
Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 11

Mobile Systems M

Alma Mater Studiorum – University of Bologna

CdS Laurea Magistrale (MSc) in

Computer Science Engineering

Mobile Systems M course (8 ECTS)
II Term – Academic Year 2021/2022

05 – Mobile Middleware Principles

and Android

Paolo Bellavista

paolo.bellavista@unibo.it

http://lia.disi.unibo.it/Courses/sm2122-info/

mailto:paolo.bellavista@unibo.it
http://lia.disi.unibo.it/Courses/sm1920-info/

Development/Runtime Platforms – Mobile Systems M

Mobile Middleware

Managing many aspects (in particular mobility), not

strictly application-specific, is a complex problem. For

instance, mobility of:

❑ Nodes

❑ Networks

❑ Transport connections

❑ Session

❑ Objects (passive, active)

❑ Services

❑ Users

Several solutions are needed, at multiple levels (link, network,

transportation, application) and cross-layer

Mobile middleware solutions to indicate all support

solutions typically positioned from OSI level 4 to upper

2

Development/Runtime Platforms – Mobile Systems M

Middleware

“Pop” and largely employed term, sometimes also in a

partially imprecise way

❑ A possible definition:

➢ “A set of service elements above the operating system and

the communications stack”

❑ An alternative definition:

➢ “Software that provides a programming model above the

basic building blocks of processes and message passing”

(Colouris, Dollimore, Kindberg, 2001)

❑ We define it as support software stack, typically

cross-layer and application-agnostic, which targets

issues and challenges at OSI levels >= 4

3

Development/Runtime Platforms – Mobile Systems M

Why the Need of Middleware?

❑ Development of distributed apps as

complex and time-consuming

process

➢ Any developer has to code from scratch

his/her protocols for naming services,

transactions, ...?

➢ How to manage the unavoidable

heterogeneity of execution ens?

❑ Need of middleware

➢ To reduce development time and to favour

rapid prototyping

➢ To simplify application development and

thus reducing the costs

➢ To support heterogeneous envs., by

partially masking differences at

hardware/OS/app levels

divergence

convergence

diverse physical layers

diverse applications

transport layer (TCP/IP)

hourglass model

4

Development/Runtime Platforms – Mobile Systems M

Mobile Middleware

Middleware is traditionally designed, implemented, and

optimized for fixed network hosts

❑ Large bandwidth, low latency, reliable communications

❑ Persistent storage, good computing capabilities, no constraint

associated with energy consumption

❑ No mobility

Mobile systems call for novel middleware solutions

❑ Existing middleware is not suitable for resource-limited devices and

sometimes exhibits limited scalability

Mobile middleware goals:

❑ fault-tolerance, adaptiveness, heterogeneity

support, scalability, resource sharing

5

Development/Runtime Platforms – Mobile Systems M

Mobile Middleware

Mobile middleware

❑ Context dynamically changes

❑ Need of decoupling in space and in time

➢ Asynchronous events, spaces for data sharing

❑ Basic approach in many cases of wireless computing

➢ Adoption of proxies

❑ In addition, provisioning of some level/degree of

visibility of running conditions to lower layers

(sometimes reflective middleware)

➢ Transparency to location in RPC/RMI

➢ In mobile envs, partial visibility of location change,

modifications in the QoS levels currently available, ...

6

Development/Runtime Platforms – Mobile Systems M

Not only mobile... Internet Principles

❑ End-to-End Principle
➢ In its origin expression, referred to the opportunity to maintain

state and intelligence only on network borders (edges)

➢ Internet connects these edges without keeping state, in order
to achieve maximum efficiency and simplicity

➢ Today in real scenarios: firewalls, Network Address Traversal,
caches for Web content. These are relevant modifications to this
general principle

➢ Towards Trust-to-Trust principle (application logics always run
on trusted nodes?)

❑ Robustness Principle
➢ “Be conservative in what you do, be liberal in what you accept

from others” (attributed to Jon Postel, RFC 793 TCP)

➢ Internet stack developers should be careful in respecting what
specified in existing RFCs when they implement their
functions, but be ready to process less rigidly and to accept
non-compliant input from others (even non-compliant with
existing RFCs)

7

Development/Runtime Platforms – Mobile Systems M

Not only mobile... Web Principles

Web principles follow the guidelines of the ones at the basis of the
underlying TCP/IP stack

❑ Simplicity, modularity, decentralization, and
robustness

In particular, about access, data representation, and data transformation
for Web resources:

❑ Principle of application of least powerful language to
implement any feature (maximum accessibility and URL
mechanism)

Central and recognized problem is state maintenance for

stateful interactions. For instance, Representational State Transfer

(REST- see later), based on URIs, HTTP, XML

➢ Client-server, stateless, cacheable, layered

➢ Uniform interface to transfer state between client and

resource (limited set of well-defined operations, possibly using

code on demand)

8

Development/Runtime Platforms – Mobile Systems M

Not only mobile... SOA Principles

Service Oriented Architecture (SOA) as the sw

architecture where features and functions are

structured around business processes and

implemented via interoperable loosely-coupled

services. Strongly based on message-oriented

communications

❑ Re-usability, granularity, modularity, possibility of dynamic

composition, component-based organization, interoperability

❑ Compliance with standards

❑ Identification and classification in terms of categories of services,

provisioning and delivery, monitoring and tracking

9

Development/Runtime Platforms – Mobile Systems M

Specific Principles for Mobile:

Cross-Layering

Different types of interaction for different ways of cross-
layering in a protocol stack

❑ Upward info flow, with info propagated from lower to higher
layers, in opposite to classical principles for layered architectures

❑ Downward info flow, with info propagated from higher to lower
layers, typically to configure lower-layer parameters and settings

❑ Back-and-forth info flow, with info propagated in both
directions

❑ Merging of adjacent layers, allows the combination of different
adjacent layers into a single super-layer

❑ Coupling with no addition of new interfaces. Two or more layers are
coupled at design time in a finalized way, with no possibility of
maintaining independency/abstraction from lower layer

❑ Vertical calibration between layers. Usually to achieve layers-
joint optimization of the configuration of parameters (joint tuning) and
to obtain better overall performance

10

Development/Runtime Platforms – Mobile Systems M

Layer X

Designed for X

Upward information

flow

Downward

information flow

Back and forth

flow

Merging of

adjacent layers
Design coupling Vertical coupling

11

Cross-Layering Principle

Development/Runtime Platforms – Mobile Systems M

Not only mobile... Architectural Patterns

Several architectural patterns of general applicability and
usage, not only in distributed systems:

❑ Level-based. Multi-layer sw architecture with different
responsibilities “rigidly” allocated to different layers

❑ Client-Server. Most frequent pattern in distributed computing:
clients use resources and services offered by server

❑ Peer-to-peer. Any node can dynamically play the role of either
client or server; functionality could be more or less symmetric

❑ Pipeline (or pipe&filter). Pipeline as chain of processing elements
aligned in such a way that output of one is offered as input for the
successive one in the chain

❑ Multi-tier. Client-server architecture where applications are run by a
multiplicity of different software agents

❑ Blackboard. A common knowledge base (blackboard) is updated
iteratively by different knowledge sources, starting from including
problem specification and then evolving to solution results

❑ Publish/Subscribe. 1) Event channel and 2) Notifier (abstracting
from location/distribution of broker)

12

Development/Runtime Platforms – Mobile Systems M

Patterns for Mobile Computing

Three pattern categories for mobile middleware and

applications:

❑ For distribution (how to distribute and access

resources in runtime execution environment)

➢ remote facade, data transfer object, remote proxy, observer

❑ For resource management and synchronization

➢ session token, caching, eager acquisition, lazy acquisition,

synchronization, rendezvous, state transfer

❑ For communication

➢ connection factory, client-initiated connection

13

Development/Runtime Platforms – Mobile Systems M

Distribution: Remote Facade

❑ Coarse-grained interface towards
single or multiple fine-grained
objects

❑ Interface provided via remote
gateway

➢ Accepts incoming requests that
are compliant with facade
interface

➢ Successive interactions are
fine-grained between remote
facade (gateway) and object
interfaces

❑ Application adopting the pattern
does NOT need to know which
specific remote servers or functions
are used to implement the
requested operations

Remote

Facade

Map

Web

Services

Addresses

Coordinates

Coordinates

Routes

Route Segment

Direction

Route Segment

Highlighted map

Fast fixed-networkLast hop

wireless network

Addresses

Directions

and maps

Mobile

Device

14

Development/Runtime Platforms – Mobile Systems M

Distribution:

Data Transfer Object (DTO)

Data Transfer Object (DTO) pattern to offer a serializable

container to transfer multiple data elements among

distributed processes

❑ Primary goal is to reduce the number of remote

method calls

❑ Single DTO contains all the data that have to be transferred

because of interest for an overall application

❑ Usually implemented as a simple serializable object

that includes a set of fields with the corresponding

”getter & setter” methods

15

Development/Runtime Platforms – Mobile Systems M

Distribution: Remote Proxy

❑ Proxy (or gateway) interposed

between device and network

By the way ☺, it is clear the difference between

proxy and gateway, isn’t it?

❑ All messages/packets (or a selected

subset of them) pass through the proxy,

which can evaluate them (also their

content) and perform operations on

them

❑ Proxies also to perform computationally

intensive operations in place of client device

❑ Proxy works as an adapter, by also enabling

server-side interaction with no need of

implementing terminal-specific protocols

and solutions

❑ Typically need for discovery solutions to

identify proxies at runtime

Client

Web

Browser

Server

HTTP

Server

CGI,..

