

Mobile Systems M

Alma Mater Studiorum – University of Bologna CdS Laurea Magistrale (MSc) in Computer Science Engineering II Term – Academic Year 2019/2020

Mobile Systems M (8 ECTS)

Paolo Bellavista paolo.bellavista@unibo.it

Luca Foschini luca.foschini@unibo.it

http://lia.disi.unibo.it/Courses/sm1920-info/https://www.unibo.it/sitoweb/{paolo.bellavista, luca.foschini}

Course Intro - Mobile Systems M

1

Mobile Systems M in a Single Slide

Pre-requisites: none

But the contents of the "old" courses of computer networks (Reti di Calcolatori T and, even if partially, Infrastructures for Cloud Computing and Big Data M), Sistemi Operativi T, and Tecnologie Web T are *certainly useful*

Examination modes: long © oral exam (with the possible discussion of a personal project – optional; also opportunity of Project Activity for 4 ECTS)

Course Goals (in extremely short): in-depth competence on models and solutions for state-of-the-art mobile systems, for mobile services and applications provisioned on top of them, and for the support (middleware) needed for the development and runtime management of them. Know-how about methodologies, models, technologies, and implementations to design, implement, deploy, and runtime evaluate mobile services

Course Intro - Mobile Systems N

Mobile Systems M: Output Skills and Abilities (1)

Output skills and abilities:

□ Supplements of mobile communications and systems

- > introductory elements of propagation and fading models
- overview of primary characteristics of *IEEE 802.11* (infrastrucured, ad hoc WiFiDirect and mesh-oriented)
- > overview of primary characteristics of *cellular networking*
- > overview of primary characteristics of *IEEE 802.15*
- mobile ad hoc networks (MANET) and main related routing protocols
- mobility management, Mobile IP, iTCP, and positioning techniques

□ The mobile middleware concept

- platform examples, with in-depth technical presentation of Android features and programming model
- ≥ ...

Course Intro - Mobile Systems N

3

Mobile Systems M: Output Skills and Abilities (2)

□ The mobile middleware concept

- support technologies (SIP, edge cloud, 5G infrastructure, discovery in mobile environments, ...)
- > advanced topics such as context awareness, service composition, and overlay networking
- > publish/subscribe
- > data synchronization

□ Application areas and domain-specific deployments

More «traditional» such as

- location-aware and context-aware services
- > context management and smart spaces

. . .

Course Intro - Mobile Systems M

4

Mobile Systems M: Output Skills and Abilities (3)

□ Application areas and domain-specific deployments

Or more «visionary» such as

- vehicular and/or high-mobility networks, Delay Tolerant Networking, opportunistic networking
- efficient integration mobile-to-cloud, cloudlet, fog computing, edge computing, virtualization and «containerization»
- quality of information and sensed data in Internet-of-Things, Value of Information
- edge/fog computing for Industry4.0 manufacturing production lines, predictive/proactive maintenance, federated machine learning, ...
- > cooperative autonomous driving (fleet-oriented)
- > ..

Course Intro - Mobile Systems N

5

Mobile Systems M: Output Skills and Abilities (4)

In addition, the course will include:

- a few *guided lab exercises* about some topics and technologies described during lectures (horizontal and vertical handoff, Android, location-dependent services and positioning, Internet of Things management, cloudlets, ...). These exercises will be solved autonomously by the students, with the support and supervision of the teacher; they will exploit advanced simulation environments (e.g., ns-2/ns-3, Qualnet, and SUMO) and Android/Raspberry PI devices
- discussion of real/realistic case studies, in particular in the application domains of location/context-aware services, efficient loT-edge-cloud integration, and edge-enabled industrial loT
- possible additional seminars to present significant company case studies

Course Intro – Mobile Systems M

6

Mobile Systems M: Exam Modes and Dates

The exam will consist of:

- □ a **LONG oral interview**, of course ⑤ about the WHOLE technical programme of the course
- □ an optional discussion of *a self-developed optional*project (guided and negotiated with the teacher) on the design and implementation of middleware/applications that employ some technologies of primary interest for the course

The project, of course of *greater complexity in the case* ③, can be <u>associated</u> with a Project Activity (4 ECTS)

