Mobile Systems M

Alma Mater Studiorum — University of Bologha
CdS Laurea Magistrale (MSc) in
Computer Science Engineering

Mobile Systems M course (8 ECTS)
Il Term — Academic Year 2021/2022

04.lab — Internet of Things (loT):
Hands-on Labs with Azure and EdgeX

Paolo Bellavista
paolo.bellavista@unibo.it

http://lia.disi.unibo.it/Courses/sm2122-info/

loT Definitions and Application Scenarios — Mobile Systems M

mailto:paolo.bellavista@unibo.it
http://lia.disi.unibo.it/Courses/sm2122-info/

Alma Mater Studiorum — University of Bologna
CdS Laurea Magistrale (MSc) in
Computer Science Engineering

hands on

L
Azure loT Hub

Alberto Cavalucci
alberto.cavalucci2@unibo.it

loT Definitions and Application Scenarios — Mobile Systems M

mailto:alberto.cavalucci2@unibo.it

Agenda

* Recap on Azure loT technlogies
* Prerequisites and HowTos
* Create an lot Hub

* Deploy and manage Edgemodule

loT Definitions and Application Scenarios — Mobile Systems M

Azure 10T Hub

loT Hub Is a cloud-

hosted service that R
Serves as a message Azure loT Hub
hub for bidirectional Device SII'E'.EI;// \\;ﬂ_vice Stream
communication [/ \\
. . . o

between application B s "0

. Devices | gum ——— Services
and loT devices o

loT Definitions and Application Scenarios — Mobile Systems M

Azure loT Hub

Azure |0T device SDK
libraries are used to build the
communication with loT

Hub.
Languages supported: Protocols supported:
C HTTPS
C# AMQP
Java MQ

Python

loT Definitions and Application Scenarios — Mobile Systems M

Azure loT Edge

Service that moves the business logic from the
cloud to the edge of the architecture. Makes data
aggregation and analytics faster being closer to
the devices

Three main components:

Edge Modules: containers that run Azure services
and apps locally to the device.

Edge Runtime: environment that runs on each
device and manages the modules deployed.
Cloud interface: to remotely monitor the devices

loT Definitions and Application Scenarios — Mobile Systems M

Edge modules

Smallest unit of computation.

Every module is made of 4 conceptual elements:

« Image: package containing the software of the
module.

« |Instance: unit of computation that runs the image on
the device. It is started by loT Runtime.

 ldentity: information about credentials and
permissions associated with each module.

« Twin: JSON document that stores metadata
regarding the status of a module and configuration.

loT Definitions and Application Scenarios — Mobile Systems M

Edge runtime

..':'.”.-'I_ |'; i |.: | [[| .]| 3 |._ "'..".|' =]

Azure loT Edge runtime

-

The runtime manages deployment and update
of the modules, availablility of the services
reporting the status to the cloud and
communication both with the cloud and the
downstream to the devices

loT Definitions and Application Scenarios — Mobile Systems M

Prerequisites

* Free Azure subscription.
https://azure.microsoft.com/en-
us/free/?ref=microsoft.com&utm_source=micros
oft.com&utm_ medium=docs&utm campaign=vi
sualstudio (no credit card required)

 Install Azure CLI for your platform.
https://docs.microsoft.com/en-
us/cli/azure/install-azure-cli

loT Definitions and Application Scenarios — Mobile Systems M

https://azure.microsoft.com/en-us/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://azure.microsoft.com/en-us/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Create the loT Hub (1/3)

1.Sign in to the https://portal.azure.com/

2. Click on the «Create a resource» button and
search for Azure IoT Hub under Internet of
Things tab

3. Follow the workflow making sure to choose
the right options on the basic tab

loT Definitions and Application Scenarios — Mobile Systems M

https://portal.azure.com/

Create the loT Hub (2/3)

Home New

loT hub

Microsoft

Basics Networking Management Tags Review + create

Create an loT hub to help you connect, monitor, and manage billions of your loT assets. Learn more

Project details

Choose the subscription you'll use to manage deployments and costs. Use resource groups like folders to help you
organize and manage resources.