Gateway

Encoders

Decoders

encoded

request

encoded

response

request

response
Protocol

Gateways

wireless

16

Development/Runtime Platforms – Mobile Systems M

Distribution: Observer

Supports definition of one-to-many dependencies between

objects

❑ All objects that are considered ”dependent” are notified at the occurrence

of modifications of the state of objects ”under observation”

❑ Decoupling via subject and observer

❑ Support to group-oriented communications, but limited scalability

❑ Adopted in Java and Jini event models

ObserverSubject

ConcreteObserverConcreteSubject

Update observers

Attach/detach observer

Subject getState

17

Development/Runtime Platforms – Mobile Systems M

Resource Management:

Session Token

Makes simpler and more lightweight the duties and

requirements for server-side state management

❑ Token emitted by server and sent to client (it includes

data referring to the active session of the client with that server)

❑ Token includes session identifier (sometimes also related

security info and time-to-live in order to avoid replay attacks)

❑ When client presents again the token to server, the

server can correctly associate the client to its proper

session (stato, …)

By the way, in which technologies have you already seen the

application of such a solution pattern?

18

Development/Runtime Platforms – Mobile Systems M

Resource Management: Caching

Suggests temporary storage of resources in local memory

after their employment, instead of their immediate

destruction or de-allocation

❑ First, local check in resource cache, whenever a new request for

resource/service is received

❑ If cache hit, immediate delivery to requesting application

❑ If cache miss, request is propagated and new entry created in cache

Examples of file systems, such as Coda and Aura, for pervasive computing

ResourceUser

Resource

ResourceCache

ResourceProvider

Access

Access

ResourceProvider provides

Resource

19

Development/Runtime Platforms – Mobile Systems M

Resource Management:

Eager Acquisition

❑ If needed resources are known by an application from the

beginning, possibility to exploit this info to operate pre-

fetching of required resources

❑ Result is that resources are already available locally

when actual need will occur; no necessity of remote

requests

➢ Examples of resources such as memory, network connections, file

handlers, threads, and sessions

ResourceUser
ProviderProxy

ResourceProvider

Resource

20

Development/Runtime Platforms – Mobile Systems M

Resource Management:

Lazy Acquisition

To optimize system resource usage, this pattern suggest to

postpone resource acquisition till the end (latest possible

time)

❑ Resource Proxy is responsible for intercepting all user requests for

resources

❑ Resource Proxy does NOT acquire resources, transparently, until the

user does not access them explicitly

ResourceUser
ResourceProxy

ResourceProvider

Resource

21

Development/Runtime Platforms – Mobile Systems M

Synchronization

To efficiently manage multiple instances of data for a set of devices, this pattern

suggests to realize and use a synchronization engine

❑ Sync engine keeps track of modifications made on employed data,

by exchanging modification metadata transparently (coordination of

different engines) and by updating data when appropriate, e.g.,

connectivity is available

❑ Sync engine responsible for conflict detection and resolution

during sync process

❑ Possibility to access stale data and conflicts

Terminal Host

Synchronization

engine

Synchronization

engine

Data Data

22

Now, small :-)

lecturing time about

sync at data level

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M

Synchronization at Data Level:

Traveling Salesman Scenario

Customer A Customer B Customer C

Company

Central DB

Itinerary covering

clients to visit

Mobile Device

Local DB

Mobile Device

Local DB

Also possibility of

temp disconnection

Mobile Device

Local DB

23

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M

Synchronization at process level Synchronization at data level

Data item 1

Process A Process B

Process A

Process B

Data item 1

Data item 1

System BSystem A

Main? System

Process Process

Data Item 1 Data Item 1

Data Item 1

time

time

sync

changes

changes

changes

changes changes

24

Two Primary Types of

Possible Synchronization

detection

sync

sync

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M

Sometimes it is possible to merge

data during synchronization

System A

Main? System

Stock: 100

Order with

50 items

Stock Product A: 100

System B

Order with

25 items

Stock Product A: 100

System A

Main? System

Stock: 25

Stock Product A: 50

System B

Stock Product A: 75

Order: 50 Order: 25

Apply changes in

sync phase
Disconnected

operations

Insert order,

reduce stock

Insert order,

reduce stock

No conflicts in this case; always true?

25

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M

Synchronization:

Basic Models and Elements

Until an efficient implementation of the ideal concept of mobile cloud
computing will not be available, seamlessly and with low cost,
relevance of disconnected operations and
synchronization in a second step/phase

Apart from joking ☺, costs (in terms of money, energy, …) + connectivity
bandwidth + discontinuous connectivity push towards
disconnected operations and replicas/copies
management

Freedom degrees in synchronization:

❑ When to launch sync operations

➢ Manual vs automated trigger

See also similar problems in more traditional distributed replication

❑ How to synchronize (sync styles)

➢ Pessimistic – single modifiable copy; synchronization as
replication of the single modified instance

➢ Optimistic – multiple copies may be modified; in a second step,
trying to reconcile already performed modifications

With which costs?

26

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M

Often used basic mechanism: versioning
Different possible solutions; in general, open issue on how to do

versioning to improve sync process according to optimistic approach

Usually simple versioning mechanisms satisfy the following properties:

❑ If version B comes from a change in A, then version B is greater than
version A

❑ If two copies have been concurrently modified in different locations,
then version numbers are NOT comparable

 Linear sequence of versions at each single location; anyway
possibility to detect concurrent modifications

Two phases (in addition to update propagation):

❑ Change detection (clean or dirty copies, also with conservative
approach)

❑ Reconciliation (need to consider syntax and semantics of data)
➢ Log with modification operations – reconciliation as processing of

overall log, which starts from the last common version before change

➢ State comparison – it operates directly on changed data

27

Synchronization:

Basic Models and Elements

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M

Synchronization

In realistic cases, always synchronization as a process

between ONLY two nodes that keep data copies

❑ Centralized architecture with one node playing the role of master

for each data instance

❑ Tree-based architecture (sync between node and its single parent)

❑ More general architecture as cyclic connected graph (greater

flexibility but more complex management: e.g., which previous

versions to consider for state comparison?)

Rarely used in nowadays’ sync systems

Reconciliation algorithms may benefit from knowledge of the nature

(e.g., structure) of shared data

Growing reconciliation capabilities while passing from opaque info,

to known structure, to unique id also for data parts, to known

semantics, and finally to application-specific solutions

28

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M

A couple of notable examples

File systems (e.g., Coda, just to mention one of the oldest):

Do you know the technical difference and distinction between

Networked File System (NFS) and Distributed File System (DFS),

don’t you?

❑ Typically DFS work on consistency for folder tree, not at the level

of data content for each file (delegated to an external synchronizer

plug-in); often requests for explicit intervention by user

❑ Similarly to consistency management for an XML tree

Do you know the ancestor tools diff and patch in Unix?

Or more refined and sophisticated examples of tools, such as rsync?

29

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M

A couple of notable examples

Concurrent Versions Systems (CVSs) for collaborative work,

usually for sw development:

❑ First trivial versions with centralized server that releases a lock to a

single participant at a time; NO need for reconciliation

❑ Now generally optimistic approach and centralized architecture:

3-way merge algorithm; conflict detection and possible request

for user intervention

❑ Even first non-centralized approaches, with exploitation of change

sets (each of them atomic and with unique id): synchronization as

ordered and completed application of all change sets

… or for example in mobile systems, Synchronization Markup

Lamguage (SyncML) for mail/db synchronization

30

Development/Runtime Platforms – Mobile Systems M

Synchronization: Rendezvous

Rendezvous as frequently used pattern in network

infrastructure elements (but not only) to realize

management of mobile devices

❑ In general, rendezvous as a pattern to allow two or more entities

to coordinate their activities

❑ Typically implemented in distributed systems via rendezvous points

➢ Entities that are logically centralized (indirection points)

➢ Accept messages/packets and keep state, thus being able to

respond, e.g., on where a mobile device is currently located

Examples: DNS, Mobile IP, HIP, ...

Client A Rendezvous Client BUpdate data Lookup data

Access client A

Either through Rendezvous or directly
31

Development/Runtime Platforms – Mobile Systems M

Resource Management & Synchro:

State Transfer

❑ As you already know,

different types of

handoff are possible

❑ Handoffs may need

state transfer between

APs

❑ Exploitaton of

indirection point

(rendezvous) to ensure

reachability

32

Old AP New AP Rendezvous Correspondent nodeClient

Old AP is the

current point

of attachment

Attach to a new AP

Update location

Teardown old attachment

Lookup client

Send message

Forward message

Development/Runtime Platforms – Mobile Systems M

Communication: Connection Factory

Suggests decoupling application and underlying

communication system via introduction of a

component used to instantiate, access, and

terminate connections

❑ The factory design pattern is widely used; in this case, it is employed

to enable the efficient management and re-use of connections

❑ Largely used in the Java world in general. APIs for Java ME

communications adopt this pattern

33

Development/Runtime Platforms – Mobile Systems M

Communication:

Client-initiated Connection for Push Model

❑ In many cases it is

impossible to reach a

mobile client due to

firewall/NAT along the

communication path

❑ These issues motivate the

usage of client-initiated

connections to a server

with public IP address that

then can operate message

push towards client by

using existing connection

Examples: MS DirectPush,

AJAX

Client Edge Proxy Server

Initiate connection

Send message

Forward

message

Lookup service

Update client status

Lookup client

Associate message with connection

34

Development/Runtime Platforms – Mobile Systems M

Communication:

Multiplexed Connection

❑ Inefficient to create many
connections that may compete
for network/system resource
consumption

❑ Multiplexed Connection uses
a single logical connection
and multiplexes it to support
multiple connections at a
higher abstraction level

❑ Allows differentiated priorities
to multiplexed messages

Example: Stream Control
Transfer Protocol (SCTP)

Multiplexer Demultiplexer

Connection N

Connection 1

Connection N

Connection 1

Single connection

35

Development/Runtime Platforms – Mobile Systems M

Smartphone Platforms…

What is

And how should it be structured

a development/runtime platform to support

mobile applications over mobile nodes such as

smartphones?

