;

TopicExpressionType topicExpressionType = new TopicExpressionType();

topicExpressionType.setExpression(topicExpression);

// To specify mapping from namespace prefix to topic namespace URI

topicExpressionType.addPrefixMapping(topicNamespacePrefix,

topicNamespace);

// To specify dialect TopicExpression to use

topicExpressionType.setDialect(topicDialect);

// Filter instantiation

FilterType filter = new FilterType();

// To add expression to filter and needed configuration

// subscribe with filter

filter.addTopicExpression(topicExpressionType);

subscribeRequest.setFilter(filter);

Programming Example of

WS-Event&Notification

79

Discovery and Session – Mobile Systems M

Specification of registration duration and request sending

Two modes to specify expiration time for registration:

1) namespace URI and Qname objects

2) Helper factory = JAXB ObjectFactory

import javax.xml.bind.JAXBElement;

import javax.xml.datatype.DatatypeFactory;

import javax.xml.datatype.Duration;

// Option 1: Duration specification (one year from now)

DatatypeFactory factory = DatatypeFactory.newInstance();

Duration duration = factory.newDuration(”1Y”; JAXBElement<String>
initialTerminationTime = new JAXBElement<String>(

new QName("http://docs.oasis-open.org/wsn/b-2",

"InitialTerminationTime"), String.class, duration.toString());

// Option 2:

org.oasis_open.docs.wsn.b_2.ObjectFactory objectFactory = new org.
oasis_open.docs.wsn.b_2.ObjectFactory();

initialTerminationTime = objectFactory.createSubscribeInitial-
TerminationTime(duration.toString());

subscribeRequest.setInitialTerminationTime(initialTerminationTime);

org.oasis_open.docs.wsn.b_2.SubscribeResponse

subscribeResponse = port.subscribe(subscribeRequest);

Programming Example of

WS-Event&Notification

80