Subscription* ® ’ Internal use v }
Resource group * (O ‘ v ’

Create ne
Region * (O ‘ . '
loT hub name* © ’ Enter a name for your hub ’

Review + create Pre Next: Networking > Automation options

loT Definitions and Application Scenarios — Mobile Systems M

Create the loT Hub (3/3)

Subscription: choose the Free tier one.

Resource group: choose the option to create a new one and select a
name. This is gonna be used for all the resources allocated in this lab.

loT Hub name: unique name for the hub utilized to create the
connection.

Region: region where is located the hub.

loT Definitions and Application Scenarios — Mobile Systems M

Register the 10T Edge device (1/2)

We want to create a device identity, which is a
«virtual» version of the edge device. It has the
same properties of the real device and Is
connected to it trough a connection string.

1. In the Azure CLI we enter the following
command to create an EdgeDevice.

create --device-id myEdgeDevice --edge-enabled --hub-name {hub name}

loT Definitions and Application Scenarios — Mobile Systems M

Register the loT Edge device (2/2)

2. With the creation of the device also the
connection string and the shared key have been
created. Insert the next command to see the
connection string that will be required later in the
lab

connection-string show --device-id myEdgeDevice --hub-name {hub name}

{
"connectionString": "HostName ={hub_name}.azure-devices.net;
Deviceld=myEdgeDevice;
SharedAccessKey={Key}"

}

loT Definitions and Application Scenarios — Mobile Systems M

Install Azure loT Edge on device(1/3)

Edge runtime Is what makes a device an loT edge
device. It can be installed in different types of
machines, in this case we are going to use a
Raspberry Pi.

~Irst we are going to set and download microsoft
package configuration

curl https://packages.microsoft.com/config/debian/stretch/multiarch/prod.list
> ./microsoft-prod.list

sudo cp ./microsoft-prod.list /etc/apt/sources.list.d/

curl https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor >
microsoft.gpg

sudo cp ./microsoft.gpg /etc/apt/trusted.gpg.d/

loT Definitions and Application Scenarios — Mobile Systems M

Install Azure 10T Edge on device(2/3)

Now we are going to install the container engine that will
host lIoT edge services and the runtime.

Moby engine is the only supported container engine for loT
edge, altough is based on Docker and is compatible with
Docker Image

sudo apt-get update
sudo apt-get install moby-engine
sudo apt-get install aziot-edge

loT Definitions and Application Scenarios — Mobile Systems M

Install Azure IoT Edge on device(3/3)

Once all the software needed is installed the connection
string we produced earlier has to be set in the
/etc/aziot/config.toml config file.

provisioning:

source: "manual”
device_connection_string: "<ADD DEVICE CONNECTION STRING HERE>"

After a restart our edge device Is ready to use.

sudo iotedge config apply

loT Definitions and Application Scenarios — Mobile Systems M

Deployment of the module

After the creation of
the hub and the
Installation of the
runtime, we want to
deploy remotely
i the module from
Azure portal to the
loT device

Azure loT Edge runtime

loT Definitions and Application Scenarios — Mobile Systems M

Deployment of the module

raspEdge »
provahub

1. Log in to Azure portal, go to your IoT hub ->
Automatic Device Management -> loT Edge
2. Select the device ID and then “set modules”

loT Definitions and Application Scenarios — Mobile Systems M

De

ployment of the module

At this point, we will follow the workflow to deploy a

MOG
tem
malr

ule, for this demo we used a simulated
perature sensor already present in the
Ketplace. To use it we click «<ADD» and then

malr

Ketplace module. When we finish the flow

under the tab «modules» we should see two more
modules in addition to the edgeAgent