36

Development/Runtime Platforms – Mobile Systems M 37

Overview on

Development/Runtime Platforms

Many solutions have been proposed in the literature for

development/runtime support of mobile systems

middleware and applications. Why? Because in the past:

❑ Heterogeneity and fragmentation

❑ Market-driven choice

❑ Very heterogeneous and differentiated characteristics

of available devices, “platforms”, and app requirements

Plethora of solutions: Symbian, Palm, RIM, Maemo/Meego, iOS,

Android, Java Mobile Edition (J2ME), .NET Compact Framework (CF),

Python, Lazarus, Brew, Flash Lite, Web runtime environment (micro-

browser, HTML5, XHTML/CSS, JavaScript, Mobile Ajax, …), …

Let’s try to put in order…

Which involved layers?

Development/Runtime Platforms – Mobile Systems M 38

❑ Operating system layer (e.g., is Android an operating system?)

❑ Runtime execution support layer (frameworks,

containers, virtual machines, …)

❑ Development support layer - SDK (libraries, support

components, containers, …)

Again, layers with NO clear borders and NOT easily disjoint…

❑ Mainly at OS layer: Symbian, Palm, RIM (BlackBerry),

Maemo/Meego, iOS, Linux?, …

❑ Mainly at runtime execution support layer: Kernel-based Virtual

Machine (KVM) or Dalvik Virtual Machine for Java, Common Language

Runtime (CLR) for .NET, Flash Lite, Web runtime environment

Overview on

Development/Runtime Platforms

Development/Runtime Platforms – Mobile Systems M 39

Generally speaking, for the smartphone market segment,

Two primary approach categories:

❑ Based on native applications

❑ Based on Web integration (in particular, see standardization

efforts associated with HTML5)

Let us start with the first approach (native applications),

by choosing to focus primarily on Android

and only rapidly and superficially on iOS

Overview on

Development/Runtime Platforms

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 40

Android: Architecture

Classical hierarchical architecture, structured into layers
(growing complexity from bottom to top)

Layers:

❑ Linux kernel

❑ Libraries (native Linux)

+ Android runtime

(Dalvik VM + core

libraries)

❑ Application

Framework

❑ Applications

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 41

Android: Architecture

Kernel Layer
❑Based on traditional Linux v3.x

kernel and evolutions
❑ It introduces Hardware

Abstraction Layer (HAL)

Libraries
❑ in native language (C/C++)

Android Runtime
❑Execution environment for

applications, written in Java
❑Based on Dalvik VM / Android

Run Time (ART)

Application Framework
❑ It provides applications with

advanced services,
encapsulated in Java objects,

Application
❑Core Apps: provided by the

«initial» onboard system
❑Developers’ written apps…

Development/Runtime Platforms – Mobile Systems M

Android:

Elements about Version Evolution

Ice Cream Sandwich 4.0.1 (October 2011)
❑Linux kernel 3.0.1; customizable launcher; "Contacts" app fully integrated
with main social network applications; Android Beam (data exchange via
NFC); Wi-Fi Direct, etc. etc.

Development/Runtime Platforms – Mobile Systems M

Android:

Elements about Version Evolution

Jelly Bean 4.1.1 (July 2012)
❑Linux kernel 3.1.10; new features for picture/video sharing via NFC;
advanced voice recognition; official end of the support of Adobe Flash,
etc. etc.

Kit Kat 4.4 (October 2013)
Support for 3 new types of sensors (geomagnetic rotation vector, step
detector and counter), added step counter feature; decreased battery
consumption during audio playing; Android RunTime (ART) and new
compiler, experimental in this version, that can be activated in Developers
Options (not on all devices); optimized working on devices with limited
RAM, …

Development/Runtime Platforms – Mobile Systems M

Android:

Elements about Version Evolution

Lollipop 5.0-5.1.1 (November 2014)
Introduction of Google Fit for physical activity; new Linux 3.10.x. kernel;
removal of Dalvik runtime, that is officially replaced by ART; native 64
bit support; Bluetooth 4.1; improvement of graphical performance thanks to
OpenGL ES 3.1 support; improvement of camera support thanks to
dedicated APIs; added multi-user features on smartphones; …

Marshmallow 6.0 (October 2015)
Doze mode, with CPU speed reduction when display is switched off; native
support to fingerprint readers; Direct Share for sharing among apps;
request of post-install/run-time permissions; USB Type-C support;
support to External storage to make it uniform to Internal Storage; MIDI
support for music instruments; experimental multi-window feature

Development/Runtime Platforms – Mobile Systems M

Android:

Elements about Version Evolution

Nougat «N» 7.1.2 (August 2016) – API 25
Ability to display multiple apps on-screen at once in a split-screen view;
support for inline replies to notifications; OpenJDK-based Java
environment; support for the Vulkan graphics rendering API; "seamless"
system updates on supported devices; …

Oreo 8.0 (August 2017) – API 26
Project Treble, i.e., modular architecture that makes it easier and faster for
hardware makers to deliver Android updates; multi-display support

Pie 9.0 (August 2018) – API 28
Experimental features (hidden within a menu called Feature Flags) such as
automatic Bluetooth enabling while driving; DNS over TLS; Vulkan 1.1 -
low-overhead, cross-platform 3D graphics and computing API

Android 10.0 (September 2019) – API 29
New permissions to access location in background; background apps can
no longer jump into foreground; support for the WPA3 Wi-Fi security
protocol; support for Notification Bubbles; allows core OS components
to be updated via Play Store, with no complete system update

Development/Runtime Platforms – Mobile Systems M

Android:

Elements about Version Evolution

Android 11.0 (September 2020) – API 30
New permissions to access location, camera, microphone, …, and more
constrained permissions also for background apps and apps not opened
for long; support for more isolation between different apps (it removes the
ability to see other installed apps and limits access to the local storage);
support for floating Bubbles; support for conversation-related system
notifications; contextual menu for smart devices control

Android 12.0 (October 2021) – API 31
Option to choose precise or approximate location; privacy dashboard;
performance improvements to system services to improve transitions,
power efficiency, and reduce app startup times

Development/Runtime Platforms – Mobile Systems M

Android versions distribution in 2021

47

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 48

Kernel Linux 3.x

Hardware Abstraction
Layer (HAL)

❑ Memory management

❑ Process management

❑ Network stack

❑ Standard Linux power
management

❑ …

48

Kernel extensions
❑ Ashmem: shared memory manager;

reference counting and automatic
deallocation by the kernel

❑ IPC binder: low overhead thanks to the
usage of Ashmem (rigid access discipline
via memory block descriptors)

❑ Advanced power management:
exploitation of different energy
management policies via WakeLocks

Android:

OS Kernel Layer

It is NOT a real complete Linux OS kernel. It lacks:
❑ Native window manager system

❑ Complete support to GNU C library

❑ Complete support to standard Linux utilities

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 49

Power Management

and WakeLocks

Evident example of cross-layering

Android apps (with permission to access Power Manager) can
achieve control of energy consumption by enforcing the
desired policy:

❑ Always active CPU, also with switched-off display

❑ Prioritary CPU with display that is at least backlit

❑ …

Via WakeLocks: access locks to the features of Power
Manager (different types of WakeLock). For instance:

… @Override

protected void onCreate(Bundle savedInstanceState) {

PowerManager pm = (PowerManager)
getSystemService(Context.POWER_SERVICE);

wl = pm.newWakeLock(PowerManager.FULL_WAKE_LOCK,
"DoNotDimScreen"); }

@Override

protected void onPause() { super.onPause(); wl.release(); }

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 50

Native libraries for
graphics and
multimedia

Dalvik VM
❑ designed for mobile devices: registry-based (exploiting the ARM

architecture). Instead, how is the traditional JVM organized?

❑ It interprets and runs dex files, obtained via transformation of class files

(30% reduction of necessary instructions and improvement of runtime perf)

❑ optimized support to garbage collection

Android:

Native Libraries and Dalvik VM

Surface Manager + Media Framework

3D Surface3D Surface3D Surface3D Surface

2D Surface2D Surface2D Surface2D Surface

SurfaceSurface
FlingerFlinger
SurfaceSurface
FlingerFlinger

FrameFrame
BufferBuffer
FrameFrame
BufferBuffer

Audio
Flinger

Audio Audio
FlingerFlinger

App App App App

CameraCamera

Camer
a

Service

Camer
a

Service

OpenCOREOpenCOREVorbisVorbis MIDIMIDI

Media
Player
Service

Media
Player
Service

Media
Recorder
Service

Media
Recorder
Service

Media Server

CameraCamera

Camer
a

Service

Camer
a

Service

OpenCOREOpenCOREVorbisVorbis MIDIMIDI

Media
Player
Service

Media
Player
Service

Media
Recorder
Service

Media
Recorder
Service

CameraCamera

Camer
a

Service

Camer
a

Service

OpenCOREOpenCOREVorbisVorbis MIDIMIDI

Media
Player
Service

Media
Player
Service

Media
Recorder
Service

Media
Recorder
Service

Media Server

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 51

Activity
❑ A single action that one user can
accomplish via a window (it
corresponds usually to a single
screen)
❑ It is the fundamental Android
component

➢ E.g., home activity

Intent
❑ Maximum reusability of activity
❑ Request to perform an operation
(e.g., choice of a phone number)
❑ Received by a component that has a
compatibile Intent Filter

Service
❑ Running in background (no
interaction with user, differently from
activity)
❑ Usable by 1+ components
❑ No dedicated process/thread in
background

Broadcast Receiver
❑ Responds to compatible Intents by
executing the associated operations
❑ Typically, notify actions (calls, sms
transmissions, …)
❑ Lifecycle is limited to the response
❑ Differently from activities and
services, multiple receivers can be
activated by a single intent

Android:

Application Framework

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 52

❑ Package and Activity Manager
Manage the lifecycle of Activities and apps, included in Android Packages (APK).
Each APK includes a descriptor (manifest), executable dex, and the associated
«static» resources (xml, png, …), according to a predefined file structure

❑ Window Manager and View System
Offer advanced graphics features that can be used directly in apps. View System is
based on the View class, and consists of GUI components that interact with user and
with event managers (no Java Swing, no AWT)

Applications

❑ Resource Manager and Content

Provider
Resource manager for any resource (all files except
for code) and shared access to local data (SQLite
RDBMS and persistence through files)

❑ Telephony, Notification, and Location
Manager

Allow to access functionality for telephony, notification,
and positioning

Android:
Application Framework

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 53

Core Applications

Real and regular apps (same execution model as for apps developed by

third parties and downloaded by users), pre-installed at default over an
Android device
➢ Home application (and associated activity): manager app frm which it

is possible to launch execution of other apps. Which threading model?

