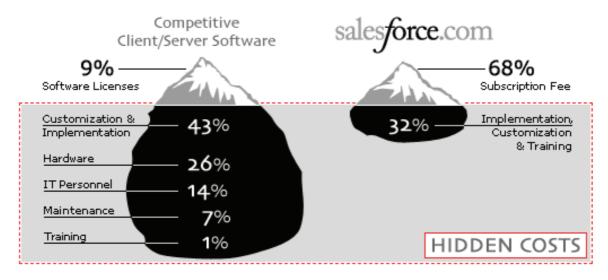
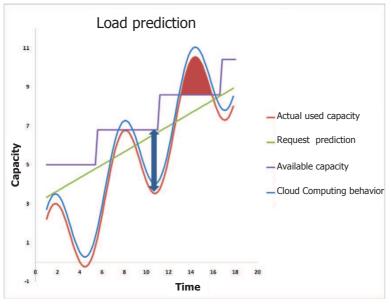


Università degli Studi di Bologna Scuola di Ingegneria

Corso di **Reti di Calcolatori M**


Cloud

Antonio Corradi Luca Foschini


Anno accademico 2014/2015

Motivations: Hidden Costs of IT

Avoid the hidden costs of traditional CRM software

Flexibility and scalability in management

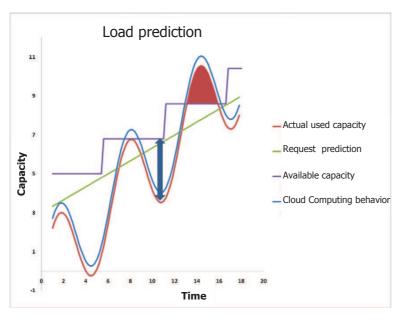


The main interest of a company in the field of Information Technology is to provide a continuous service, rapidly adapting to economic needs changes

Cloud

3

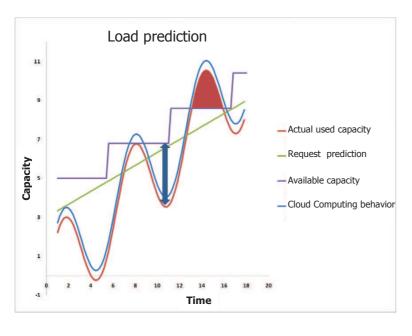
Flexibility and scalability in management



The area between red and purple lines represents the part of infrastructure that the company paid, but actually does not use

Waste of money, time and investments

Flexibility and scalability in management

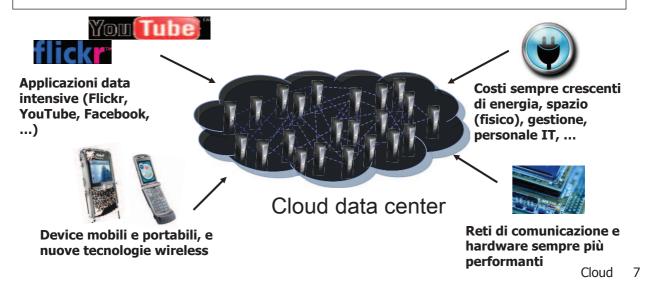

On the other side, if the company has an unexpected success, with a consequent growth of the customer base, computational capacity cannot scale

Slowdowns, service interruption, and loss of profit

Cloud

5

Flexibility and scalability in management



Prediction problems
could be resolved by
using an highly
flexible infrastructure,
with the ability of
constantly adapting
to computational load
variations
(elasticity ©)

Cloud computing: problem space

"It starts with the premise that the **data services and architecture should be on servers**. We call it **Cloud computing** – **they should be in a 'Cloud' somewhere**. And that if you have the right kind of browser or the right kind of access, it doesn't matter whether **you have a PC or a Mac or a mobile phone or a BlackBerry or what have you – or new devices still to be developed – you can get access to the Cloud...**"

- Dr. Eric Schmidt, Google CEO, August 2006

Cloud: fundamental concepts

- IT on demand pricing
- Best benefits in a reliable context
- Pool of virtualized computer resources
- Rapid live providing while demanding
- Systems on scaling architecture

Cloud keywords

on demand, reliability, virtualization, provisioning, scalability

Cloud computing: some definitions

One Cloud is capable of providing IT resources 'as a service'

One Cloud is an IT service delivered to users that have:

- a user interface that makes the infrastructure underlying the service transparent to the user
- reduced incremental management costs when additional IT resources are added
- services oriented management architecture
- massive scalability

Cloud

9

Cloud computing: a bit of history

Grid Computing

 Solving large problems with parallel computing

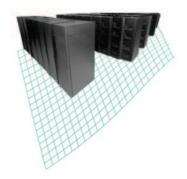
Utility Computing

- Offering computing resources as a service
- Virtualization technologies

Software as a Service

- Network-based subscriptions to applications
- Service Oriented Architecture (SOA)
- Web 2.0

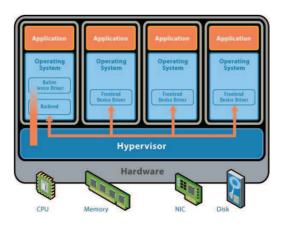
Cloud Computing


 Anytime, ubiquitous access to IT resources delivered dynamically as a service.

Before Cloud computing: GRID

Grid computing

- Sharing of heterogeneous resources (computer, software, data, memory, computational power,, ...) in highly distributed environments with the goal of creating a virtual organization scalable (by need!)
- Interfaces (for management), often too fine grained, with low level of abstraction, and non self-contained ®
- Application areas very **limited and specific** (parallel computation for scientific, engineering scenarios, ...)



Cloud 11

Before Cloud: virtualization

Virtualization

- Technologies for virtualization (either system-based or hosted), as in a server farm: Vmware, Xen, ...
- Isolation & personalized infrastructure and/or SW platform (O.S. and some additional applications)
- Tool for the efficient management of computing infrastructures (IBM Tivoli suite, Xen monitoring tools, ...)

Cloud 12

Before Cloud: Utility computing

Utility computing

- Huge computational and storage capabilities available from utilities, the same as for energy and electricity, pay per use
- "Computing may someday be organized as a public utility" -John McCarthy, MIT Centennial in 1961
- Metered billing (pay per use)
- Simple to use interface to access the capability (e.g., plugging into an outlet)

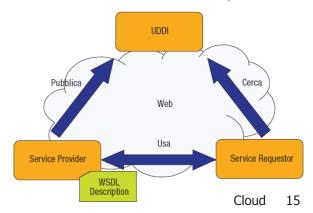
Traditional IT resources: in-house with internal management

On-demand utility: plug-in, subscription, pay-per-use Cloud

Before Cloud: Web 2.0

Web 2.0

- Usage of asynchronous protocols not visible to users to ask only really required info and not the whole web pages Asynchronous Javascript And XML (AJAX)
- New way of using Web services coupled with new applications easier to use, collaboration based and openly available, without requiring any installation by interested users: new business model, very, very cooperative (Software as a Service ©)



Before Cloud computing: SOA

Service oriented Architectures (SOA)

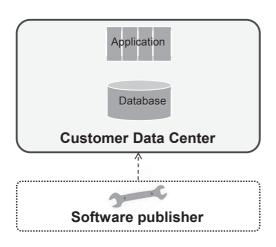
- Interaction in terms of abstract contact of offered and requested services
- Service like process, resource or application abstraction that can be standardized like an interface, and can be published (reusable, loose coupled and coarse-grained, a black box, stateless, modular, ...)
- Web Services as a Web architecture that fulfils various basic concepts of (abstract) SOA architectures (WSDL, SOAP, UDDI, ...)

Before Cloud computing: SaaS

Software as a Service (SaaS)

Services are seen as freely available appliances on the Web, without requiring any installation

- Service providers own, manage, and provide applications
- Anytime, clients can request and consume services, in a private or shared manner, while providers are responsible for code and data definition
- Services are usually provided on a pay-per-use fashion


Software as a Service

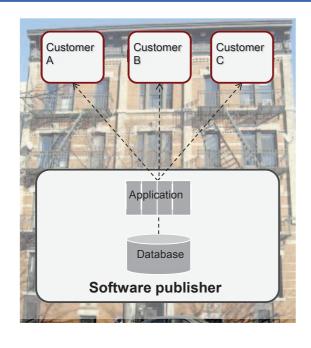
- Software ownership costs pushed to vendor hardware, software, system security, disaster recovery, maintenance, monitoring
- Return to core competency organizations shift resources to core competencies, vendors focus on managing their SaaS
- More efficient deployment instant evaluation, more collaboration between vendor and IT organization, much faster deployments
- Modern, Web 2.0 interface drive technician usage and better customer interaction with IT
- Eliminate shelfware & maintenance pay for what you use
- Always on current version version-free software means the latest for the customer
- SaaS homogeneity costs less one version for the vendor to support means lower costs for everybody
 Cloud 17