Type Specified in Deployment

loT Edge System Module

loT Edge System Module

loT Edge Custom Module

loT Definitions and Application Scenarios — Mobile Systems M

Read the data

The simulated sensor Is up and running.
Now, we want to write a script that connects
to the Hub and reads the data simulating the
cloud layer. First we need to note this
connection parameters

az iot hub show --query properties.eventHubEndpoints.events.endpoint
--name {YourloTHubName}

az iot hub show --query properties.eventHubEndpoints.events.path --
name {YourloTHubName}

az iot hub policy show --name service --query primaryKey --hub-name
{YourloTHubName}

loT Definitions and Application Scenarios — Mobile Systems M

Read the data

CONNECTION_STR =
fEndpoint={EVENTHUB_COMPATIBLE_ENDPOINT}/;\
SharedAccessKeyName=service;\
SharedAccessKey={IOTHUB_SAS KEY};\
EntityPath={EVENTHUB_COMPATIBLE_PATH}'

client = EventHubConsumerClient.from_connection_string(
conn_str=CONNECTION_STR,
consumer_group="$default"

)

The parameters will form the connection string with
which we create a consumer for the hub.

loT Definitions and Application Scenarios — Mobile Systems M

Read the data

try:
with client:
client.receive_batch(

on_event_batch=on_event_batch,
on_error=on_error)
except Keyboardinterrupt:
print("Receiving has stopped.")

In order to consume the events from the hub we
have to invoke the method «receive batch».

The arguments are two callback functions that will
be executed depending on the success or the
failure of the invocation

loT Definitions and Application Scenarios — Mobile Systems M

Read the data

def on_event_ batch(partition_context, events):
for event in events:

print("Telemetry received: ", event.body as str())
partition_context.update checkpoint()

The callback firstly consumes all the event
received from the hub, in this case just printing the
body of the message, and then updates with a
checkpoint for the next call of the method

loT Definitions and Application Scenarios — Mobile Systems M

Alma Mater Studiorum — University of Bologna
CdS Laurea Magistrale (MSc) in
Computer Science Engineering

hands on

EDGEXFOUNDRY

Gianluca Rosi
gianluca.rosi3@unibo.it

loT Definitions and Application Scenarios — Mobile Systems M

mailto:gianluca.rosi3@unibo.it

What's EdgeX Foundry

« It's a multi-platform, open .
source software (written in
Golang), dedicated to

Industrial lloT

communication protocol

uniformation

Freshly developed from
Dell code-base for their
own edge gateways and
hosted by the Linux
Foundation as a project
on LF Edge.

LILF

~DGE

EDGEXFOUNDRY

loT Definitions and Application Scenarios — Mobile Systems M

How does it work?

« The Core Services are coordinating every event and their reaction, based on
the stored knowledge.

69) —= —= KEY
N —
CXEETE.

REPLACEABLE REFERENCE SERVICES |

NORTHBOUND INFRASTRUCTURE AND APPLICATIONS |

LOOSELY-COUPLED MICROSERVICES FRAMEWORK
CHOICE OF | CONTAINER DEPLOYMENT ‘ | DEVELOPER GUI |

PROTOCOL
REVERSE APPLICATION SERVICES
PROXY <
| CONFIGURABLE APPLICATION SERVICES APPLICATION SERVICES ‘ | | | ADDITIONAL SERVICES ‘ | ‘ o

SUPPORTING SERVICES

| RULES ENGINE | ALERTS & NOTIFICATIONS ‘ ‘ SCHEDULING | | ADDITIONAL SERVICES | | |

CORE SERVICES

@ . ALLMICROSERVICES INTERCOMMUNICATE VIA APIS c-orviriiiiiniiimien o e

SECURITY
ADDITIONAL SECURITY SERVICES

CORE DATA g METADATA g REGISTRY& ConFic | @

DEVICE SERVICES (ANYCOMBINATION OF STANDARD OR PROPRIETARY PROTOCOLS VIA SDK)

‘.LN!OV!DIAH!S.LINSW ‘ | ‘ | S3DIAYIS TVYNOLLIAAV |
LNIWIOVNYI

ADD'LDEVICE
SERVICES

SECRET
STORE BACNET ZIGBEE BLE MQTT

| SNMP

VIRTUAL

REST

OPC-UA

MODBUS

A
(&) (1) s Q) () 3 3). —
Ums& § 0 wboa@

SOUTHBOUND DEVICES, SENSORS AND ACTUATORS

- Messages are flowing from bottom to top and viceversa, making these 4
microservices act as interface among the north-side and south-side

loT Definitions and Application Scenarios — Mobile Systems M

Core Data

It stores all data sent Once received. events A scheduled work is in
through EdgeX framework are then published via charge to clean correctly
(may be disabled for stream- ZeroMQ to Application exported data, thus to
only) with Redis Services. free memory for new

messages.

