
Corso di
Reti di Calcolatori M

Antonio Corradi
Luca Foschini

Anno accademico 2014/2015

Università degli Studi di Bologna
Scuola di Ingegneria

Cloud: Openstack

OpenStack 2

NIST STANDARD CLOUD

National Institute of Standards and Technology www.nist.gov/

OpenStack 3

Known Deployment Models

OpenStack 4

� First step: Server virtualization

HOST 1 HOST 2 HOST 3 HOST 4, ETC.

VMs

Hypervisor:
Turns 1 server into many “virtual machines” (instances or VMs)
(VMWare ESX, Citrix XEN Server, KVM, Etc.)

� Hypervisors provide an abstraction layer between
hardware and software

� Hardware abstraction
� Better resource utilization for every single server

Cloud: resource virtualization

OpenStack 5

� Second step: network and storage virtualization

Compute Pool Network Pool Storage Pool

Virtualized Servers Virtualized Networks Virtualized Storage

� Resource pool available for several applications
� Flexibility and efficiency

Cloud: resource virtualization

OpenStack 6

APPS

Creates Pools of Resources Automates The Network

USERS ADMINS

CLOUD OPERATING SYSTEMCLOUD OPERATING SYSTEM

Connects to apps via APIs

High-level Architecture
of the OpenStack Cloud IaaS

OpenStack 7

OpenStack
– Founded by NASA and Rackspace in 2010
– Currently supported by more than 300 companies

and 13866 people
– Latest release: Juno , October 2014

• Six-month time-based release cycle (aligned with
Ubuntu release cycle)

• Open-source vs Amazon, Microsoft, Vmware…
• Constantly growing project

OpenStack history in a nutshell

OpenStack 8

Main Function in a Cloud

OpenStack 9

Main Function in a Cloud

cinder-volume neutron

ceilometer

OpenStack 10

OpenStack main services

OpenStack 11

OpenStack main services

OpenStack 12

OpenStack main services

OpenStack 13

OpenStack services

Ceilometer

Heat

OpenStack 14

OpenStack main components

Ceilometer Heat

OpenStack 15

OpenStack main components

OpenStack 16

OpenStack main worflow

OpenStack 17

• Dashboard : Web application used by administrators and users to manage
cloud resources

• Identity : provides unified authentication across the whole system

• Object Storage : redundant and highly scalable object storage platform

• Image Service : component to save, recover, discover, register and deliver VM
images

• Compute : component to provision and manage large sets of VMs

• Networking : component to manage networks in a pluggable, scalable, and API-
driven fashion

• Identity Service
• Image Service

OpenStack services (detailed)

OpenStack 18

All OpenStack services share the same internal
architecture organization that follow a few clear
design and implementation guidelines:
• Scalability and elasticity : gained mainly through horizontal

scalability

• Reliability : minimal dependencies between different services
and replication of core components

• Shared nothing between different services : each service
stores all needed information internally

• Loosely coupled asynchronous interactions : internally,
completely decoupled pub/sub communications between
core components/services are preferred, even to realize high-
level synch RPC-like operations

OpenStack Services: Design Guidelines

OpenStack 19

Deriving from the guidelines, every service
consists of the following core components:
• pub/sub messaging service : Advanced Message Queuing

Protocol (AMQP) standard and RabbitMQ default implementation

• one/more internal core components : realizing the service
application logic

• an API component : acting as a service front-end to export
sevice functionalities via interoperable RESTful APIs

• a local database component : storing internal service state
adopting existing solutions, and making different technological
choices depending on service requirements (ranging from MySQL
to highly scalable MongoDB, SQLAlchemy, and HBase)

OpenStack Services: Main Components

OpenStack 20

• Provides on-demand virtual servers
• Provides and manages large networks of virtual

machines (functionality moving to Neutron)
• Modular architecture designed to horizontally scale

on standard hardware
• Supports several hypervisor (i.e. KVM, XenServer,

etc.)
• Developers can access computational resources

through APIs
• Administrators and users can access computational

resources through Web interfaces or CLI

Nova - Compute

OpenStack 21

Nova – Components
(a good OpenStack service example)

OpenStack 22

• nova-API : RESTful API web service used to send
commands to interact with OpenStack. It is also possible to
use CLI clients to make OpenStack API calls

• nova-compute : hosts and manages VM instances by
communicating with the underlying hypervisor

• nova-scheduler : coordinates all services and determines
placement of new requested resources

• nova database : stores build-time and run-time states of
Cloud infrastructure

• queue : handles interactions between other Nova services
By default, it is implemented by RabbitMQ, but also Qpid
can be used

Nova – Components (1)

OpenStack 23

• nova-console , nova-novncproxy e nova-
consoleauth : provides, through a proxy, user access to
the consoles of virtual instances

• nova-network : accepts requests coming from the
queue and executes tasks to configure networks (i.e.,
changing IPtables rules, creating bridging interfaces, …
These functionalities are now moved to Neutron service.

