

Mobile Systems M

Alma Mater Studiorum – University of Bologna CdS Laurea Magistrale (MSc) in Computer Science Engineering

Mobile Systems M course (8 ECTS)

II Term – Academic Year 2019/2020

09 – Application Domains and Possible Scenarios for Project Activities

Paolo Bellavista paolo.bellavista@unibo.it Luca Foschini luca.foschini unibo.it

http://lia.disi.unibo.it/Courses/sm1920-info/

Examples of Application Domains & Possible Scenarios for Project Activities

Examples of recent and relevant *application domains* for mobile services/systems and case studies towards *possible project activities*:

- Social-aware resource sharing in spontaneous networks
- ParticipAction, crowdsensing and participatory task assignment in smart city environments
- Vehicular traffic management enabled by "traditional" and smartphone-based sensing (vehicle2vehicle and vehicle2RSU communications)
- Middleware for Machine-to-Machine (M2M) communications, fog computing oriented, for efficiency, locality optimizations, batching/aggregation, edge/fog computing, industrial cloud, and container optimizations (e.g., migration)

RAMP Middleware for Spontaneous Networking

Real Ad-hoc Multi-hop Peer-to-peer (RAMP)

Impromptu interconnection of fixed and mobile nodes

- Not only to achieve Internet connectivity (Always Best Connected -ABC), but also to support users' willingness to share contents, resources, and services
- Packet dispatching at application level over het platforms
- Management of non-coordinated IP address spaces

RAMP supports creation and mgmt of spontaneous networks

- multi-hop end-to-end connectivity
- Users invoke and offer services (peer-to-peer)
- APIs to support development of new services in a simplified way

Example: Application-layer Multimedia Re-casting

- 1) Nodes perform end-to-end *cooperative splitting* of multimedia paths into differentiated segments
 - Lower traffic on intermediate nodes
- 2) Nodes perform
 cooperative
 monitoring of stream
 quality (packet loss, jitter,
 ...) and dynamically
 adapt flows (priority-based
 video frame dropping)
 - fine-grained and persegment management to reduce needed throughput close to bottlenecks that are identified at runtime

But also example of federation of *UPnP localities*, ...

From Social Network Aggregation to Federated Social Networks

Social network aggregation

Some aggregation services already start to emerge: **aggregate messages**, **status feeds**, **content**, **and friends** from different and heterogeneous standalone social apps

For instance, significant feature of *cross-posting*In this approach, *users should have multiple accounts* to the different social netw apps

Federated social networks

- ☐ Users can communicate *across domains* with *globally unique identifiers* (one single account for all social netw apps)
- ☐ **User data portability** (as for number portability in cell comms, favors competition and migration between social netw app providers)
- ☐ Greater scaling and robustness of the overall Social Web
- ☐ Important industrial and "strategic" trend supported by relevant players (industries, governments, communities, ...)

Federated Social Networks

Many related technological standards under discussion and definition:

OpenSocial, WebFinger, Salmon, ActivityStreams, PubSubHubbub, XMPP, ...

Social Web Landscape

Social-aware Resource Sharing in Spontaneous Networks

Based on the scenarios and technologies sketched above, **to contribute to enable resource sharing** (typically multimedia contents) among **different localities**

- Localities as domestic islands (UPnP and DLNA devices, experimental home gateways by TIM and CISCO, WiFi Direct connectivity, ...)
- Island federation as automated federation based on social metadata dynamically extracted from primary social networking applications via standard protocols
- Unique identity for users
- Content filtering offered based on context and social profile
- **.**...

ParticipAction: Crowdsensing

- Collaboration with NJIT and several Brazilian Universities
- □ Availability of a good set of Android devices and users for wide-scale living lab (300)
- Monitoring and crowdsensing for smart city
- "Smart" assignments
 of participatory tasks,
 also with economic
 incentives

ParticipAction: Task Assignemnt

- Determination and
 experimentation of smart policies
 for task assignment
- □ (pseudo) optimization of reliability in task execution, latency, and economic cost

ParticipAction: CoVID-19?