sensor reading(s) RED indicates unhappy/error alternate paths

. Device Core Meta Message
i =
(periodically)
IS

Normalize to EdgeX Event/Reading records
4
request to add Event/Reading records

associated to the Device »
[REST POST]

Database not available [REST GET]

[503 service not avaoilabls]

Device not known

[404 not found status]

Database not available

[503 service not available]

send Event/Reading to message bus for additional processing »

Event ID
[HTTP 202 status code &
dotobase key]

Configurable and
may not always be
on (on by default)

loT Definitions and Application Scenarios — Mobile Systems M

Core Metadata

Stores the knowledge
of every registered

device and sensors, _: 1

id (string UUID d |
oreCommands —
d (strin UU d |

this lets the framework - ‘_ \
to know which T
resources are - “
available.

Still based on Redis,

device’s profile hasto =
be provided in YAML
files.

loT Definitions and Application Scenarios — Mobile Systems M

Core Command

This microservice is a
proxy service for
action requests from
the (north) exposed
REST API to the
Device Services,
which are the only in
charge to directly talk
to devices.

Metadata microservice
provides all Core
Command knowledge

loT Definitions

Codes and errors are not
enumerated at this time to
allow for non-HTTP, but it is

DeviceProfile

d (string UUID; database generated)
unique for meta data)

name |

expected these will follow

rer (string) t is resp rot oort part
Client is respons or protocolfhost/port parts HTTP standards for REST calls
Service is responsible for service part

manuf

of ProfileResource)
v of Command)

coreCommands{a

1 ‘
TTP status code)

hat describes the response)
expectedValues(array of string) - matching a value descriptor

0. |
- 1.
1 7
gat

commands

d (string UUID; database generated)
igue for device profile) - e expectedValues
e (each expectedValues must match VD name)
1 rd
action e
put response

Q.1

Put Vahmoaseiptar
—action— t

. R path (string; partial URL see note)
paramaterNames (List of value descriptor N
names) url (string for requests
= response |amray of Reponse)

id (string UUID; database generated)
timestamp)

ing; human readable)

— time stamp)
perometerfames___ ; timestam pjname (string; unique; ex: CurrentTemp)

ng; descriptor name)

ace; minum value allowed)

min {

max [interface; maximum value allowed)
rface; used for Uls; not for seeding core data)
e |

Meta Data Command

nd Application Scenarios — Mobile Systems M

Registry and Config

The EdgeX registry and health check
configuration service provides
other EdgeX Foundry micro .
services with information [reister query register
about associated services |

within EdgeX Foundry (such S invoke o
as location and status) and

configuration properties (i.e. -

: . health check
Registry

a repository of initialization Registry:

and operating values) microservices status and health monitor
(Consul)
Config:

usually provided in TOML file, useful for
static parameters on microservices

loT Definitions and Application Scenarios — Mobile Systems M

https://docs.edgexfoundry.org/1.3/getting-started/quick-start/

loT Definitions and Application Scenarios — Mobile Systems M

https://docs.edgexfoundry.org/1.3/getting-started/quick-start/

Installing EdgeX Foundry with Docker

This tutorial is based on a Linux env. (Kubuntu 20.04)
Suggestion: it's ok to use a VM with as little as 2 cores and 2GB of RAM

The fastest way to start running EdgeX is by using pre-built Docker images. To use them
you'll need to install the following:

1. Docker engine docker.com/get-started

Docker Compose docs.docker.com/compose/install

2
3. download / save the latest docker-compose file and rename
4

issue command to download and run the EdgeX Foundry Docker images from Docker
Hub:

~$ curl
https://raw.githubusercontent.com/edgexfoundry/develo
per-scripts/master/releases/hanoi/compose-files/docker-
compose-hanoi-no-secty.yml -o docker-compose.yml

~$ docker-compose up -d

loT Definitions and Application Scenarios — Mobile Systems M

https://www.docker.com/get-started
https://docs.docker.com/compose/install/

loT Definitions and Application Scenarios — Mobile Systems M

From data sources
to events

Device Service

=

Qb

b S

physical IoT Internet Device —
device/sensor Gateway We_b Manager oftware
sernvice Sensor

software abstraction of physical devices:

pre-defined or custom Device Services (SDK provided) allows to translate
device’s

communication protocols to a standard message (event) readable by EdgeX
Foundry framework.

