
IoT Definitions and Application Scenarios – Mobile Systems M

Mobile Systems M

Alma Mater Studiorum – University of Bologna

CdS Laurea Magistrale (MSc) in

Computer Science Engineering

Mobile Systems M course (8 ECTS)
II Term – Academic Year 2021/2022

04.lab – Internet of Things (IoT):

Hands-on Labs with Azure and EdgeX

Paolo Bellavista

paolo.bellavista@unibo.it

http://lia.disi.unibo.it/Courses/sm2122-info/

mailto:paolo.bellavista@unibo.it
http://lia.disi.unibo.it/Courses/sm2122-info/

IoT Definitions and Application Scenarios – Mobile Systems M

Alma Mater Studiorum – University of Bologna

CdS Laurea Magistrale (MSc) in

Computer Science Engineering

hands on

Alberto Cavalucci

alberto.cavalucci2@unibo.it

mailto:alberto.cavalucci2@unibo.it

IoT Definitions and Application Scenarios – Mobile Systems M 3

Agenda

• Recap on Azure IoT technlogies

• Prerequisites and HowTos

• Create an Iot Hub

• Deploy and manage Edgemodule

IoT Definitions and Application Scenarios – Mobile Systems M 4

Azure IoT Hub

IoT Hub is a cloud-

hosted service that

serves as a message

hub for bidirectional

communication

between application

and IoT devices

IoT Definitions and Application Scenarios – Mobile Systems M 5

Azure IoT Hub

Azure IoT device SDK

libraries are used to build the

communication with IoT

Hub.

Languages supported:

C

C#

Java

Python

Protocols supported:

HTTPS

AMQP

MQTT

IoT Definitions and Application Scenarios – Mobile Systems M 6

Azure IoT Edge

Service that moves the business logic from the

cloud to the edge of the architecture. Makes data

aggregation and analytics faster being closer to

the devices

Three main components:

Edge Modules: containers that run Azure services

and apps locally to the device.

Edge Runtime: environment that runs on each

device and manages the modules deployed.

Cloud interface: to remotely monitor the devices

IoT Definitions and Application Scenarios – Mobile Systems M 7

Edge modules

Smallest unit of computation.

Every module is made of 4 conceptual elements:

• Image: package containing the software of the

module.

• Instance: unit of computation that runs the image on

the device. It is started by IoT Runtime.

• Identity: information about credentials and

permissions associated with each module.

• Twin: JSON document that stores metadata

regarding the status of a module and configuration.

IoT Definitions and Application Scenarios – Mobile Systems M 8

Edge runtime

The runtime manages deployment and update

of the modules, availability of the services

reporting the status to the cloud and

communication both with the cloud and the

downstream to the devices

IoT Definitions and Application Scenarios – Mobile Systems M 9

Prerequisites

• Free Azure subscription.

https://azure.microsoft.com/en-

us/free/?ref=microsoft.com&utm_source=micros

oft.com&utm_medium=docs&utm_campaign=vi

sualstudio (no credit card required)

• Install Azure CLI for your platform.

https://docs.microsoft.com/en-

us/cli/azure/install-azure-cli

https://azure.microsoft.com/en-us/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://azure.microsoft.com/en-us/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

IoT Definitions and Application Scenarios – Mobile Systems M 10

Create the IoT Hub (1/3)

1.Sign in to the https://portal.azure.com/

2.Click on the «Create a resource» button and

search for Azure IoT Hub under Internet of

Things tab

3.Follow the workflow making sure to choose

the right options on the basic tab

https://portal.azure.com/

IoT Definitions and Application Scenarios – Mobile Systems M 11

Create the IoT Hub (2/3)

IoT Definitions and Application Scenarios – Mobile Systems M 12

Subscription: choose the Free tier one.

Resource group: choose the option to create a new one and select a
name. This is gonna be used for all the resources allocated in this lab.

IoT Hub name: unique name for the hub utilized to create the
connection.