➢ Message management

➢ Client app for email

➢ Contact book

➢ Map management

➢ Web browser: WebKit browser engine

(open-source); used also in Safari and

Google Chrome

Only browser engine (HTML parser +

renderer + JavaScript engine)

Applications

Android:
Core Applications

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 54

Lifecycle Management of

Android Activities

❑Activity is the component for user

interaction
❑It extends the Activity Java class

❑In general, many activities are running

concurrently: the active one

(RUNNING) is only ONE. If visible but

not active, it is PAUSED, otherwise

STOPPED

❑For lifecycle management, it is

possible to redefine callback

methods OnCreate, OnStart,

OnResume,…

❑Activities use resources: an activity

may be deallocated due to resource

shortage → KILLED state

❑Android offers an info container

called Bundle, where to save the

state to be recovered at re-allocation

STOPPED

OnCreate()

OnStart()

OnResume()

RUNNING

a) New activity
b) Back button

OnPause()

PAUSED

Activity is no more
visible

OnStop()

OnDestroy()

INACTIVE

Activity comes
back in foreground

Activity comes
back in

foreground

OnRestart()

Resource
shortage

INACTIVE

(KILLED)

Activity comes
back in foreground

OnRestoreInstanceState(Bundle)

OnSaveInstanceState(Bundle)

B
u
n
d
le

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 55

Conversation Concept:

Android Task
One App may include several activities:

❑ Independent and disjoint

❑ Associated the one with the other

Activities are different from forms

❑ They should be simple

❑ They should be usable and reusable

→ there is the need to structure activities to

compose a more complex conversation

with user (as for Web pages)

A task models a conversation

❑ It includes an activity stack, also of

different apps: on top the only active

activity in the task

❑ Starting an activity pushes it on top of

the stack; closing it discards the activity

from the stack

❑ It may be in foreground or in

background

MyFirstProject

it.mypackage

process

MyActivity

App Dialer

Dialer process

Contacts

Dialer

…

MyActivity

Contacts

TASK

root activity

top of the

stack

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 56

Intent and Intent Filter

Activation of a component is triggered by an Intent
(usually to pass from an activity to the following one)

❑ explicit: component to activate is known at compile time; it needs
the Class descriptor of the component

❑ implicit: component to activate is NOT known at compile time; it
needs that the following data are specified

➢ action and category: they describe respectively action and type
of the component to activate for execution

➢ url: it specifies data to be processed by the activated component

➢ mime type: it specifies the data type used
Intent intent = new Intent(Intent.ACTION_VIEW);

intent.setData(Uri.parse(“http://www.unibo.it”));

Component is selected based on applicable Intent Filters (description of
which intents an activity can handle) that are declared in the manifest,
according to an algorithm of Intent Resolution

Intent repository on www.openintents.org

http://www.openintents.org/

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 57

Intent and Intent Filter

protected void onCreate(Bundle savedInstanceState) {

...

Intent intent = new Intent(); intent.setAction(MY_ACTION);

intent.addCategory(Intent.CATEGORY_ALTERNATIVE);

intent.addCategory(Intent.CATEGORY_BROWSABLE);

Uri uri = Uri.parse("content://it.mypackage/items/");

intent.setData(uri);

intent.setType("vnd.android.cursor.item/vnd.mytype");

startActivity(intent); ... }

<activity android:name="IntentActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.

LAUNCHER" />

<category android:name="it.mypackage.intent.

category.CAT_NAME" />

<data android:mimeType="vnd.android.cursor.item/

vnd.mytype" />

</intent-filter>

</activity>

Example

of

manifest

file

Development/Runtime Platforms – Mobile Systems M 58

Threading Model in Android

Each application has a single thread (at default) =>

simple single-threaded model (1 app: 1 thread)

❑ 1 app: 1 system thread “assigned” to the app: multiple activities

❑ Possibility to save the state in info bundle (not very different from

execution model of stateful session beans in J2EE)

❑ Each thread has a Looper for message queue management

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 59

Threading Model in Android

Two options: 1) to launch different apps in a single Dalvik VM (single

heavy process); 2) to have a single Dalvik VM (process) dedicated

to each single app

The default is the second option: any app is put in execution into a

separated VM (separated isolated process), also when triggered by

startActivity(intent) or startService(intent)

How is it possible? Which potential issues?

For instance, how to perform response return to the «invoking» activity?

startActivityForResult(Intent, int)

second parameter identifies the call

callback function onActivityResult(int, int, Intent)

If it is crucial to optimize system resource consumption, there is the need

to impose that different apps share the same userID

Android.sharedUserId=“PaoloBellavista” in manifest file

Which potential security issues?

Development/Runtime Platforms – Mobile Systems M

Android Scheduling

1. Foreground

2. Visible

3. Service

4. Background

Process level:

App A

App A

Foreground Thread Group

Background Thread Group

App B

App B

> 90%

< 10%

Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

60

Development/Runtime Platforms – Mobile Systems M

Asynchronous Techniques

❑ Thread

❑ Executor

❑ HandlerThread

❑ AsyncTask

❑ Service (already partially discussed)

❑ IntentService

❑ AsyncQueryHandler

❑ Loader

61

Development/Runtime Platforms – Mobile Systems M

Services for long tasks

Services are an advanced topic and considered complex

in Android

A service is an application component that can

perform long-running operations in the

background and does NOT provide a user

interface

❑ Network transactions

❑ Play music

❑ Perform file I/O

❑ Interact with a database

62

https://developer.android.com/reference/android/app/Service.html

Development/Runtime Platforms – Mobile Systems M

Main Characteristics of

Android Services

❑ Started with an Intent

❑ Can stay running when user switches applications

❑ Lifecycle—which developers have to manage

❑ Other apps can use the service—manage permissions

❑ Runs in the main thread of its hosting process

63

Development/Runtime Platforms – Mobile Systems M

“Forms” of Android Services:

started

❑ Started with startService()

❑ Runs indefinitely until it stops

itself

❑ Usually does NOT update the UI

64

Development/Runtime Platforms – Mobile Systems M

“Forms” of Android Services:

bound

❑ Offers a client-server interface that

allows components to interact with

the service

❑ Clients send requests and get results

❑ Started with bindService()

❑ Ends when all clients unbind

65

Development/Runtime Platforms – Mobile Systems M

Services and

Runtime Thread Model

❑ Although services are separate from the UI, they

still run on the main thread by default (except

IntentService)

❑ Offload CPU-intensive work to a separate

thread within the service

If the service can't access the UI, how do you update the

app to show the results?

Use a broadcast receiver!

66

Development/Runtime Platforms – Mobile Systems M

Foreground Services

Run in the background but require that user is actively

aware it exists—e.g. music player using music service

❑ Higher priority than background services since user

will notice its absence—unlikely to be killed by the

system

❑ Must provide a notification which the user cannot

dismiss while the service is running

67

Development/Runtime Platforms – Mobile Systems M

Background Service Limitations

Starting from API 26, background app is NOT allowed

to create a background service

A foreground app, can create and run both foreground

and background services

When an app goes into the background, the system

stops the app's background services

The startService() method throws an

IllegalStateException if an app is targeting API 26

These limitations do not affect foreground services or

bound services

68

https://developer.android.com/reference/java/lang/IllegalStateException.html

Development/Runtime Platforms – Mobile Systems M

Creating/Stopping a service

Creating a service:

❑ <service android:name=".ExampleService" />

❑ Manage permissions

❑ Subclass IntentService or Service class

❑ Implement lifecycle methods

❑ Start service from Activity

❑ Make sure service is stoppable

Stopping a service:

❑ A started service must manage its own lifecycle

❑ If not stopped, will keep running and consuming resources

❑ The service must stop itself by calling stopSelf()

❑ Another component can stop it by calling stopService()

❑ Bound service is destroyed when all clients unbound

❑ IntentService is destroyed after onHandleIntent() returns

69

Development/Runtime Platforms – Mobile Systems M

IntentService

❑ Simple service with simplified lifecycle

❑ Uses worker threads to fulfill requests

❑ Stops itself when done

❑ Ideal for one long task on a single background thread

Intent service limitations:

❑ Cannot interact with the UI

❑ Can only run one request at a time

❑ Cannot be interrupted

70

Development/Runtime Platforms – Mobile Systems M

Example of

IntentService Implementation

public class HelloIntentService extends

IntentService {

public HelloIntentService() {

super("HelloIntentService");}

@Override

protected void onHandleIntent(Intent intent) {

try {

// Do some work

} catch (InterruptedException e) {

Thread.currentThread().interrupt();

}

} // When this method returns, IntentService stops

the service, as appropriate

}

71

Development/Runtime Platforms – Mobile Systems M

References for additional material

● Services overview

● Background Execution Limits

72

https://developer.android.com/guide/components/services.html
https://developer.android.com/about/versions/oreo/background.html

Development/Runtime Platforms – Mobile Systems M

Android Threads

❑ Act much like usual Java Threads

❑ Cannot work directly on external User Interface objects
(throw the Exception CalledFromWrongThreadException: “Only the
original thread that created a view hierarchy can touch its views”)

❑ Cannot be stopped by executing destroy() nor stop().
Use instead interrupt() or join() (by case)

❑ As usual, two main ways of having a Thread that
executes application code:
➢ Providing a new class that extends Thread and

overriding its run() method

➢ Providing a new Thread instance with a Runnable
object during its creation.