« This allows to register the source device and automatically add metadata on
its every lecture/message.

docs @ https://docs.edgexfoundry.org/1.3/microservices/device/Ch-DeviceServices/

loT Definitions and Application Scenarios — Mobile Systems M

https://docs.edgexfoundry.org/1.3/microservices/device/Ch-DeviceServices/

Connect a device with Modbus and MQTT (1)

Add in the descriptor file the device services (already in the EdgeX framework), with only a 2-
space indent on the first line (be careful to maintain the proposed indentation)

docker-compose.yml

device-modbus:

image: edgexfoundry/docker-device-
modbus-go:1.2.1

ports:

- 127.0.0.1:49991:49991/tcp
container_name: edgex-device-modbus
hostname: edgex-device-modbus
networks:

edgex-network: {}
environment:

[chk the provided file]
depends_on:

- data
- command

device-mqtt:

image: edgexfoundry/docker-device-mqtt-
go:1.2.1

ports:

- 127.0.0.1:49982:49982/tcp
container_name: edgex-device-mqtt
hostname: edgex-device-mqtt
networks:

edgex-network: {}
environment:

[chk the provided file]
depends_on:

- data
- command

loT Definitions and Application Scenarios — Mobile Systems M

Connect a device with Modbus and MQTT (2)

Enable from the descriptor file the device services (already in the EdgeX
framework)

~$ docker-compose up -d device-mqgtt

~$ docker-compose up -d device-modbus

loT Definitions and Application Scenarios — Mobile Systems M

loT Definitions and Application Scenarios — Mobile Systems M

Register a device by a Device profile (Modbus)

HMIsim.ym|
name: "HMI 6k"
manufacturer: "SACMI"
model: "XYZ145"
description: "Dispositivo HMIsimulator"

It's a YAML file that can be labels:

. . - "modbus™
sent in anytime when EdgeX - "interface”
. . - "simulator”
IS Up and runnlng. The deviceResour\ces:
upload coincides with the name: "DatiCiclo”
device registraﬁon description: "Dati ciclo"
] attributes:
{ primaryTable:
 This file contains "HOLDING_REGISTERS", startingAddress: "2"}
) properties:
metadata and operations va%uﬁz S le: "1}
. e: , scale:
supported by the device unitst

{ type: "String", readWrite: "R",
defaultValue: "min"}

docs @ https://docs.edgexfoundry.org/1.3/microservices/device/profile/Ch-DeviceProfileRef/

loT Definitions and Application Scenarios — Mobile Systems M

https://docs.edgexfoundry.org/1.3/microservices/device/profile/Ch-DeviceProfileRef/

[...cont] N
deviceCommands: é

name: "DatiCiclo" ;
oot HMIsim.ym|
- { index: "1", operation: "get", deviceResource: "DatiCiclo" }
coreCommands:

name: "DatiCiclo"

get:
path: "/api/vl/device/{deviceld}/DatiCiclo"
responses:

code: "200"
description: "Get the DatiCiclo"
expectedValues: ["DatiCiclo"]

code: "500"
description: "internal server error"
expectedValues: []

Now we have to make EdgeX be aware of a “future” device with the descripted
features by uploading that description file (CLI command provided in
CLI_JSON_desc.txt)

~$ curl http://localhost:48081/api/vl/deviceprofile/uploadfile \
-F "file=@HMIsim.yaml"

loT Definitions and Application Scenarios — Mobile Systems M

Run the devices (Modbus)

This is a simulator of a real production machine.