- Determination and experimentation of smart policies for task assignment
- (pseudo) optimization of reliability in task execution, latency, and economic cost

Vehicular Traffic Management

Cars are relevant example of mobile autonomous sensors and they can coordinate themselves lazily by exploiting wireless communications

- Cars perform
 opportunistic sensing in urban environments and maintain local data
 - Collaborative dissemination of metadata based on local decisions
 - Possibility of emerging
 behaviors to satisfy
 application-specific
 requirements (e.g., query
 completeness, response time,
 overhead, ...)

Previous Experience with MobEyes (UCLA)

Urban monitoring via vehicular sensor networks that are opportunistic and autonomous

- Opportunistic encounters of "regular" cars equipped with sensors and P2P wireless connectivity
- Sensor mobility is of course «not-directed»

Differences wrt WSN:

- Less stringent constraints on memory, storage, and power consumption
- Wide-scale deployment

Application scenario:

- Post-crime investigation (e.g., after terroristic attack)
- Cars with A/V sensors
- Metadata summaries

Vehicular Traffic Management

Idea of *using the same "regular" citizen cars* to monitor urban vehicular traffic, in areas with *relatively high density* (in integration and synergy with existing monitoring systems)

Goals:

- Minimization of traffic jams and global travelling time
- Minimization of pollutant emission
- Maximization of traffic fluidity and municipality-level utility functions

Approach: to exploit sensors already available at vehicles, standard frameworks emerging in automotive area, but also onboard sensors by passengers' smartphones...

Vehicular Traffic Management

Possible directions for project activities:

- Study, analysis, and simulation tests about standards for vehicle2vehicle or vehicle2infrastructure (towards road side units) communications
- Exploitation and integration of smartphones (sensors + peer2peer communications + comm. towards infrastructure) to the purpose of vehicular traffic estimation
- Employment of peer2peer communications (rather than to a centralized infrastructure server) to harvest, aggregate, and process monitoring data in a decentralized way
- Exploitation of *locality principle*, evolution of geo-tagged historical data, trust level obtained at runtime by participants, ...
- **.**.

M2M Middleware

Middleware for efficient communication in Machine-to-Machine (M2M) applications

- Internet of Things and Cyber-Physical Systems (sensors+actuators) scenarios
- Dynamic identification of localities (clustering)
- Data batching/aggregation
- Efficient integration with (virtualized, global) cloud computing resources
- Edge cloud computing
- Fog computing
- Distributed machine learning, reinforcement learning, federated learning, ...

Use Case #1: Predictive Diagnostics and Optimization of Manufacturing Processes

Failure prevention/prediction and planning of efficient maintenance operations through Machine Learning-enabled techniques

- Not only Al...
- Efficiently interconnected IoT
- Industrial cloud and compliance with standards + best practices
- Edge cloud computing

Use Case #1: **Predictive Diagnostics**

- best practices

Robot

Control

Industry 4.0

Smart Factory

HMI

Use Case #1: Prescriptive Analytics and Optimization of Manufacturing Processes

- Digital Twins of production plants
- Automated configuration of manufacturing production lines (system of systems)
- Dynamic reconfiguration of production lines

Use Case #1: Prescriptive Analytics and Optimization of Production Processes

Optimization of product quality and process efficiency based on soft/hard real-time IoT monitoring and machine learning

Use Case #2: Virtual and Augmented Reality

VIRTUAL REALITY (VR)

Completely digital environment

Fully enclosed, synthetic experience with no sense of the real world.

AUGMENTED REALITY (AR)

Real world with digital information overlay

Real world remains central to the experience, enhanced by virtual details.

MERGED REALITY (MR)

Real and the virtual are intertwined

Interaction with and manipulation of both the physical and virtual environment.

Virtual and Augmented Reality for Logistics

Applic

Virtual and Augmented Reality for Maintenance

Models visualized to integrate knowledge about the «real system» in real-time

Also storage and tracking of previous history of maintenance interventions

TYPE OF ACTION

INNOVATION ACTION

PROJECT REFERENCE

857191

START/END

SEPTEMBER 2019 – AUGUST 2022

TOTAL COSTS

€ 20,029,818.75

EU CONTRIBUTION

€16,422,552.01

CALL IDENTIFIER

H2020-ICT-2018-2020

TOPIC

ICT-11-2018-2019 - HPC AND BIG DATA ENABLED LARGE-SCALE TEST-BEDS AND APPLICATIONS

COORDINATOR

BONFIGLIOLI RIDUTTORI

Concept and approach.