In both cases, start() method must be explicitly called to
actually execute the new Thread

73

Development/Runtime Platforms – Mobile Systems M

Android Handler

❑ Associated with a single thread and that thread's
message queue

❑ Bound to the thread/message queue of the thread that
has created it

❑ It delivers messages and runnables to that message
queue

❑ It executes them as they come out of the message
queue

Two main types of usage for a Handler:

➢ To schedule messages and runnables to be
executed as some point in the future

➢ To add an action into a queue performed on a
different thread

74

Development/Runtime Platforms – Mobile Systems M

Handler Example

75

Development/Runtime Platforms – Mobile Systems M

Android AsyncTask

❑ Created on the UI thread and can be executed only once

❑ Run on a background thread and result is published
on the UI thread

❑ The three parameters of an AsyncTask are:
➢ Params, the type of the parameters sent to the async task upon

execution

➢ Progress, the type of the progress units published during the
background computation

➢ Result, the type of the result of the background computation

❑ Go through 4 steps:
➢ onPreExecute(): invoked on the UI thread immediately after the

async task is started

➢ doInBackground(Param ...): invoked on the background thread
immediately after onPreExecute() finishes executing

➢ onProgressUpdate(Progress...): invoked on the UI thread after a
call to publishProgress(Progress...)

➢ onPostExecute(Result): invoked on the UI thread after
background computation finishes

76

Development/Runtime Platforms – Mobile Systems M

AsyncTask Example

77

Development/Runtime Platforms – Mobile Systems M

❑ Violate the single thread model: the Android UI toolkit is not

thread-safe and must always be manipulated on the UI thread

❑ In this piece of code, ImageView is manipulated on a worker

thread, which can cause really weird problems. Tracking down

and fixing such bugs can be difficult and time-consuming

To Summarize: Pay Attention…

78

Development/Runtime Platforms – Mobile Systems M

❑ Classes and methods also tend to make the code more
complicated and more difficult to read

❑ It becomes even worse when implementing complex operations
that require frequent UI updates

To Summarize: Pay Attention…

79

Development/Runtime Platforms – Mobile Systems M

To Summarize: Pay Attention…

80

Development/Runtime Platforms – Mobile Systems M

Broadcasts vs Implicit Intents

81

Broadcasts are messages sent by Android system and

other Android apps, when an event of interest occurs

Broadcasts are wrapped into an Intent object. This Intent

object contains event details such as, android.intent.action.

HEADSET_PLUG, sent when a wired headset is plugged or unplugged

Types of broadcast:

❑ System broadcast

❑ Custom broadcast

https://developer.android.com/reference/android/content/Intent#ACTION_HEADSET_PLUG

Development/Runtime Platforms – Mobile Systems M

System Broadcasts

System broadcast are messages sent by the Android

system, when a system event occurs, that might affect

your app. Few examples:

An Intent with action, ACTION_BOOT_COMPLETED is broadcasted

when the device boots

An Intent with action, ACTION_POWER_CONNECTED is

broadcasted when the device is connected to the external power

82

https://developer.android.com/reference/android/content/Intent.html#ACTION_BOOT_COMPLETED
https://developer.android.com/reference/android/content/Intent.html#ACTION_POWER_CONNECTED

Development/Runtime Platforms – Mobile Systems M

Custom Broadcasts

Custom broadcasts are broadcasts that your app sends

out, similar to the Android system. For example, when you want to

let other app(s) know that some data has been downloaded by your app, and

its available for their use

Android provides three ways for sending a broadcast:

❑ Ordered broadcast

❑ Normal broadcast

❑ Local broadcast

83

Development/Runtime Platforms – Mobile Systems M

Ordered Broadcast

❑ Ordered broadcast is delivered to one receiver at a

time

❑ To send an ordered broadcast, sendOrderedBroadcast()

❑ Receivers can propagate result to the next receiver or

even abort the broadcast

❑ Control the broadcast order with android:priority

attribute in the manifest file

❑ Receivers with same priority run in arbitrary order

84

https://developer.android.com/reference/android/content/ContextsendOrderedBroadcast(android.content.Intent,%20java.lang.String)
https://developer.android.com/reference/android/R.styleable.html#AndroidManifestIntentFilter_priority

Development/Runtime Platforms – Mobile Systems M

Normal Broadcast

❑ Delivered to all the registered receivers at the same

time, in an undefined order

❑ Most efficient way to send a broadcast

❑ Receivers cannot propagate the results among

themselves, and they cannot abort the broadcast

❑ The sendBroadcast() method is used to send a normal

broadcast

85

https://developer.android.com/reference/android/content/ContextsendBroadcast(android.content.Intent)

Development/Runtime Platforms – Mobile Systems M

Local Broadcast

❑ Sends broadcasts to receivers within your app

❑ No security issues since no interprocess communication

❑ To send a local broadcast:

➢ get an instance of LocalBroadcastManager

➢ call sendBroadcast() on the instance

LocalBroadcastManager.getInstance(this).

sendBroadcast(customBroadcastIntent);

86

Development/Runtime Platforms – Mobile Systems M

Custom Broadcasts

❑ Sender and receiver must agree on unique name for

intent (action name)

❑ Define in activity and broadcast receiver

private static final String ACTION_CUSTOM_BROADCAST =

"com.example.android.powerreceiver.ACTION_CUSTOM_BROADCAST";

87

Development/Runtime Platforms – Mobile Systems M

What is a broadcast receiver?

88

❑ Broadcast receivers are app components

❑ They register for various system broadcast and or custom

broadcast

❑ They are notified (via an Intent):

➢ By the system, when a system event occurs that your

app is registered for

➢ By another app, including your own if registered for

that custom event

Broadcast receivers can be registered in two ways:

❑ Static receivers

Registered in manifest, also called as Manifest-declared receivers

❑ Dynamic receivers

Registered using app or activities' context in Java files

Development/Runtime Platforms – Mobile Systems M

To create a broadcast receiver

❑ Subclass the BroadcastReceiver class and override its

onReceive() method

❑ Register the broadcast receiver and specify the intent-

filters:

➢ Statically, in the Manifest

➢ Dynamically, with registerReceiver()

Intent-filters specify the types of intents a broadcast

receiver can receive; they filter the incoming intents based

on the Intent values like action

To add an intent-filter:

❑ To your AndroidManifest.xml file, use <intent-filter> tag

❑ To your Java file use the IntentFilter object

89

https://developer.android.com/reference/android/content/BroadcastReceiver

Development/Runtime Platforms – Mobile Systems M

Register statically

in Android manifest

❑ <receiver> element inside <application> tag

❑ <intent-filter> registers receiver for specific intents

<receiver

android:name=".CustomReceiver"

android:enabled="true"

android:exported="true">

<intent-filter>
<action

android:name="android.intent.action.BOOT_COMPLETED"/>
</intent-filter>

</receiver>

90

Development/Runtime Platforms – Mobile Systems M

Register dynamically

❑ Register your receiver in onCreate() or onResume()

// Register the receiver using the activity context

this.registerReceiver(mReceiver, filter);

❑ Unregister in onDestroy() or onPause()

// Unregister the receiver

this.unregisterReceiver(mReceiver);

91

Development/Runtime Platforms – Mobile Systems M

Restricting broadcasts

❑ Restricting your broadcast is strongly recommended

❑ An unrestricted broadcast can pose a security threat
➢ For example: If your apps’ broadcast is not restricted and includes sensitive

information, an app that contains malware could register and receive your data

❑ If possible, use a LocalBroadcastManager, which keeps the data

inside your app, avoiding security leaks

❑ Use the setPackage() method and pass in the package name.

Your broadcast is restricted to apps that match the specified

package name

❑ Access permissions can be enforced by sender or receiver

92

Development/Runtime Platforms – Mobile Systems M

Enforce permissions by sender

To enforce a permission when sending a broadcast:

❑ Supply a non-null permission argument to

sendBroadcast()

❑ Only receivers that request this permission using the

<uses-permission> tag in their AndroidManifest.xml file

can receive the broadcast

93

https://developer.android.com/reference/android/R.styleable.html#AndroidManifestUsesPermission

Development/Runtime Platforms – Mobile Systems M

Enforce permissions by receiver

To enforce a permission when receiving a broadcast:

❑ If you register your receiver dynamically, supply a non-

null permission to registerReceiver()

❑ If you register your receiver statically, use the

android:permission attribute inside the <receiver> tag in

your AndroidManifest.xml

94

Development/Runtime Platforms – Mobile Systems M

References to additional material

❑ BroadcastReceiver Reference

❑ Intents and Intent Filters Guide

❑ LocalBroadcastManager Reference

❑ Broadcasts overview

95

https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html
https://developer.android.com/training/monitoring-device-state/manifest-receivers.html

Development/Runtime Platforms – Mobile Systems M

Alarms in Android

❑ Not an actual alarm clock

❑ Schedules something to happen

at a set time

❑ Fire intents at set times or intervals

❑ Goes off once or recurring

❑ Can be based on a real-time clock or elapsed time

❑ App does not need to run for alarm to be active

Benefits:

● Device does not have to be awake

● Does not use resources until it goes off

● Use with BroadcastReceiver to start services and other

operations

96

Development/Runtime Platforms – Mobile Systems M

How alarms work

with Android components

97

BroadcastReceiver

wakes up

delivers notification

Activity creates
a notification and
sets an alarm

Alarm triggers and
sends out Intent.