Unpack the zip file, install and run with the following commands:

~$ python3 setup.py install

~$ hmi-simulator conf/config.yaml

loT Definitions and Application Scenarios — Mobile Systems M

~$ curl http://localhost:48081/api/vl/device -H "Content- Then we can
Type:application/json" -X POST \ .
d ' regls_ter a ne_vv
"name" :"HMI Simulator", physical device

"description”:"Dispositivo HMI_ simulator",
"adminState" : "UNLOCKED",
"operatingState":"ENABLED",

"protocols":{

"modbus-tcp":{ N\
"Address" : "localhost", é

"Port" : "2502", ,
"UnitID" : "11" CLI_json_desc.txt

CLI command is in

}
}s
"labels":[
"interface",
"simulator",
"modbus TCP"
1,
"service":{"name":"edgex-device-modbus"},
"profile":{"name":"HMI_6k"},
"autoEvents": [
{
"frequency":"3s",
"onChange" :false,

loT Definitions and Application Scenarios — Mobile Systems M

loT Definitions and Application Scenarios — Mobile Systems M

Read the devices (Modbus) [1]

Let's check that our generator is working:

~$ modpoll -r 5000 -c 6 -p 2502 127.0.0.1

modbusdriver.com/modpoll.html

loT Definitions and Application Scenarios — Mobile Systems M

https://www.modbusdriver.com/modpoll.html

Read the devices (Modbus) [2]

Now we can check data flowing through EdgeX by checking the device-
modbus log and querying the core-data to get some readings with an HTTP

GET call to*:

http://localhost:48080/api/vl/event/{start}/{end}/{limit}
level=INFO ts=2021-04-23T14:12:30.577630769Z app=edgex-device-modbus source=modbusclient.go:83
msg="Modbus client GetValue's results [0 112]"

level=INFO ts=2021-04-23T14:12:30.577655427Z app=edgex-device-modbus source=driver.go:151 msg="Read
command finished. Cmd:DatiCiclo, Origin: 1619187150577644281, Uint16: 112 \n"

level=INFO ts=2021-04-23T14:12:30.580736892Z app=edgex-device-modbus source=utils.go:94 Content-
Type=application/json correlation-id=aece9794-0d15-49f6-8ea9-131689df8437 msg="SendEvent: Pushed

event to core data"

source=modbusclient.go:83 msg="Modbus client GetValue's results [0 112]"
30.577655427Z app=edgex-device-modbus source=driver.go:151 msg ad command finished. Cmd:DatiCiclo, Origin: 1619187150577644281, Uintl6: 112 \n"
30.5807368927 app=edgex-device-modbus source=utils.go:94 Conte pe=application/json correlation-id=aece9794-0d15-4976-8ea9-131689df8437 msg="SendEvent: Pushed event to ¢

*reference @ https://app.swaggerhub.com/apis/EdgeXFoundryl/core-data/l.2.1#/default/

loT Definitions and Application Scenarios — Mobile Systems M

https://app.swaggerhub.com/apis/EdgeXFoundry1/core-data/1.2.1#/default/

Clean shutdown & utilities

~%$ docker-compose ps -a

~$ docker-compose logs --follow <container_id>
~$ ~C
~% docker-compose stop

« Consul Ul si at localhost:8500/uli

« Every HTTP request can be executed by your favourite HTTP API client app
(like Postman or Insomnia)

 API reference is at https://app.swaggerhub.com/search?type=API&owner=EdgeXFoundry1

« Hands on based on the formal tutorial at
https://docs.edgexfoundry.org/1l.3/examples/LinuxTutorial/EdgeX-Foundry-tutorial-verl.1.pdf

48080 Core Data
48081 Core Metadata
48082 Core Command

loT Definitions and Application Scenarios — Mobile Systems M

https://app.swaggerhub.com/search?type=API&owner=EdgeXFoundry1
https://docs.edgexfoundry.org/1.3/examples/LinuxTutorial/EdgeX-Foundry-tutorial-ver1.1.pdf

To sum up

IT Level
Single plant Local Cloud
/\ Azure Hands-on
OT Level
Single Edge Node
production line
| EDGEXFIUNDRY Hands-on

Machinery IOX'I /ob

loT Definitions and Application Scenarios — Mobile Systems M