<u>Exam dates</u> (8 dates per year will be fixed; additional dates will be available at http://almaesami.unibo.it, where it is necessary to register for exams):

- □ First date *Thursday June 18, 2020*, 9:00am, teacher's office
- □ Second date *Thursday July 2, 2020*, 9:00am, teacher's office
- □ Third date Monday July 27, 2020, 9:00am, teacher's office

Course Intro - Mobile Systems M

7

Teaching Material

- Slides used during lecturing and during guided lab exercises (available for download from the course Web site; the slides will be uploaded progressively as advancing in the topics presentation)
- □ Suggested Textbooks:
 - > S. Tarkoma, *Mobile Middleware*, Wiley, 2009
 - A. Ravulavaru, Enterprise Internet of Things Handbook, Packt, 2018
 - Ke-Lin Du, M.N.S. Swamy, Wireless Communication Systems, Cambridge University Press, 2010
 - R. Meier, Professional Android 4 Application Development, Wrox, 2012
 - A. Goransson, Efficient Android Threading: Asynchronous Processing Techniques for Android Applications, O'Reilly, 2014
- Additional on-line sources:
 - > Public tutorials about Android, iOS, ns-3, fog05, ...
 - Mobile & Pervasive Computing course, Univ. Carnegie-Mellon; Mobile Computing course, Univ. Ohio; Pervasive Computing course, MIT; Mobile Computing course, Virginia Tech; Mobile Computing and Sensor Networks course, NJIT

Course Intro - Mobile Systems M

8

Lab Access and Receiving Hours

- □ Associated lab for autonomous exercises: Lab2
 (students can use it anytime the lab is not occupied for lecturing)
 Tools and instruments: usual IDEs, with particular emphasis on Android Studio, to develop middleware/applications for Android and iOS SDK, Ns-3 or Qualnet (simulators for any-layer protocols), SUMO (simulator for vehicular mobility) and real Android and Raspberry PI devices (a few units ⑤...)
- □ Further development and deployment tools (as well as additional material sources) will be mentioned and described when dealing with the related specific topics

□ Receiving hours:

- Bellavista Tue 2-4pm and Mon 9-11am (after II lecturing term) after appointment via email
- > Foschini Mon 4-6pm and Tue 11am-1pm after email c/o "new" DISI offices aule nuove building (close to 5.7 seminar room)
- > E-mail: paolo.bellavista@unibo.it, luca.foschini@unibo.it

Course Intro - Mobile Systems M

9

Teacher-Students Interaction

In addition to lecturing and receiving hours:

- □ The essential reference point is the course Website http://lia.disi.unibo.it/Courses/sm1920-info
- (possibly also) Course distribution list: it is a service of the UNIBO portal that allows sending (via e-mail) urgent comunications and additional material to registered students
 - Access through the same account of "mia e-mail" at: http://www.unibo.it/Portale/Servizi+online/Liste+distribuzione/default.htm
 - Distribution list name: sm1920-info

Course Intro - Mobile Systems M

10

Timetable

Generally:

- □ on Tuesdays, 4:00pm-6:45pm 5.4 seminar room
- □ on Thursdays, 3:30pm-6:15pm 5.2 seminar room

(any critical overlapping?)

Possible variations will be communicated promptly at the course Website and via the distribution mailing list

Course Intro - Mobile Systems M

44

11

Mobile Systems M

Let us start in an interactive and provocatory way...

- Examples of «interesting and innovative» mobile systems in 2020?
- Which research/work opportunities in mobile systems in 2020?
- Which OPEN research challenges in mobile systems in 2020?

ntro al Corso - Sistemi Mobili M

12

Why a Mobile Systems Course? Marketing Presentation © (1)

When I started this course in 2012, I added some justifications and motivations about:

- Suitability of acquiring competences and skills on mobile communications and services, mobile devices, smartphones,
- □ Emerging relevance of mobile wireless IoT and connected vehicles
- Suitability of focusing on Android

Motivations are still needed @ in 2020, after the technological and market evolutions of the last years?