App may be
destroyed so…

BroadcastReceiver

wakes up the app

and delivers the

notification

Development/Runtime Platforms – Mobile Systems M

Types of Android Alarms

98

❑ Wakes up device CPU if screen is off

Used only for time critical operations; can drain battery

❑ Does not wake up device

Fires next time device is awake

Development/Runtime Platforms – Mobile Systems M

Best practices…

Imagine an app with millions of users:

❑ Server sync operation based on clock time

❑ Every instance of app syncs at 11:00 p.m

Load on the server could result in high latency or even "denial of

service"

❑ Add randomness to network requests on alarms

❑ Minimize alarm frequency

❑ Use ELAPSED_REALTIME, not clock time

99

Development/Runtime Platforms – Mobile Systems M

Best practices…

Battery

❑ Minimize waking up the device

❑ Use inexact alarms

➢ Android synchronizes multiple inexact repeating alarms and fires

them at the same time

➢ Reduces the drain on the battery

➢ Use setInexactRepeating() instead of setRepeating()

Not using an alarm

❑ Ticks, timeouts, and while app is running—Handler

❑ Server sync—SyncAdapter with Cloud Messaging Service

❑ Inexact time and resource efficiency—JobScheduler

100

https://developer.android.com/reference/android/app/AlarmManager.htmlsetInexactRepeating(int,%20long,%20long,%20android.app.PendingIntent)
https://developer.android.com/reference/android/app/AlarmManager.htmlsetRepeating(int,%20long,%20long,%20android.app.PendingIntent)

Development/Runtime Platforms – Mobile Systems M

AlarmManager

❑ AlarmManager provides access to system alarm

services

❑ Schedules future operation

❑ When alarm goes off, registered Intent is broadcast

❑ Alarms are retained while device is asleep

❑ Firing alarms can wake device

AlarmManager alarmManager =
(AlarmManager) getSystemService(ALARM_SERVICE);

101

https://developer.android.com/reference/android/app/AlarmManager.html
https://developer.android.com/reference/android/content/Intent.html

Development/Runtime Platforms – Mobile Systems M

How to schedule an alarm

❑ Type of alarm

❑ Time to trigger

❑ Interval for repeating alarms

❑ PendingIntent to deliver at the specified time

(just like notifications)

102

Development/Runtime Platforms – Mobile Systems M

Schedule a single alarm:

❑ set()—single, inexact alarm

❑ setWindow()—single inexact alarm in window of time

❑ setExact()—single exact alarm

More power saving options AlarmManager API 23+

Schedule a repeating alarm:

❑ setInexactRepeating() - repeating, inexact alarm

❑ setRepeating()

Prior to API 19, creates a repeating, exact alarm

After API 19, same as setInexactRepeating()

103

What you need to to schedule an alarm

https://developer.android.com/reference/android/app/AlarmManager.htmlset(int,%20long,%20android.app.PendingIntent)
https://developer.android.com/reference/android/app/AlarmManager.htmlsetWindow(int,%20long,%20long,%20android.app.PendingIntent)
https://developer.android.com/reference/android/app/AlarmManager.htmlsetExact(int,%20long,%20android.app.PendingIntent)
https://developer.android.com/reference/android/app/AlarmManager.htmlset(int,%20long,%20android.app.PendingIntent)

Development/Runtime Platforms – Mobile Systems M

User visible alarms

❑ setAlarmClock()

❑ System UI may display time/icon

❑ Precise

❑ Works when device is idle

❑ App can retrieve next alarm with getNextAlarmClock()
Supported starting from API 21

104

https://developer.android.com/reference/android/app/AlarmManager.htmlsetAlarmClock(android.app.AlarmManager.AlarmClockInfo,%20android.app.PendingIntent)

Development/Runtime Platforms – Mobile Systems M

Internet Connection

❑ Add permissions to Android Manifest

❑ Check Network Connection

❑ Create Worker Thread

❑ Implement background task

➢ Create URI

➢ Make HTTP Connection

➢ Connect and GET Data

❑ Process results

➢ Parse Results

Internet permission
<uses-permission android:name="android.permission.INTERNET"/>

Check Network State permission
<uses-permission android:name="android.permission.

ACCESS_NETWORK_STATE"/>

105

Development/Runtime Platforms – Mobile Systems M

Network Management

Information

106

❑ ConnectivityManager

➢ Answers queries about state of network connectivity

➢ Notifies applications when network connectivity changes

❑ NetworkInfo

➢ Describes status of a network interface of a given type

➢ Mobile or Wi-Fi

https://developer.android.com/reference/android/net/ConnectivityManager.html
https://developer.android.com/reference/android/net/NetworkInfo.html

Development/Runtime Platforms – Mobile Systems M

Network Check

107

ConnectivityManager connMgr = (ConnectivityManager)
getSystemService(Context.CONNECTIVITY_SERVICE);

NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();

if (networkInfo != null && networkInfo.isConnected()) {
// Create background thread to connect and get data
new DownloadWebpageTask().execute(stringUrl);

} else { textView.setText("No network connection available."); }

NetworkInfo networkInfo =

connMgr.getNetworkInfo(ConnectivityManager.TYPE_WIFI);

boolean isWifiConn = networkInfo.isConnected();

networkInfo =

connMgr.getNetworkInfo(ConnectivityManager.TYPE_MOBILE);

boolean isMobileConn = networkInfo.isConnected();

Development/Runtime Platforms – Mobile Systems M

Which async mode?

❑ AsyncTask—very short task, or no result returned to UI

❑ AsyncTaskLoader—for longer tasks, returns result to UI

❑ Background Service

In the background task (for example in doInBackground())

➢ Create URI

➢ Make HTTP Connection

➢ Download Data

108

https://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/reference/android/content/AsyncTaskLoader.html
https://developer.android.com/training/run-background-service/create-service.html

Development/Runtime Platforms – Mobile Systems M

Make a connection from scratch

❑ Use HttpURLConnection

❑ Must be done on a separate thread

❑ Requires InputStreams and try/catch blocks

HttpURLConnection conn =

(HttpURLConnection) requestURL.openConnection();

conn.setReadTimeout(10000 /* milliseconds */);

conn.setConnectTimeout(15000 /* milliseconds */);

conn.setRequestMethod("GET");

conn.setDoInput(true);

109

https://developer.android.com/reference/java/net/HttpURLConnection.html

Development/Runtime Platforms – Mobile Systems M

conn.connect();

int response = conn.getResponseCode();

InputStream is = conn.getInputStream();

String contentAsString = convertIsToString(is, len);

return contentAsString;

110

Make a connection from scratch

Development/Runtime Platforms – Mobile Systems M

Make a connection using libraries

❑ Use a third party library like OkHttp or Volley

❑ Can be called on the main thread

❑ Much less code

111

http://square.github.io/okhttp/
https://developer.android.com/training/volley/index.html

Development/Runtime Platforms – Mobile Systems M

Volley

RequestQueue queue = Volley.newRequestQueue(this);

String url ="http://www.google.com";

StringRequest stringRequest = new

StringRequest(Request.Method.GET, url,

new Response.Listener<String>() {

@Override

public void onResponse(String response) {

// Do something with response

}

}, new Response.ErrorListener() {

@Override

public void onErrorResponse(VolleyError error) {}

});

queue.add(stringRequest);

112

Development/Runtime Platforms – Mobile Systems M

OkHttp

OkHttpClient client = new OkHttpClient();

Request request = new Request.Builder()

.url("http://publicobject.com/helloworld.txt").build();

client.newCall(request).enqueue(new Callback() {

@Override

public void onResponse(Call call, final Response

response)

throws IOException {

try {

String responseData =

response.body().string();

JSONObject json = new

JSONObject(responseData);

final String owner = json.getString("name");

} catch (JSONException e) {}

}

});

113

http://publicobject.com/helloworld.txt

Development/Runtime Platforms – Mobile Systems M

Parsing the results

❑ Implement method to receive and handle results

(onPostExecute())

❑ Response is often JSON or XML

❑ Parse results using helper classes

❑ JSONObject, JSONArray

❑ XMLPullParser—parses XML

Additional material:

❑ Connect to the Network Guide

❑ Managing Network Usage Guide

❑ HttpURLConnection reference

❑ ConnectivityManager reference

❑ InputStream reference

114

https://developer.android.com/reference/org/json/JSONObject.html
https://developer.android.com/reference/org/json/JSONArray.htmlJSONArray(java.lang.Object)
https://developer.android.com/reference/org/xmlpull/v1/XmlPullParser.html
https://developer.android.com/training/basics/network-ops/connecting.html#http-client
https://developer.android.com/training/basics/network-ops/managing.html
https://developer.android.com/training/basics/network-ops/connecting.html#http-client
https://developer.android.com/reference/android/net/ConnectivityManager.html
https://developer.android.com/reference/java/io/InputStream.html