- *In. IoTwins is an EU project that will work to lower the barriers for the uptake of Industry 4.0 technologies to optimize processes and increase productivity, safety, resiliency, and environmental impact
- *In. IoTwins approach is based on a **technological platform** allowing a simple and low-cost access to big data analytics functionality, Al services, and edge cloud infrastructure for the delivery of digital twins in manufacturing and facility management sectors
- "In. The approach is demonstrated through the development of 12 large scale testbeds, organized in three application areas: manufacturing, facility management, and replicability/scale up of such solutions

20

M€ total value

16

M€ EU Funding **23**

Partners

1

Platform

12

Testbeds

3

Application areas

Platform and services.

All the IoTwins testbeds share the same methodology, grounded on the concept of **distributed IoT-/edge-/cloud-enabled hybrid twins, to replicate complex systems**, with the ambition of predicting their dynamics and temporal evolution

Key elements:

- *II. A full-fledged platform enabling easy and rapid access to heterogeneous cloud HPC-based resources for advanced big data services
- "In. Al services to simplify and accelerate the integration of advanced Machine Learning algorithms, physical simulation, on-line and off-line optimization into distributed digital twins
- **"In.** Advanced edge-oriented mechanisms, tools, and orchestration to support Quality of Service in the runtime execution of the distributed digital twins

Digital Twins concept in IoTwins

Distributed Training and Control in IoTwins

Testbeds.

4 industrial testbeds calling for predictive maintenance services (time to failure forecasting and generation of maintenance plans to optimize costs)

- "In. Wind turbine predictive maintenance | Bonfiglioli Riduttori, KK Wind Solutions
- "II. Machine tool spindle predictive behavior | FILL
- "In. Predictive maintenance for a crankshaft manufacturing system | ETXE-TAR
- "In. Predictive maintenance and production optimization for closure manufacturing | GCL International

Testbeds.

3 testbeds calling for identification of criticalities, optimization techniques to provide efficient facility management plans, operation optimal schedules, and renovation/maintenance plans

"In. NOU CAMP - Sport facility management and maintenance | Futbol Club Barcelona

"In. EXAMON - Holistic supercomputer facility management | CINECA

"In. Smart Grid facility management for power quality monitoring | SIEMENS

Testbeds.

5 testbeds to demonstrate the <u>replicability and scalability</u> of both IoTwins solutions and the former manufacturing and facility management testbeds

- "In. Patterns for smart manufacturing for SMEs | Centre Technique des Industries Mécaniques
- "In. EXAMON replication to other datacenters facilities | Istituto Nazionale di Fisica Nucleare, Barcelona Supercomputing Center
- **11.** Standardization/homogenization of manufacturing performance | **GCL International**
- "In. NOU CAMP replicability towards smaller scale sport facilities | Futbol Club Barcelona
- "Innovative business models for IoTwins PaaS in manufacturing | Marposs

Partners.

M Bonfiglioli

Coordinator

Edge Computing for IoT Apps: Quality Requirements

Towards the vision of efficient edge computing support for "industrial-grade" IoT applications

- Latency constraints
- Reliability
- Decentralized control
- Safe operational areas
- Scalability

The Internet of Thing Architecture and Fog Computing Data Center, Cloud Hosting IoT analytics Applications Core IP/MPLS Core IP/MPLS, Security, QoS, Multicast Thousands Multi-Service Field Area Network Edge Distributed 3G/4G/LTE/WIFI Dozens of Thousands Embedded Smart Things Network Systems and

Edge Computing for IoT Apps: Some Research Directions

- 1. Architecture modeling
- 2. Quality support even in virtualized envs
- 3. Scalability via hierarchical locality management
- 4. Distributed monitoring/control functions at both cloud and edge nodes to ensure safe operational areas

But also:

- Data aggregation
- Control triggering and operations
- Mgmt policies and their enforcement

•

The Internet of Thing Architecture and Fog Computing