And mobile systems are not only smartphones!

ourse Intro - Mobile Systems M

13

13

Why a Mobile Systems Course? Marketing Presentation © (2)

- Market trends in the last 5 years exhibit impressive growth of smartphones
 - Availability of very attractive and responsive applications
 - Browsers and multimedia players
 - Augmented/virtual reality, location/context-based services
 - Social networking apps
 - □ Gaming, ...
 - Hardware with increasing performance,
 - e.g., displays and CPUs
 - □ Connectivity (4/4.5/5G, Wi-Fi, Bluetooth, ...)
 - □ GPS, magnetoscopes, gyroscopes, sensors, .
 - SSD storage solutions
- ☐ Huge mass market
 - > See the following statistics...

Course Intro - Mobile Systems N

14

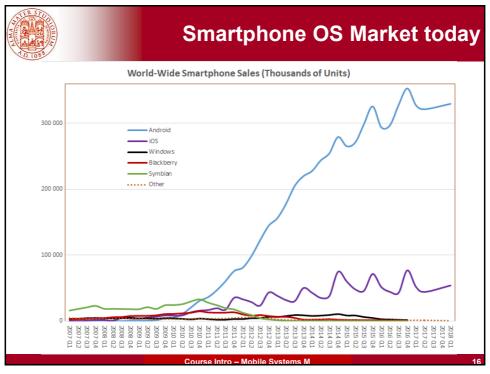
Smartphone OS Market

a Picture of 2011, which we probably have forgotten...

In 2011, the global market scenario was already under definition in a quite clear way:

- □ If compared with 2010, sales increased of 42% (previous year of 89%!)
- □ **Android devices** were the champions in sales in the last quarter of 2011 (growth of **615**% between 2010 and 2009)
- □ 115M units sold in 3Q11

OS/platform	3Q11 units	3Q11 Market share (%)	3Q10 units	3Q10 Market share (%)
Android	60490400	52.5	20544000	25.3
Symbian	19500100	16.9	29480100	36.3
iOS	17295300	15.0	13484400	16.6
RIM	12701100	11.0	12508300	15.4
Bada	2478500	2.2	920600	1.1
Microsoft	1701900	1.5	2203900	2.7
Others	1018100	0.9	1991300	2.5
Overall	115185400	100	81132600	100


Gartner, Nov. 2011

Source: Canalys

Course Intro - Mobile Systems N

15

15

Why a Mobile Systems Course: a bit more technical...

- Towards a definition of *mobile computing*, *context awareness* and *middleware*
- Why mobile computing is NOT AT ALL a commodity but a great open opportunity for research and business
- Mobile computing generates different requirements in design/implementation of middleware and sw applications
- Examples of highly innovative mobile middleware and services
- For instance, possible vision: "federated islands of edge-enabled, social-aware, context-aware pervasive mobile services"?

Course Intro - Mobile Systems M

18

Mobile Computing (1)

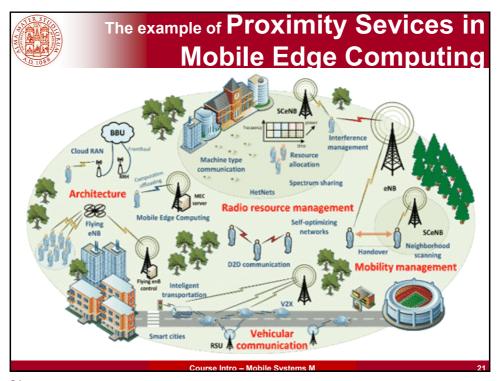
Mobile computing calls for an approach at *multiple layers* and with multiple competences/skills:

- Embedded **devices** (challenges for miniaturization, reduced energy consumption, ...)
- Wireless communications (IEEE 802.11a/b/g/s/..., Bluetooth, Bluetooth Low Energy, 5G, vehicular protocols, ...)
- □ **Software support platforms** (Android, iOS, SymbianOS, MS?, RIM?, ...)
- Energy management performed at the sw platform layer (middleware, application, ...)
- Management of multiple het wireless interfaces and handover at the sw platform layer
- Context management
- ...