Application areas suitable for SaaS

- ERP vertical business applications, both specialized and very specific
- General-purpose applications without any adaptation (potentially sharable)
 - self-service provisioning and ad hoc personalization
 - applications available to several different users
- Business B2B applications domain specific
 - no need of third party hosting and involvement
- Customer/Supplier applications
 - applications where most of users and access is externally to the organization and where ubiquitous access via Web is critical and intrinsic
- Business applications even critical, but not the core business ones

Models: traditional on-premise deployment at the client side

Details

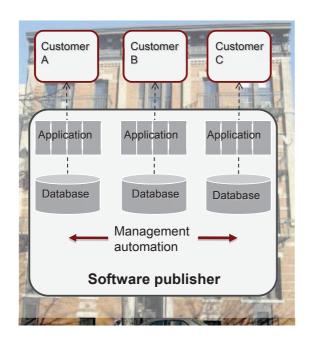

- Full ownership
- Significant implementation costs
- Customizable
- Difficult to upgrade / mantain

Examples

- HP Service Manager
- BMC Remedy
- CA Service Desk
- EMC Infra

Cloud 19

Shared SaaS application (multi-tenant)


Details

- Software maintained and developed by provider
- Many clients to one application set
- Low customization

Examples

- Salesforce.com
- Workday

Private SaaS application (single-tenant)

Details

- Software maintained and developed by provider
- Customers receive their own application and database
- Extensive customization

Examples

- Service-now.com
- InteQ

Cloud 21

Enhancing the SaaS models

Some increasing resources models for providing some resources as a service, ...aaS

SaaS Software as a Service

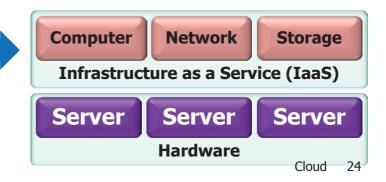
 Resources are simple applications available via remote Web access

PaaS Platform as a Service

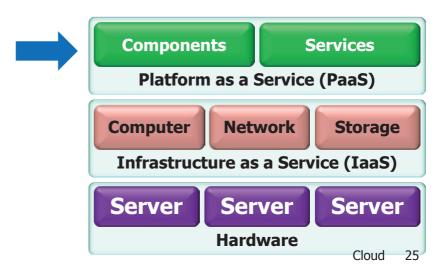
 Resources are whole software platforms available for remote execution, i.e., several programs capable of interacting with each other

laas Infrastructure as a Service

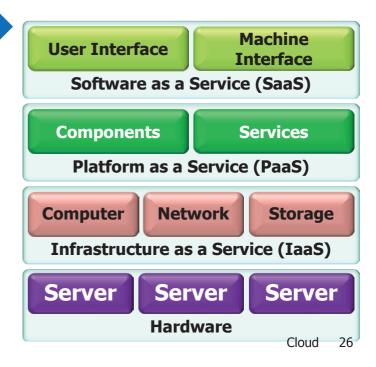
 Resources are enlarged in a wider and complete way, from hardware platforms, to operating systems, to support to final applications: usually via virtualization up to Cloud Computing


Layered Architecture: laaS, PaaS & SaaS

Below the real architecture:
 hardware components & software products

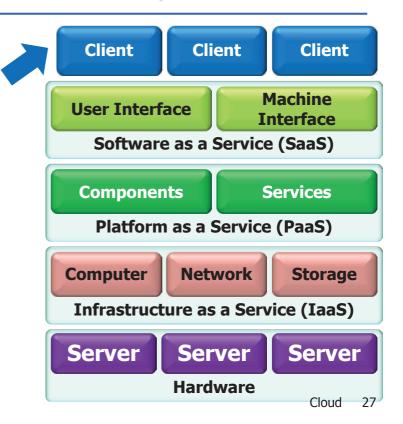

Layered Architecture: laaS, PaaS & SaaS

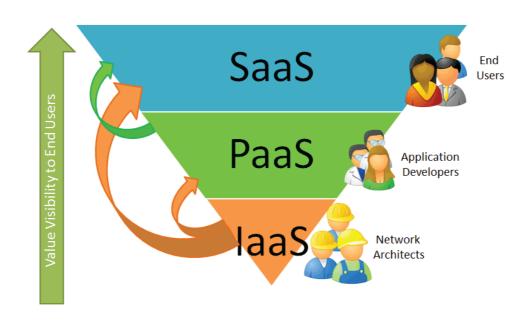
■ Infrastructure:
layer to enable the distribution of Cloud services, typically realized by a virtualization platform