Region: region where is located the hub.

Create the IoT Hub (3/3)

IoT Definitions and Application Scenarios – Mobile Systems M 13

Register the IoT Edge device (1/2)

We want to create a device identity, which is a

«virtual» version of the edge device. It has the

same properties of the real device and is

connected to it trough a connection string.

1. In the Azure CLI we enter the following

command to create an EdgeDevice.

IoT Definitions and Application Scenarios – Mobile Systems M 14

Register the IoT Edge device (2/2)

2. With the creation of the device also the

connection string and the shared key have been

created. Insert the next command to see the

connection string that will be required later in the

lab

{

"connectionString": "HostName ={hub_name}.azure-devices.net;

DeviceId=myEdgeDevice;

SharedAccessKey={Key}"

}

IoT Definitions and Application Scenarios – Mobile Systems M 15

Install Azure IoT Edge on device(1/3)

Edge runtime is what makes a device an IoT edge

device. It can be installed in different types of

machines, in this case we are going to use a

Raspberry Pi.

First we are going to set and download microsoft

package configuration

curl https://packages.microsoft.com/config/debian/stretch/multiarch/prod.list

> ./microsoft-prod.list

sudo cp ./microsoft-prod.list /etc/apt/sources.list.d/

curl https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor >

microsoft.gpg

sudo cp ./microsoft.gpg /etc/apt/trusted.gpg.d/

IoT Definitions and Application Scenarios – Mobile Systems M 16

Install Azure IoT Edge on device(2/3)

Now we are going to install the container engine that will

host IoT edge services and the runtime.

Moby engine is the only supported container engine for IoT

edge, altough is based on Docker and is compatible with

Docker Image

sudo apt-get update

sudo apt-get install moby-engine

sudo apt-get install aziot-edge

IoT Definitions and Application Scenarios – Mobile Systems M 17

Install Azure IoT Edge on device(3/3)

Once all the software needed is installed the connection

string we produced earlier has to be set in the

/etc/aziot/config.toml config file.

sudo iotedge config apply

After a restart our edge device is ready to use.

IoT Definitions and Application Scenarios – Mobile Systems M 18

Deployment of the module

After the creation of

the hub and the

installation of the

runtime, we want to

deploy remotely

the module from

Azure portal to the

IoT device

IoT Definitions and Application Scenarios – Mobile Systems M 19

Deployment of the module

1. Log in to Azure portal, go to your IoT hub ->

Automatic Device Management -> IoT Edge

2. Select the device ID and then “set modules”

IoT Definitions and Application Scenarios – Mobile Systems M 20

Deployment of the module

At this point, we will follow the workflow to deploy a

module, for this demo we used a simulated

temperature sensor already present in the

marketplace. To use it we click «ADD» and then

marketplace module. When we finish the flow

under the tab «modules» we should see two more

modules in addition to the edgeAgent

IoT Definitions and Application Scenarios – Mobile Systems M 21

Read the data

az iot hub show --query properties.eventHubEndpoints.events.endpoint

--name {YourIoTHubName}

az iot hub show --query properties.eventHubEndpoints.events.path --

name {YourIoTHubName}

az iot hub policy show --name service --query primaryKey --hub-name

{YourIoTHubName}

The simulated sensor is up and running.

Now, we want to write a script that connects

to the Hub and reads the data simulating the

cloud layer. First we need to note this

connection parameters

IoT Definitions and Application Scenarios – Mobile Systems M 22

Read the data
CONNECTION_STR =

f'Endpoint={EVENTHUB_COMPATIBLE_ENDPOINT}/;\

SharedAccessKeyName=service;\

SharedAccessKey={IOTHUB_SAS_KEY};\

EntityPath={EVENTHUB_COMPATIBLE_PATH}'

client = EventHubConsumerClient.from_connection_string(

conn_str=CONNECTION_STR,

consumer_group="$default"

)

The parameters will form the connection string with

which we create a consumer for the hub.