Course Intro - Mobile Systems M

19

19




Mobile Computing (2)

- Cross-layer management of application requirements and resource allocation
- Support to infrastructure-based services
- Support to peer-to-peer services
- Support to mobile opportunistic and delay-tolerant services
- Support to mobile social-aware services
- Support to mobile cloud-integrated services in an efficient and smart way (in particular Internet of Things)
- And design, implementation, deployment and runtime management of all these classes of services!

Course Intro - Mobile Systems M

20

NOT a COMMODITY!

...

- **Cross-layer management** of application requirements and resource allocation
- Support to infrastructure-based services
- Support to peer-to-peer services
- Support to mobile opportunistic and delay-tolerant services
- Support to mobile social-aware services
- Support to mobile cloud-integrated services in an efficient and smart way (in particular Internet of Things)
- And design, implementation, deployment and runtime management of all these classes of services!

MIDDLEWARE + APPS

Course Intro - Mobile Systems N

23

23

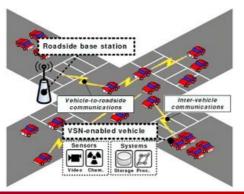
Middleware and Mobile Applications

Only to mention a few possible examples:

- Distribution of dynamically adapted multimedia streaming towards differentiated smartphones and mobile terminals
- Always Best Connected and Always Best Served
- Sensors, smart environments and associated dynamic adaption of context-aware services
- Collaborative urban monitoring (vehicular traffic, pollution, usage of vehicles/users that are intrinsically mobile, ...) – see MobEyes and COLOMBO
- Replication and delay-tolerant applications
- Resource sharing based on proximity see RAMP
- Resource sharing and social behaviors
- □ Efficient 5G and IoT integration through innovative mobilecloud, cloudlet, fog computing, ... approaches

Now some practical examples to start lightweight © with the course and, most relevant, to stimulate your creativity (not only apps and AppStores...)

Course Intro - Mobile Systems N


24

Monitoring Info Sharing in Vehicular Networks: MobEyes (1)

MobEyes

http://netlab.cs.ucla.edu/cgibin/usemod10/wiki.cgi?MobEyes

□ Vehicles perform opportunistic sensing of urban environment and keep sensed data locally

 Collaborative dissemination of metadata based on local autonomous decisions

■ Possibility of emerging
behaviors to satisfy
application-specific
requirements (e.g., query
completeness, response time,
overhead, ...)

Course Intro - Mobile Systems M

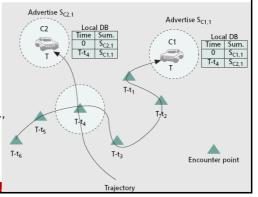
25

25

MobEyes (2): Basic Idea

Urban monitoring through vehicular networks of opportunistic and autonomous sensors

- Opportunistic meetings of "regular" vehicles equipped with sensors and wireless communications
- Sensor mobility is "not-directed"

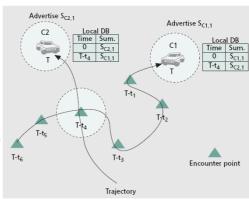

Notable differences wrt WSN:

- Less stringent constraints on memory, storage, and *power consumption*
- Wide-scale deployment

Application scenario:

- Post-crime investigation (e.g., after terrorism attack)
- Vehicles with A/V sensors
- Metadata summaries

Course Intro



MobEyes (3): Basic Idea

How to induce the desired *emerging behavior* with *minimal and lightweight* management operations?

- Innovative protocols for summary diffusion
- > Single-hop/k-hop passive diffusion
- > Single-hop active diffusion
- Innovative protocols for summary harvesting
- □ Bloom filters adoption
- Adaptive tuning of protocols depending on estimations/ predictions over local properties, e.g., node density
- □ Extensive **simulation work** in realistic deployment scenarios