Layered Architecture: laaS, PaaS & SaaS

■ Platform: layer to provide to upper layers a set of services and components remotely available

Layered Architecture: laaS, PaaS & SaaS


■ **Application**: layer to install applications, to be available via
Web and Internet via
Cloud API


Layered Architecture: laaS, PaaS & SaaS

Client software to get access to the system. Those applications are executed on the client physical platforms (remote computers), owned by the final remote user.

They can communicate with the Cloud via the available interfaces

Layered Architecture: main actors

Some SaaS & *aaS examples

Some very well known examples

SaaS - single services

From desktop applications: **Google Apps** (Gmail, Google calendar & docs), **Microsoft Windows live** (Hotmail, Messenger, ...) to search engines, Google, Yahoo,

All social networks, such as Facebook, LinkedIn, Twitter, ...

PaaS - Web services and development platforms

Services available internally to and interacting with other applications, as Google App Engine (GAE), Google Maps, Microsoft Azure, ...

laas - some emerging experimental infrastructures

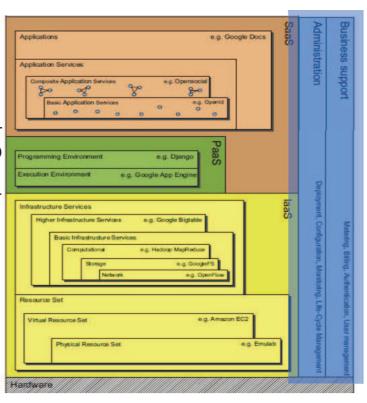
Several examples, with virtualization services, Amazon Web Services (S3), Elastic Computing Cloud (EC2), OpenStack, to several management and monitoring desktop to control execution, Sun global desktop, Zimdesk, ...

Cloud 2

29

Technology wrap up

SaaS


Google docs

aag

 Google App Engine

• Google Bigtable

- Hadoop MapReduce (Yahoo)
- GoogleFS
- Amazon EC2
- OpenStack

Vertical support functionalities

Cloud 30

Cloud differences from...

Grid Computing

- A cloud is more than a collection of computer resources because a cloud provides a mechanism to manage those resources
 - Provisioning, change requests, workload balancing, monitoring
- Cloud computing is an infrastructure that sits on top of a datacenter for efficiency

Utility Computing

- Service that allows users to deploy, manage, and scale online services using the provider's resources and pay for resources they consume
- Users want to be in control of what runs on each server
- Cloud users want to avoid infrastructure. The provider is in complete control.

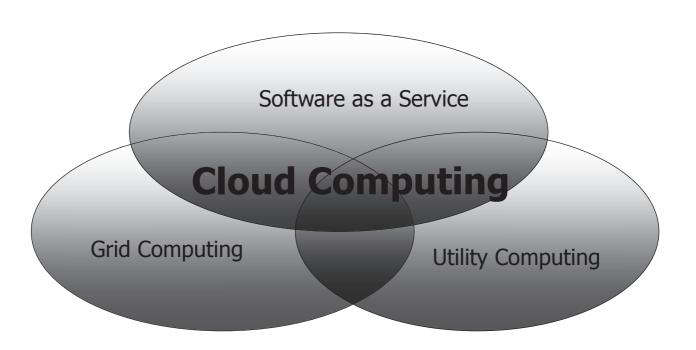
SaaS

- Cloud defines two models: who manages SaaS vs. who uses SaaS
- Cloud shortens time-to-market and eases the composition of service ecosystems
- Cloud can have strong organizational consequences → more cooperative and continuously growing model
 Cloud can have strong organizational consequences → more cooperative and continuously growing model