Development/Runtime Platforms – Mobile Systems M

Efficient Data Transfer

❑ Full power—Active connection, highest rate data

transfer

❑ Low power—Intermediate state that uses 50% less

power

❑ Standby—Minimal energy, no active network connection

115

Development/Runtime Platforms – Mobile Systems M

Bundle network transfers

❑ For a typical 3G device, every data transfer session,

the radio draws energy for almost 20s

➢ Send data for 1s every 18s—radio mostly on full power

➢ Send data in bundles of 3s—radio mostly idle

❑ Bundle your data transfers

116

Development/Runtime Platforms – Mobile Systems M

Prefetch data

❑ Download all the data you are likely to need for a given

time period in a single burst, over a single connection,

at full capacity

❑ If guess is right, it reduces battery cost and latency

❑ If wrong, it may use more battery and data bandwidth

117

Development/Runtime Platforms – Mobile Systems M

Monitor connectivity & battery

❑ Use ConnectivityManager to determine which radio is

active and adapt your strategy

❑ Wait for specific conditions to initiate battery intensive

operation

❑ BatteryManager broadcasts all battery and charging

details in a broadcast Intent

❑ Use a BroadcastReceiver registered for battery status

actions

118

https://developer.android.com/training/monitoring-device-state/connectivity-monitoring.html
https://developer.android.com/reference/android/os/BatteryManager.html
https://developer.android.com/reference/android/content/Intent.html

Development/Runtime Platforms – Mobile Systems M

Job Scheduler

❑ Used for intelligent scheduling of background tasks

❑ Based on conditions, not a time schedule

❑ Much more efficient than AlarmManager

❑ Batches tasks together to minimize battery drain
API 21+ (not in support library)

❑ JobService—Service class where task is initiated

❑ JobInfo—Builder pattern to set conditions for task

❑ JobScheduler—Schedule and cancel tasks, launch

service

119

https://developer.android.com/reference/android/app/job/JobService.html
https://developer.android.com/reference/android/app/job/JobInfo.html
https://developer.android.com/reference/android/app/job/JobScheduler.html

Development/Runtime Platforms – Mobile Systems M

JobService

❑ JobService subclass

❑ Override

➢ onStartJob()

➢ onStopJob()

❑ Runs on main thread

onStartJob()

❑ Called by system when conditions are met

❑ Runs on main thread

❑ Off-load heavy work to another thread

120

https://developer.android.com/reference/android/app/job/JobServiceonStartJob(android.app.job.JobParameters)
https://developer.android.com/reference/android/app/job/JobServiceonStopJob(android.app.job.JobParameters)

Development/Runtime Platforms – Mobile Systems M

onStartJob() returns a boolean

FALSE—Job finished

TRUE

❑ Work has been offloaded

❑ Must call jobFinished() from worker thread

❑ Pass in JobParams object from onStartJob()

121

Development/Runtime Platforms – Mobile Systems M

onStopJob()

❑ Called if system has determined execution of job must

stop… because requirements specified no longer met

➢ For example, no longer on Wi-Fi, device not idle anymore

❑ Before jobFinished(JobParameters, boolean)

❑ Return TRUE to reschedule

122

public class MyJobService extends JobService {
private UpdateAppsAsyncTask updateTask = new

UpdateAppsAsyncTask();
@Override
public boolean onStartJob(JobParameters params) {

updateTask.execute(params);
return true; // work has been offloaded

}
@Override
public boolean onStopJob(JobParameters jobParameters) {

return true;
} }

https://developer.android.com/reference/android/app/job/JobService.htmljobFinished(android.app.job.JobParameters,%20boolean)

Development/Runtime Platforms – Mobile Systems M

JobInfo

❑ Set conditions of execution

❑ JobInfo.Builder object

Arg 1: Job ID

Arg 2: Service component

Arg 3: JobService to launch

JobInfo.Builder builder = new JobInfo.Builder(

JOB_ID,

new ComponentName(getPackageName(),

NotificationJobService.class.getName()));

123

https://developer.android.com/reference/android/app/job/JobInfo.Builder.html

Development/Runtime Platforms – Mobile Systems M

Setting conditions

setRequiredNetworkType(int networkType)

setBackoffCriteria(long initialBackoffMillis, int backoffPolicy)

setMinimumLatency(long minLatencyMillis)

setOverrideDeadline(long maxExecutionDelayMillis)

setPeriodic(long intervalMillis)

setPersisted(boolean isPersisted)

setRequiresCharging(boolean requiresCharging)

setRequiresDeviceIdle(boolean requiresDeviceIdle)

124

https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetRequiredNetworkType(int)
https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetBackoffCriteria(long,%20int)
https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetMinimumLatency(long)
https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetOverrideDeadline(long)
https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetPeriodic(long)
https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetPersisted(boolean)
https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetRequiresCharging(boolean)
https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetRequiresDeviceIdle(boolean)

Development/Runtime Platforms – Mobile Systems M

setRequiredNetworkType(int networkType)

❑ NETWORK_TYPE_NONE—Default, no network required

❑ NETWORK_TYPE_ANY—Requires network connectivity

❑ NETWORK_TYPE_NOT_ROAMING—Requires network

connectivity that is not roaming

❑ NETWORK_TYPE_UNMETERED—Requires network connectivity

that is unmetered

setOverrideDeadline(long maxExecutionDelayMillis)

❑ Maximum ms to wait before running the task, even if other

conditions are not met

125

Setting conditions

https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetRequiredNetworkType(int)
https://developer.android.com/reference/android/app/job/JobInfo.html#NETWORK_TYPE_NONE
https://developer.android.com/reference/android/app/job/JobInfo.html#NETWORK_TYPE_ANY
https://developer.android.com/reference/android/app/job/JobInfo.html#NETWORK_TYPE_NOT_ROAMING
https://developer.android.com/reference/android/app/job/JobInfo.html#NETWORK_TYPE_UNMETERED
https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetOverrideDeadline(long)

Development/Runtime Platforms – Mobile Systems M

setPeriodic(long intervalMillis)

❑ Repeats task after a certain amount of time

❑ Pass in repetition interval

❑ Mutually exclusive with minimum latency and override deadline

conditions

❑ Task is not guaranteed to run in the given period

setPersisted(boolean isPersisted)

❑ Sets whether the job is persisted across system reboots

❑ Pass in True or False

❑ Requires RECEIVE_BOOT_COMPLETED permission

126

Setting conditions

https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetPeriodic(long)
https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetPersisted(boolean)
https://developer.android.com/reference/android/Manifest.permission.html#RECEIVE_BOOT_COMPLETED

Development/Runtime Platforms – Mobile Systems M

setRequiresCharging(boolean requiresCharging)

❑ Whether device must be plugged in

❑ Pass in True or False

❑ Defaults to False

setRequiresDeviceIdle(boolean requiresDeviceIdle)

❑ Whether device must be in idle mode

❑ Idle mode is a loose definition by the system, when device is not in

use, and has not been for some time

❑ Use for resource-heavy jobs

❑ Pass in True or False. Defaults to False

127

Setting conditions

https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetRequiresCharging(boolean)
https://developer.android.com/reference/android/app/job/JobInfo.Builder.htmlsetRequiresDeviceIdle(boolean)

Development/Runtime Platforms – Mobile Systems M

JobInfo code

JobInfo.Builder builder = new JobInfo.Builder(
JOB_ID, new ComponentName(getPackageName(),
NotificationJobService.class.getName()))

.setRequiredNetworkType(JobInfo.NETWORK_TYPE_UNMETERED)

.setRequiresDeviceIdle(true)

.setRequiresCharging(true);

JobInfo myJobInfo = builder.build();

128

Development/Runtime Platforms – Mobile Systems M

Scheduling the job

❑ Obtain a JobScheduler object from system

❑ Call schedule() on JobScheduler, with JobInfo object

mScheduler = (JobScheduler)

getSystemService(JOB_SCHEDULER_SERVICE);

mScheduler.schedule(myJobInfo);

129

Development/Runtime Platforms – Mobile Systems M

References to additional material

❑ Transferring Data Without Draining the Battery Guide

❑ Optimizing Downloads for Efficient Network Access Guide

❑ Modifying your Download Patterns Based on the Connectivity Type

Guide

❑ JobScheduler Reference

❑ JobService Reference

❑ JobInfo Reference

❑ JobInfo.Builder Reference

❑ JobParameters Reference

❑ Presentation on Scheduling Tasks

130

https://developer.android.com/training/efficient-downloads/index.html
https://developer.android.com/training/efficient-downloads/efficient-network-access.html
https://developer.android.com/training/efficient-downloads/connectivity_patterns.html
https://developer.android.com/reference/android/app/job/JobScheduler.html
https://developer.android.com/reference/android/app/job/JobService.htmlonStartJob(android.app.job.JobParameters)
https://developer.android.com/reference/android/app/job/JobInfo.html
https://developer.android.com/reference/android/app/job/JobInfo.Builder.html
https://developer.android.com/reference/android/app/job/JobParameters.html
https://www.youtube.com/watch?v=7maNuWjL3Wc

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 131

Example: Developing a Launcher

for Replacing the usual Home

A custom home can be created by:

1. Defining a new Activity

2. Declaring the launcher’s action MAIN in

the Intent Filter

3. Searching installed apps via Package

Manager

4. Selecting the only apps that have an Intent

Filter related to launch

5. Creating a selection View (Button) for each

suitable app

6. Defining the click event: Intent notification

7. Association of the event to the View

As already mentioned, home allows starting any app, serving as a launcher

Android as an open platform – “All Apps are created equal” → it is possible to

customize the system with our own home

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 132

// Step 1: definition of a new activity

public class CategoryTestActivity extends Activity {

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

LinearLayout activitiesList;

activitiesList = (LinearLayout)

findViewById(R.id.activitiesList);

// Steps 3 and 4: app search and selection based on IntentFilter

Intent intent = new Intent();

intent.setAction(Intent.ACTION_MAIN);

intent.addCategory(Intent.CATEGORY_LAUNCHER);

PackageManager pkgManager = getPackageManager();

List<ResolveInfo> activities =

pkgManager.queryIntentActivities(intent, 0);

…

Example: Developing a Launcher

for Replacing the usual Home

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 133

…

for (ResolveInfo resolveInfo : activities) {

final ResolveInfo ri = resolveInfo;

Button button = new Button(this); //Step 5: one button per app

button.setText(resolveInfo.loadLabel(pkgManager));

// Step 7: event-view association

button.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

Intent intent = new Intent(); //Step 6: intent launch

ComponentName cn = new ComponentName(ri.

activityInfo.packageName, ri.activityInfo.name);

intent.setComponent(cn);

intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

intent.addFlags(Intent.FLAG_ACTIVITY_MULTIPLE_TASK);

startActivity(intent);}});

activitiesList.addView(button);}}}

Example: Developing a Launcher

for Replacing the usual Home

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 134

<manifest xmlns:android=“...” package="it.mypackage">

<application android:label="@string/app_name">

<activity android:name=".HomeActivity"

android:label="@string/app_name">

<intent-filter> <!– Step 2 -->

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

<category android:name="android.intent.category.