Course Intro - Mobile Systems M

27

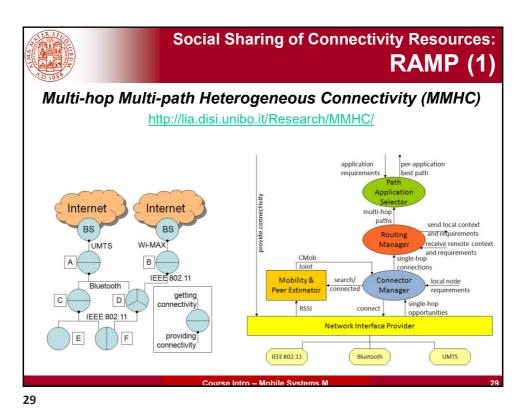
27

MobEyes (4): Protocols, Tradeoffs, and Bio-inspiration

Not only adaptive tuning of protocols for *summary diffusion* and *harvesting*

Goal of **best tradeoff** between **limited overhead limitato and app- specific requirements** (latency, completeness, ...) in wide-scale environments

How to **coordinate multiple agents** for metadata harvesting? Need for **minimal explicit coordination and minimal overhead**


Bio-inspired Protocols

- Metadata density (prop. vehicle density) and datataxis (inpired by chemotaxis di E.coli)
 Target zone found
 Arrival
- Differentiated foraging (Levy jump, biased jump, constrained walk, ...)
- □ Conflict resolution (via stigmergy, ...)

Lovy Biased Jump Constrained Walk

Conflicts, low yield

Course Intro - Mobile Syst

Social Sharing of Connectivity Resources: RAMP (2)

- Exploitation of multiple wireless interfaces at the same time in different het multi-hop paths, managed at the application level
- Incentives to collaborate and to share resources
- Based on innovative and lightweight context indicators, e.g., related to predictions of joint mobility, predictions of throughput, battery consumption, belonging to social groups, ...

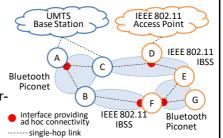
Additional info about MMHC/RAMP:

- http://lia.disi.unibo.it/Research/MMHC/
- http://lia.disi.unibo.it/Research/RAMP/
- P. Bellavista, P. Gallo, C. Giannelli, G. Toniolo, A. Zoccola: "Discovering and Accessing Peer-to-peer Services in UPnP-based Federated Domotic Islands", *IEEE Transactions* on Consumer Electronics, Vol. 58, No. 3, pp. 810-818, Aug. 2012
- P. Bellavista, A. Corradi, C. Giannelli: "Middleware for Differentiated Quality in Spontaneous Networks", *IEEE Pervasive Computing*, Vol. 11, No. 3, pp. 64-75, March 2012

Course Intro - Mobile Systems M

30

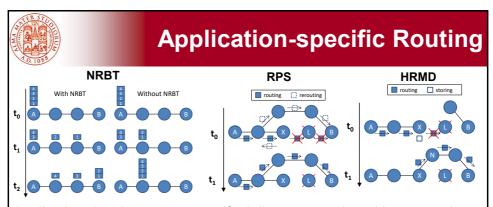
Social Sharing of Connectivity Resources: RAMP (3)


Real Ad-hoc Multi-hop Peer-to-peer (RAMP)

Impromptu interconnection of fixed and mobile nodes

- Not only to the purpose of Internet connectivity (Always Best Connected ABC), but also to support users' willingness to share contents, resources, and services
- > packet dispatching at the application layer over het platforms
- > Management of non-coordinated IP addressing spaces

RAMP supports the creation and management of **spontaneous networks**


- multi-hop end-to-end connectivity
- users invoke and offer services (peerto-peer)
- API to support the development of novel services in a simplified way

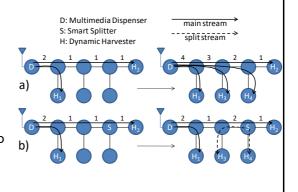
Course Intro - Mobile Systems M

31

31

Application developers can specify delivery strategies with *per-packet* granularity

- Non Reliable Bulk Transfer (NRBT): high performance, low overhead, low reliability. Based on packet splitting ("large" packets, e.g., for file sharing)
- Reliable Packet Streaming (RPS): to reduce disconnection issues, (limited) usage of additional resources on partipating nodes (many small packets, e.g., for multimedia streaming)
- Highly Reliable Message Delivery (HRMD): maximum availability for delay-tolerant services but at the expense of memory consumption (delivery of critical messages)