• nova-volume : handles persistent volumes creation and
their de/attachment from/to virtual instances
These functionalities are now moved to Cinder services

Nova – Components (2)

OpenStack 24

Nova General interaction scheme

OpenStack 25

Swift allows to store and recover files
• Provides a completely distributed storage platform

that can be accessed by APIs and integrated inside
applications or used to store and backup data

• It is not a traditional filesystem , but rather a
distributed storage system for static data such as
virtual machine images, photo storage, email storage,
backups and archives

• It doesn’t have a central point of control, thus
providing properties like scalability , redundancy ,
and durability

Swift - Storage

OpenStack 26

• Proxy Server : handles incoming
requests such as files to upload,
modifications to metadata or
container creation

• Accounts server : manages
accounts defined through the
object storage service

• Container server : maps
containers inside the object
storage service

• Object server : manages files that
are stored on various storage
nodes

Swift - Components

OpenStack 27

Cinder handles storage devices that can be
attached to VM instances
• Handles the creation , attachment and detachment

of volumes to/from instances
• Supports iSCSI, NFS, FC, RBD, GlusterFS

protocols
• Supports several storage platforms like Ceph,

NetApp, Nexenta, SolidFire, and Zadara
• Allows to create snapshots to backup data stored

in volumes. Snapshots can be restored or used to
create a new volume

Cinder – Block Storage

OpenStack 28

• cinder-API : accepts user requests
and redirects them to cinder-volume
in order to be processed

• cinder-volume : handles requests by
reading/writing from/to cinder
database, in order to maintain the
system in a consistent state
Interacts with the other components
through a message queue

• cinder-scheduler : selects the best
storage device where to create the
volume

• cinder database : maintains
volumes’ state

Cinder – Block Storage

OpenStack 29

Glance handles the discovery ,
registration , and delivery of disk and
virtual server images
• Allows to store images on different storage

systems , i.e., Swift
• Supports several disk formats (i.e. Raw,

qcow2, VMDK, etc.)

Glance – Image Service

OpenStack 30

• glance-API : handles API requests
to discover, store and deliver
images

• glance-registry : stores, processes
and retrieves image metadata
(dimension, format,...).

• glance database : database
containing image metadata

• Glance uses an external
repository to store images
Currently supported repositories
include filesystems, Swift, Amazon
S3, and HTTP

Glance – Components

OpenStack 31

Nova – Launching a VM

OpenStack 32

Provides a modular web-based user interface to access
other OpenStack services
Through the dashboard it is possible to perform actions
like launch an instance, to assign IP addresses, to upload
VM images, to define access and security policies, etc.

Horizon - Dashboard

OpenStack 33

• Keystone is a framework for the authentication and
authorization for all the other OpenStack services

• Creates users and groups (also called tenants),
adds/removes users to/from groups, and defines
permissions for cloud resources using role-based access
control features. Permissions include the possibility to
launch or terminate instances

• Provides 4 primary services:
– Identity : user information authentication
– Token : after logged-in, replaces password authentication
– Catalog : maintains an endpoint registry used to discovery

OpenStack services endpoints
– Policy : provides a rule-based authorization engine

Keystone – Authentication
and Authorization

OpenStack 34

Keystone

OpenStack 35

• Pluggable , scalable e API-driven support to
manage networks and IP addresses.

• NaaS “Network as a Service ”
Users can create their own networks and plug virtual
network interface into them

• Multitenancy: isolation, abstraction and full control
over virtual networks

• Technology-agnostic: APIs specify service, while
vendor provides his own implementation. Extensions
for vendor-specific features

• Loose coupling: standalone service, not exclusive
to OpenStack

Neutron Networking

OpenStack 36

• neutron-server: accept request sent
through APIs e and forwards them to
the specific plugin

• Plugins and Agents: executes real
actions, such as dis/connecting
ports, creating networks and
subnets, creating routers, etc.

• message queue: delivers messages
between quantum-server and
various agents

• neutron database: maintains
network state for some plugins

Neutron – Components

OpenStack 37

• dhcp agent: provides DHCP functionalities to virtual
networks

• plugin agent: runs on each hypervisor to perform
local vSwitch configuration. The agent that runs,
depends on the used plug-in (e.g. OpenVSwitch,
Cisco, Brocade, etc.).