HOME"> </category>

<category android:name="android.intent.category.

DEFAULT"></category>

</intent-filter>

</activity>

</application>

</manifest>

Example: Developing a Launcher

for Replacing the usual Home

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 135

Android Security

in a Single Slide

<manifest xmlns:android="http://schemas.android.com/apk/res/

android“ package="com.google.android.app.myapp" >

<uses-permission id="android.permission.RECEIVE_SMS" />

</manifest>

Typical guidelines for security in Linux

❑ At default any Android app runs in a dedicated Dalvik VM

and within its own separated process. Which UID/GID?

➢ Process and group identifiers are selected from an interval that is

defined system-level: FIRST_APPLICATION_UID,
LAST_APPLICATION_UID

❑ Process-level permissions are assigned and controlled

depending on user ID & group ID assigned to

processes. Typically what do you expect?

❑ Finer-grained permissions are assigned (and revocable) even for a

single operation via manifest file

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 136

Exercise on Android

To design and develop a simple context-dependent
Android app (for example, able to play different audio/video files

depending on current user location), by employing the APIs of
the Media Framework library (native) and the APIs of the
Location Manager (Java-based, application framework level)

Suggestion to use, but free personal choice ☺:

❑ Android Studio and SDK tools
https://developer.android.com/studio/index.html

It could be the initial starting seed for a possible project activity…

As additional examples of Android usage and project activities, please
see also
http://lia.disi.unibo.it/Courses/sm1819-info/esercizi.html

https://developer.android.com/studio/index.html
http://lia.disi.unibo.it/Courses/sm1819-info/esercizi.html

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 137

Many and Many Available Sources

for Additional Info
Many good (not only good) books on Android:

❑ E. Hellman, “Android Programming: Pushing the Limits”, Wiley,

Nov. 2013

❑ Z. Mednieks, L. Dornin, “Programming Android: Java Programming

for the New Generation of Mobile Devices”, O’Reilly, Ott. 2012

❑ R. Meier, “Professional Android 4 Application Dev.”, Wrox, 2012

❑ F. Ableson, R. Sen, “Android in Action”, Manning, Feb. 2011

Android SDK has good manuals and how-tos, e.g., description of

available APIs, presentation of examples of apps, …

❑ http://developer.android.com/sdk/index.html

Further info and documents are available at the Android Studio Web site:

❑ https://developer.android.com/studio/index.html

http://developer.android.com/sdk/index.html
https://developer.android.com/studio/index.html

Development/Runtime Platforms – Mobile Systems M 138

iOS (or iPhoneOS):

a Very Rapid Overview
Approach is very similar to Android from many perspectives and

in terms of realization of a wide support ecosystem, i.e.,

development model + support API:

❑ iOS exploits a variant of the XNU kernel, which is at the basis of

MacOSX

❑ Chain of development tools is similarly based on Xcode

SDK includes APIs at different layers to support:

SDK also includes iPhone Simulator, i.e., a tool to emulate iPhone look&feel

over developer desktop. It is not a real emulator: it runs code that is actually

generated for another target (x86)

SDK requires a Mac OS X Leopard host (or more recent)

➢Events and multi-touch controls

➢Accelerometer

➢Localization (i18n)

➢Camera and media in general (audio

mixing&recording, video playback, several image

file formats, OpenGL ES …)

➢Networking

➢Embedded SQLite database

➢Core Location (GPS, Skyhook WiFi, …)

➢Thread

➢Power management

➢File system

➢Security

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 139

iOS (or iPhoneOS):

Rules Rules Rules…

❑ 3.3.1 — Applications may only use Documented APIs in the manner

prescribed by Apple and must not use or call any private APIs.

Applications must be originally written in Objective-C, C, C++, or

JavaScript as executed by the iOS WebKit engine, and only code written in

C, C++, and Objective-C may compile and directly link against the

Documented APIs

❑ 3.3.2 — An Application may not itself install or launch other executable

code by any means, including without limitation through the use of a plug-in

architecture, calling other frameworks, other APIs or otherwise. No

interpreted code may be downloaded or used in an Application except for

code that is interpreted and run by Apple’s Documented APIs and built-in

interpreter(s)

Even the SDK can be downloaded for free but calls for registration to

iPhone Developer Program if developers are willing to release some

software (paying a fee + subject to Apple’s approval)

Apple has not announced any plan for supporting Java over iPhones;

initially some partial support instead for J2ME over iOS

Development/Runtime Platforms – Mobile Systems M 140

How to Develop in iOS:

First Steps

To start:

❑ http://developer.apple.com/iphone/

❑ Download the iOS SDK, which includes:

➢ Xcode

➢ iPhone emulation tools

➢ Monitoring tools

➢ Interface builder

Please note that apps are subject to Apple’s approval (included in the

signed agreement for SDK download), with the idea of performing

reliability tests and other investigations…

Apps may be rejected if evaluated as of "limited utility"

http://developer.apple.com/iphone/

Development/Runtime Platforms – Mobile Systems M 141

Alternative Possibilities for

iOS Development

Primary option: exploitation of Xcode and Objective C,

exactly same way as in traditional MacOSX

Alternatively:

❑ Web applications that employ AJAX/Javascript
technologies; HTML5 set of solutions; possibility to
access via Safari

❑ Also (but rare) usage of Java

➢ AlcheMo for iPhone

➢ Xmlvm

➢ Java installation over “unlocked” and “jailbroken” iPhone

By the way, do you know what the terms “unlocking” and “jailbreaking”
mean?

Development/Runtime Platforms – Mobile Systems M 142

Unlocking & Jailbreaking

To be precise, unlocking and jailbreaking identify two
different procedures

❑ Unlocking is the process through which a device is made compatible
with telco networks for which it was not specifically licensed
(overcoming the locking with a given dedicated telco operator)

❑ Jailbreaking is the process through which a developer exits her own
“jail” in UNIX-like OS and/or breaks the imposed system of Digital Right
Management (DRM). It is a specific form of growth of execution
privilege

❑ In iOS, it allows a user to execute arbitrary code and apps, by bypassing
the regular mechanism of distribution of Apple code (based on iTunes App
Store and iTunes Application)

To enjoy yourself ☺ with experimentation, tools such as:

➢ PwnageTool, QuickPwn, Yellowsn0w http://blog.iphone-dev.org/

➢ Pusher - http://ripdev.com/pusher/

➢ Linux on iPhone - http://www.iphonelinux.org/index.php/Main_Page

➢ ZIPhone - http://www.ziphone.org/

http://blog.iphone-dev.org/
http://ripdev.com/pusher/
http://www.iphonelinux.org/index.php/Main_Page
http://www.ziphone.org/

Development/Runtime Platforms – Mobile Systems M

Cross platform based on HTML5

143

Development/Runtime Platforms – Mobile Systems M

Cross platform based on HTML5

144

Development/Runtime Platforms – Mobile Systems M

Cross platform - Xamarin

145

Development/Runtime Platforms – Mobile Systems M

Cross platform - Xamarin

146

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 147

Web Applications:

HTML5 in a Single Slide
Again, the fundamental question is pros&cons of

Web applications vs. native apps

HTML5
❑ Nothing of groundbreaking originality, it uses the traditional classical

model of Web applications with rich interactivity

❑ HTML5 = HTML + CSS + JavaScript

➢ W3C finalized it (at the end :-)!) in October 2014

By delving into finer details:

❑ New tags for AJAX and DHTML

❑ New tags for embedded management of audio and video files (e.g.,
<video> tag)

➢ To what extent are they currently supported? In a completely standard way?

❑ Better management of document structure

For example, see http://w3c.github.io/html/ (draft version 5.2 – April 18, 2017)

➢ http://slides.html5rocks.com/

http://w3c.github.io/html/
http://slides.html5rocks.com/

Development/Runtime Platforms – Mobile Systems MDevelopment/Runtime Platforms – Mobile Systems M 148

Credits to Google Developer Training – Android

Developer Fundamentals v2 for some material and pictures about

Android programming (Creative Commons Attribution 4.0)

Additional (optional) material on the course Web site about:
❑ Activities and Intents

❑ Activity lifecycle and state

❑ Implicit Intents

❑ AsyncTask and AsyncTaskLoader

❑ Notifications

❑ Data Storage

Credits and Additional Material