Course Intro – Mobile Systems M

32

Application-layer Multimedia Re-casting

- 1) Nodes perform end-to-end *cooperative splitting* of multimedia paths into different segments
 - > reduced traffic on intermediary nodes
- 2) Nodes perform
 cooperative
 monitoring of stream
 quality (packet loss, jitter,
 ...) and dynamically
 adapt traversing flows
 (priority-based video frame
 dropping)
 - fine-grained and persegment management to reduce needed throughput close to dynamically identified bottlenecks

Course Intro - Mobile Systems M

33

33

"Almost Traditional" IoT Vision: Wide-scale Smart Cities

In thousands of Websites and magazines ©:

- By 2020, around 1.3K IoT devices per person; most of them able to communicate with the surrounding environment (M2M comms)
- □ Users will benefit from very innovative *smart apps*
- Locazione/space/ambient data will be available anywhere, similarly to other "more traditional" infrastructures (e.g., electric grid)
- Connection between real physical world and "cyber world" can relevantly enrich the user experience
- "Internet-like" revolution for the physical space Cyber Physical Systems
- Towards a common and open way to access smart space data from smart devices
- Applications emerging from composition and *local mash-up*, based on devices and data of *open smart spaces*

Towards information-level interoperability

Course Intro - Mobile Systems M

Smartphone-based People-centric CrowdSensing

In collaboration with several international research groups:

- Dartmouth, USA
- NJIT, USA
- Univ. Santa Catarina and others, Brazil
- Smartphones as routing infrastructure for WSN
- Smartphones as personal sensors

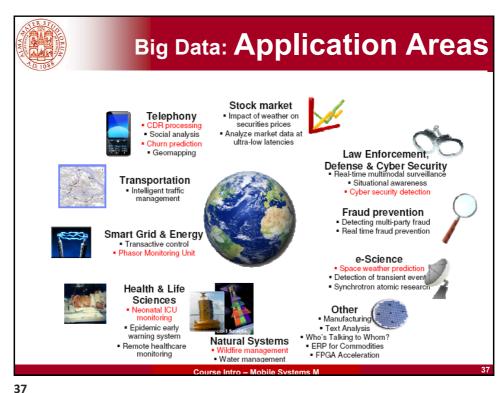
BeWell

■ Participaction in urban tasks - ParticipAct http://participact.unibo.it

35

IoT + Smart Cities + Social Sharing

Not only widescale pervasive systems (smart city), but also strong push towards COLLABO-


RATIVE sharing

Courtesy:MetroSense, A. Campbell

☐ Social sharing of **sensed data**

■ Social sharing of available and under-utilized resources

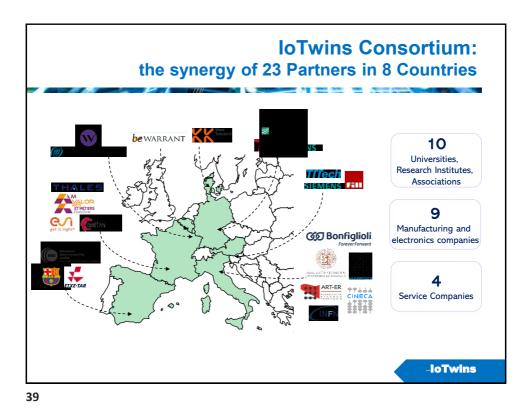
3/

The H2020 IoTwins project

Project Title: Distributed Digital Twins for

industrial SMEs: a big-data platform

Project Acronym: loTwins
 Grant Agreement Number: 857191
 Duration: 36 months


Total Budget: €20,029,818.75
 Total EC Contribution: €16,422,552.01

COORDINATOR:

Bonfiglioli Riduttori Spa

Intro al Corso - Sistemi Mobili M

IoTwins concept and ambition

Distributed and <u>Edge-based Industrial Twins for SMEs</u>: a Big Data Platform

To *lower the barriers* for *edge-enabled and cloud-assisted intelligent* systems and services based on big data for domains of *manufacturing and facility management*

Barriers:

- Al-based solutions require mastering complex and rapidly evolving tools and techniques, introducing delays and costs in product/process design, deployment, test, and refinement
- Effective deep learning requires access to *very large sources of curated data*, as well as *significant computational resources* for training
- Execution and online refinement of learned models often need to be at the premises of big data sources (latency and reliability requirements, adequate degree of data privacy, ...)
- · Investments in infrastructure at server/edge sides, ...