IoT Definitions and Application Scenarios – Mobile Systems M 23

Read the data
try:

with client:

client.receive_batch(

on_event_batch=on_event_batch,

on_error=on_error)

except KeyboardInterrupt:

print("Receiving has stopped.")

In order to consume the events from the hub we

have to invoke the method «receive_batch».

The arguments are two callback functions that will

be executed depending on the success or the

failure of the invocation

IoT Definitions and Application Scenarios – Mobile Systems M 24

Read the data

def on_event_batch(partition_context, events):

for event in events:

print("Telemetry received: ", event.body_as_str())

partition_context.update_checkpoint()

The callback firstly consumes all the event

received from the hub, in this case just printing the

body of the message, and then updates with a

checkpoint for the next call of the method

IoT Definitions and Application Scenarios – Mobile Systems M

Alma Mater Studiorum – University of Bologna

CdS Laurea Magistrale (MSc) in

Computer Science Engineering

hands on

Gianluca Rosi

gianluca.rosi3@unibo.it

mailto:gianluca.rosi3@unibo.it

IoT Definitions and Application Scenarios – Mobile Systems M 26

What’s EdgeX Foundry

• It’s a multi-platform, open

source software (written in

Golang), dedicated to

Industrial IIoT

communication protocol

uniformation

• Freshly developed from

Dell code-base for their

own edge gateways and

hosted by the Linux

Foundation as a project

on LF Edge.

IoT Definitions and Application Scenarios – Mobile Systems M

How does it work?
• The Core Services are coordinating every event and their reaction, based on

the stored knowledge.

• Messages are flowing from bottom to top and viceversa, making these 4
microservices act as interface among the north-side and south-side

IoT Definitions and Application Scenarios – Mobile Systems M

Core Data
It stores all data sent

through EdgeX framework

(may be disabled for stream-

only) with Redis

Once received, events
are then published via
ZeroMQ to Application
Services.

A scheduled work is in

charge to clean correctly

exported data, thus to

free memory for new

messages.

IoT Definitions and Application Scenarios – Mobile Systems M

Core Metadata
Stores the knowledge

of every registered

device and sensors,

this lets the framework

to know which

resources are

available.

Still based on Redis,

device’s profile has to

be provided in YAML

files.

IoT Definitions and Application Scenarios – Mobile Systems M

Core Command
This microservice is a

proxy service for

action requests from

the (north) exposed

REST API to the

Device Services,

which are the only in

charge to directly talk

to devices.

Metadata microservice

provides all Core

Command knowledge

IoT Definitions and Application Scenarios – Mobile Systems M

Registry and Config
The EdgeX registry and

configuration service provides

other EdgeX Foundry micro

services with information

about associated services

within EdgeX Foundry (such

as location and status) and

configuration properties (i.e. -

a repository of initialization

and operating values)
Registry:

microservices status and health monitor

(Consul)

Config:

usually provided in TOML file, useful for

static parameters on microservices

IoT Definitions and Application Scenarios – Mobile Systems M

let’s get practical 0. up and running

docs @ https://docs.edgexfoundry.org/1.3/getting-started/quick-start/

https://docs.edgexfoundry.org/1.3/getting-started/quick-start/

IoT Definitions and Application Scenarios – Mobile Systems M

Installing EdgeX Foundry with Docker

This tutorial is based on a Linux env. (Kubuntu 20.04)

Suggestion: it’s ok to use a VM with as little as 2 cores and 2GB of RAM

The fastest way to start running EdgeX is by using pre-built Docker images. To use them

you'll need to install the following:

1. Docker engine docker.com/get-started

2. Docker Compose docs.docker.com/compose/install

3. download / save the latest docker-compose file and rename

4. issue command to download and run the EdgeX Foundry Docker images from Docker

Hub:

~$ curl

https://raw.githubusercontent.com/edgexfoundry/develo

per-scripts/master/releases/hanoi/compose-files/docker-

compose-hanoi-no-secty.yml -o docker-compose.yml

~$ docker-compose up -d

https://www.docker.com/get-started
https://docs.docker.com/compose/install/

IoT Definitions and Application Scenarios – Mobile Systems M

let’s get practical 1. managing data

IoT Definitions and Application Scenarios – Mobile Systems M

From data sources
to events

software abstraction of physical devices:

pre-defined or custom Device Services (SDK provided) allows to translate

device’s

communication protocols to a standard message (event) readable by EdgeX

Foundry framework.

• This allows to register the source device and automatically add metadata on

its every lecture/message.

docs @ https://docs.edgexfoundry.org/1.3/microservices/device/Ch-DeviceServices/

https://docs.edgexfoundry.org/1.3/microservices/device/Ch-DeviceServices/

IoT Definitions and Application Scenarios – Mobile Systems M

Connect a device with Modbus and MQTT (1)

Add in the descriptor file the device services (already in the EdgeX framework), with only a 2-
space indent on the first line (be careful to maintain the proposed indentation)

docker-compose.yml

device-modbus:
image: edgexfoundry/docker-device-

modbus-go:1.2.1
ports:

- 127.0.0.1:49991:49991/tcp
container_name: edgex-device-modbus
hostname: edgex-device-modbus
networks:

edgex-network: {}
environment:

[chk the provided file]
depends_on:
- data
- command

device-mqtt:
image: edgexfoundry/docker-device-mqtt-

go:1.2.1
ports:

- 127.0.0.1:49982:49982/tcp
container_name: edgex-device-mqtt
hostname: edgex-device-mqtt
networks:

edgex-network: {}
environment:

[chk the provided file]
depends_on:

- data
- command

IoT Definitions and Application Scenarios – Mobile Systems M

Connect a device with Modbus and MQTT (2)

Enable from the descriptor file the device services (already in the EdgeX

framework)

~$ docker-compose up -d device-modbus

~$ docker-compose up -d device-mqtt

IoT Definitions and Application Scenarios – Mobile Systems M

let’s get practical 2. working on an use-case

IoT Definitions and Application Scenarios – Mobile Systems M

Register a device by a Device profile (Modbus)

It’s a YAML file that can be

sent in anytime when EdgeX

is up and running. The

upload coincides with the

device registration.

• This file contains

metadata and operations

supported by the device

name: "HMI_6k"
manufacturer: "SACMI"
model: "XYZ145"
description: "Dispositivo HMIsimulator"
labels:

- "modbus"
- "interface"
- "simulator"

deviceResources:
-

name: "DatiCiclo"
description: "Dati ciclo"
attributes:

{ primaryTable:
"HOLDING_REGISTERS", startingAddress: "2"}

properties:
value:

{ type: "UINT16", scale: "1"}
units:

{ type: "String", readWrite: "R",
defaultValue: "min"}

[cont...]

docs @ https://docs.edgexfoundry.org/1.3/microservices/device/profile/Ch-DeviceProfileRef/

HMIsim.yml

https://docs.edgexfoundry.org/1.3/microservices/device/profile/Ch-DeviceProfileRef/

IoT Definitions and Application Scenarios – Mobile Systems M

[...cont]
deviceCommands:
-

name: "DatiCiclo"
get:

- { index: "1", operation: "get", deviceResource: "DatiCiclo" }
coreCommands:
-

name: "DatiCiclo"
get:

path: "/api/v1/device/{deviceId}/DatiCiclo"
responses:

-
code: "200"
description: "Get the DatiCiclo"
expectedValues: ["DatiCiclo"]

-
code: "500"
description: "internal server error"
expectedValues: []

HMIsim.yml

~$ curl http://localhost:48081/api/v1/deviceprofile/uploadfile \
-F "file=@HMIsim.yaml"

Now we have to make EdgeX be aware of a “future” device with the descripted

features by uploading that description file (CLI command provided in

CLI_JSON_desc.txt)

IoT Definitions and Application Scenarios – Mobile Systems M

Run the devices (Modbus)

This is a simulator of a real production machine.