• L3 agent: provides L3/NAT forwarding to provide
external network access for VMs

Neutron – Agents

OpenStack 38

Neutron decouples
the logical view of
the network from
the physical view
It provides APIs to
define, manage and
connect virtual
networks

Neutron
logical view vs. physical view

OpenStack 39

Neutron - logical view

• Network : represents an isolated virtual Layer-2 domains; a network can also be regarded as
a logical switch;

• Subnet : represents IPv4 or IPv6 address blocks that can be assigned to VMs or router on a
given network;

• Ports : represent logical switch ports on a given network that can be attached to the
interfaces of VMs. A logical port also defines the MAC address and the IP addresses to be
assigned to the interfaces plugged into them. When IP addresses are associated to a port,
this also implies the port is associated with a subnet, as the IP address was taken from the
allocation pool for a specific subnet.

OpenStack 40

Neutron - tenant networks

Tenant networks can be created by users to provide connectivity within tenants. Each tenant
network is fully isolated and not shared with other tenants.
Neutron supports different types of tenant networks:
• Flat : no tenant support. Every instance resides on the same network, which can also be shared

with the hosts. No VLAN tagging or other network segregation takes place;
• Local : instances reside on the local compute host and are effectively isolated from any external

networks;

• VLAN : each tenant network uses VLAN IDs (802.1Q tagged) corresponding to VLANs present
in the physical network. This allows instances to communicate with each other across the
environment, other than with dedicated servers, firewalls, load balancers and other networking
infrastructure on the same layer 2 VLAN. Switch must support 802.1Q standard in order to
provide connectivity between two VMs on different hosts;

• VXLAN and GRE : tenant networks use network overlays to support private communication
between instances. A Networking router is required to enable traffic to traverse outside of the
tenant network. A router is also required to connect directly-connected tenant networks with
external networks, including the Internet.

OpenStack 41

Neutron – VLAN tenant network

OpenStack 42

Apache Hadoop

Open source project for the development of distributed and
concurrent applications

• based on Google MapReduce
• designed for distributed processing of large data sets across very

large clusters of computers
• highly fault tolerant
• relies on Hadoop Distributed File System (HDFS) for the

distribution of data

OpenStack 43

Hadoop for OpenStack

Hadoop can exploit the virtualization provided by
OpenStack in order to obtain more flexible clusters and a
better resource utilization

OpenStack service Sahara can be used to deploy and
configure Hadoop clusters in a Cloud environment:
• cluster scaling functionalities
• Analytics as a Service (AaaS) functionalities
• accessible via OpenStack dashboard, CLI or RESTful

API

OpenStack 44

Sahara components

OpenStack 45

� A smart city features thousands of sensors
� State-of-the-art mobile devices are equipped with several onboard

sensors , e.g., camera, accelerometers, GPS, etc.
� Physical environments will include additional sensors, e.g., temperature

and lighting sensors, feeding new data directly into the system
� Cloud technologies enable the rapid provisioning of

scalable services through distributed and virtualized
resources
� On-demand computing resources and pay-per-use model
� Dynamic resource scaling depending on user requests

� Cloud solutions for CDDI
� High scalability to address context data storage and processing
� Dynamic resource scaling lets the CDDI require new computing resources

when the data to be processed increase (due to conference events, etc.)

Cloud solutions need VM placement algorithms to decide
which VMs should be co-located on the same physical
host

Cloud-based Context Data Handling

OpenStack 46

� Modern Data Centers (DCs) for Cloud computing
� large-scale scale systems with hundreds of servers and thousands of

Virtual Machines (VMs)
� virtualization solutions to improve resource utilization by VM

consolidation

� VM placement must consider network requirements and
constraints
� useful to prevent reduced network performance
� hard to enforce at run-time due to time-varying traffic demands
� difficult to apply due to many entangled aspects, including network

architecture , competing traffic demands , and so forth
TREE FAT-TREE VL2

Network-aware VM Placement

OpenStack 47

� Virtualized DC
� Co-location choices greatly affect the final traffi c in the DC network
� In-memory message passing mechanisms much faster than real network

communications

� Network fabric of modern DC employs graph-based
topology and dynamic multi-path routing
� No knowledge of which traffic flows will be routed on a specific link
� Limited networking resources have to be considered to avoid unfeasible

solutions

� Network-aware VM placement addressed in the past with
different objectives, but
� Traffic demands are time-varying and traffic bursts can mine network

performance
� Placement stability has to be increased by ensuring spare capacities

Network-aware VM Placement