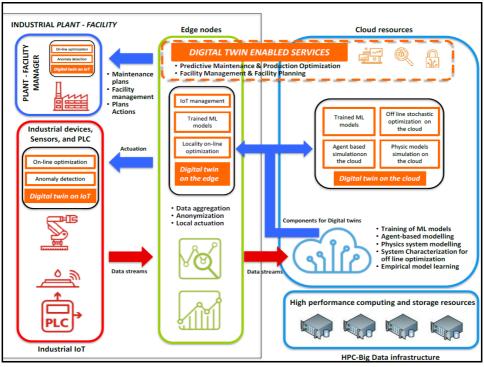
IoTwins

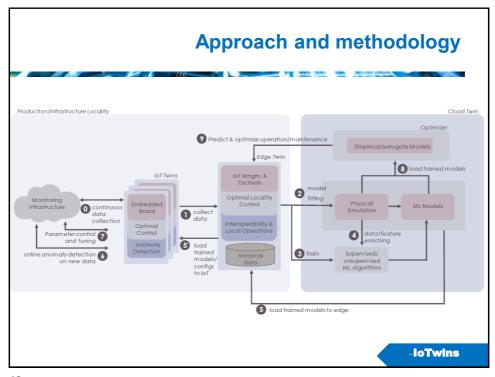
IoTwins concept and ambition

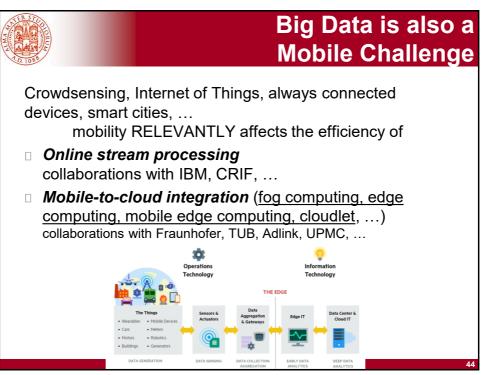
Ambition

Build a reference architecture for distributed and edge-enabled digital twins

• Implementation, deployment, integration, and experimental in-the-field evaluation in several test-beds


Digital twins to detect and diagnose anomalies, to determine an optimal set of actions that maximize key performance metrics, to enforce on-line quality management of production processes under latency and reliability constraints, and to provide predictions for strategic planning, and to create new services and business models

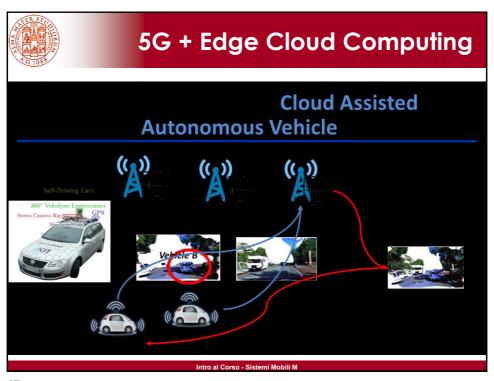

loTwins proposes a hierarchical organization and inter-working of digital twins:

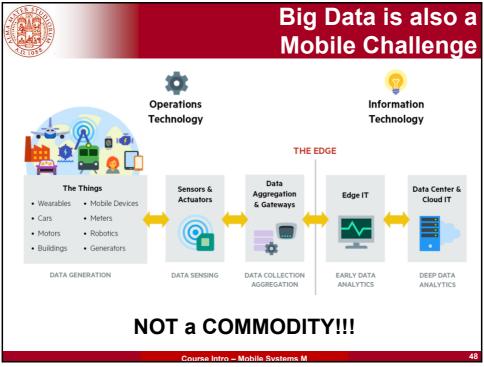

- IoT twins
- Edge twins
- · Cloud twins

loTwins

41

SG + Edge Cloud Computing


COSMOS Experiments: AR Applications


Put Finding Algorithm

Access SU Type Touristic Survival Algorithm

(a) Access SU Type Touristic Survival Algorithm

(b) Stetus: Connected Institute Stetus: Conne