Unpack the zip file, install and run with the following commands:

~$ python3 setup.py install

~$ hmi-simulator conf/config.yaml

IoT Definitions and Application Scenarios – Mobile Systems M

~$ curl http://localhost:48081/api/v1/device -H "Content-
Type:application/json" -X POST \

-d '{
"name" :"HMI Simulator",
"description":"Dispositivo HMI_simulator",
"adminState":"UNLOCKED",
"operatingState":"ENABLED",
"protocols":{

"modbus-tcp":{
"Address" : "localhost",
"Port" : "2502",
"UnitID" : "11"

}
},
"labels":[

"interface",
"simulator",
"modbus TCP"

],
"service":{"name":"edgex-device-modbus"},
"profile":{"name":"HMI_6k"},
"autoEvents":[

{
"frequency":"3s",
"onChange":false,
…

CLI_json_desc.txt

Then we can

register a new

physical device

CLI command is in

IoT Definitions and Application Scenarios – Mobile Systems M

let’s get practical 3. exporting data

IoT Definitions and Application Scenarios – Mobile Systems M

Read the devices (Modbus) [1]

Let’s check that our generator is working:

~$ modpoll –r 5000 –c 6 –p 2502 127.0.0.1

modbusdriver.com/modpoll.html

https://www.modbusdriver.com/modpoll.html

IoT Definitions and Application Scenarios – Mobile Systems M

Read the devices (Modbus) [2]

Now we can check data flowing through EdgeX by checking the device-

modbus log and querying the core-data to get some readings with an HTTP

GET call to*:

http://localhost:48080/api/v1/event/{start}/{end}/{limit}
level=INFO ts=2021-04-23T14:12:30.577630769Z app=edgex-device-modbus source=modbusclient.go:83

msg="Modbus client GetValue's results [0 112]"

level=INFO ts=2021-04-23T14:12:30.577655427Z app=edgex-device-modbus source=driver.go:151 msg="Read

command finished. Cmd:DatiCiclo, Origin: 1619187150577644281, Uint16: 112 \n"

level=INFO ts=2021-04-23T14:12:30.580736892Z app=edgex-device-modbus source=utils.go:94 Content-

Type=application/json correlation-id=aece9794-0d15-49f6-8ea9-131689df8437 msg="SendEvent: Pushed

event to core data"

*reference @ https://app.swaggerhub.com/apis/EdgeXFoundry1/core-data/1.2.1#/default/

https://app.swaggerhub.com/apis/EdgeXFoundry1/core-data/1.2.1#/default/

IoT Definitions and Application Scenarios – Mobile Systems M

~$ docker-compose ps -a
~$ docker-compose logs --follow <container_id>
~$ ^C
~$ docker-compose stop

Clean shutdown & utilities

• Consul UI si at localhost:8500/ui

• Every HTTP request can be executed by your favourite HTTP API client app

(like Postman or Insomnia)

• API reference is at https://app.swaggerhub.com/search?type=API&owner=EdgeXFoundry1

• Hands on based on the formal tutorial at
https://docs.edgexfoundry.org/1.3/examples/LinuxTutorial/EdgeX-Foundry-tutorial-ver1.1.pdf

Port Service

48080 Core Data

48081 Core Metadata

48082 Core Command

https://app.swaggerhub.com/search?type=API&owner=EdgeXFoundry1
https://docs.edgexfoundry.org/1.3/examples/LinuxTutorial/EdgeX-Foundry-tutorial-ver1.1.pdf

IoT Definitions and Application Scenarios – Mobile Systems M

To sum up

Local Cloud

Edge Node

IT Level

Single plant

OT Level

Single

production line

Machinery

Hands-on

Hands-on