Cloud... introduces new problems

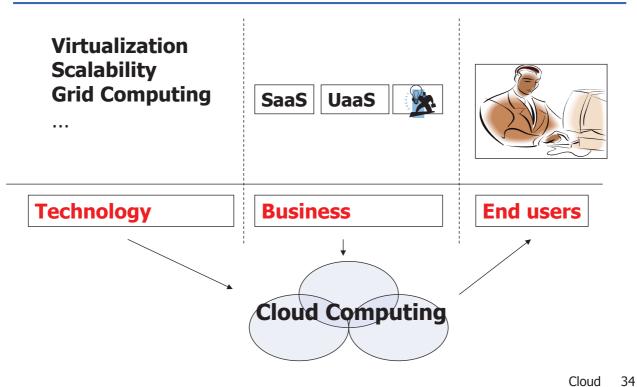
Reliability and availability

- We rely on external resources (public Clouds) owned by third-party companies
- Amazon US outage (21→24 April 2011), some papers...
 - "Amazon EC2 Outage Hobbles Websites: Worst Cloud Computing Disaster"
 - "Amazon's lengthy cloud outage shows the danger of complexity"


Security and legislative issues

- Data outsourcing in Cloud
- Dematerialization → where are my data??? (with emerging partial solutions...)

Service management and integration


- Possibility to recreate SaaS silos
- Integration of different Cloud systems → standard APIs, VMs migration protocols, etc.

Evolution of Cloud Computing

33 Cloud

Business & Technology

Cloud Deployment Models

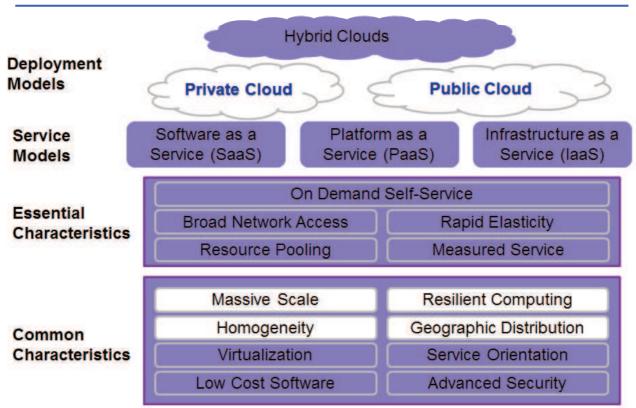
Typically three models

- Private cloud
 - enterprise owned or leased
- **■** Community cloud
 - shared infrastructure for specific community
- Public cloud
 - sold to the public, mega-scale infrastructure
- Hybrid cloud
 - composition of two or more clouds

Cloud 35

Cloud computing: reality check

- Google docs, salesForce, ... widespread and very used Web applications (Web 2.0)
- Google App Engine Google App Engine, sandbox for management e security, several languages(Python e Java)
- HP/Yahoo/Intel Open Cirrus Test Bed: virtualized images, Xen, simple SLA console
- Amazon Elastic Computing EC2: Amazon WS (SLA), Amazon Machine Image (DB+Software and middleware+OS) e Xen, Dvnamo
- Openstack: virtualized images (DB+Software e middleware+OS), Xen, Swift (object storage), Cinder (block storage), Neutron(virtualized network)
- IBM Cloud: virtualized images (DB+Software and middleware+OS), Xen, Tivoli (monitoring and management), simple SLA console
- Microsoft Azure: Microsoft solution


36

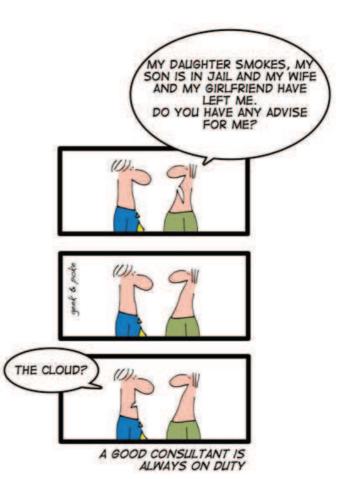
Cloud Key Goals: Infrastructure Perspective

- How can we provide flexible compute resources quickly to promote rapid prototyping?
- How do we deploy applications that scale up to meet increasing demands over time?
- How do we manage 100,000's of machines with minimal human intervention?
- How can we make the most efficient use of all the compute resources in a data center?

Cloud 37

NIST STANDARD CLOUD

The fog has (partially) gone...



... and Clouds are letting out the light!

Cloud 39

Cloud for everything

Non exactly for everything ©

