
Class of

Infrastructures for
Cloud Computing and Big Data M

University of Bologna

Dipartimento di Informatica ï

Scienza e Ingegneria (DISI)

Engineering Bologna Campus

Goals, Basics, and Models

Antonio Corradi
Academic year 2019/2020

A GENERAL GUIDELINEABSTRACTION é

Models 2

Specially interesting in

complex systems

to focus on the right target

TRANSPARENCY (opposed to VISIBILITY)

All forms of trasparency

TRANSPARENCY VS. VISIBILITY

Models 3

Access homogeneous access to local and remote resources

Allocation allocation of resources independent from locality

Name name independence form the node of allocation

Execution same usage of both local and remote resources

Performance no differences in usage perception in using services

Fault capacity of providing services even in case of faults

Replication capacity of providing servicing with a better QoS via

transparent replication of resources

TRANSPARENCY (opposed to VISIBILITY)

Transparent means for us hidden and invisible

Is transparency always an optimal requirement to consider for
system design?

at any cost , at any system level , for any application and tool

(??) More and more interests on

Location -awareness to provide services that strictly
depends on awareness and visibility of current allocation

TRANSPARENCY VS. VISIBILITY

Models 4

Telecommunications (TLC) Information Networking
Architecture

TINA-C defines a multiplicity of parties/roles involved in the
communication service

Users and several communication and service Providers

taking into account quality di service to provide (after initial
negotiation)

user view interaction view

TINA-C ïMIDDLEWARE FOR TLC

Models 5

Fundamental architectures separate and interacting :

Computing , Service , Management , Network Architecture

TINA-C - ARCHITECTURES

Models 6

Interactions

between the

different

architectures are

present , of course

Similarly, there are

common

management goals

In an architectural view , starting from the network

Each node must host needed function that extend its capabilities
to be part of the distributed system

TINA-C ïLAYERED ARCHITECTURE

Middleware & Cloud 7

DPE Distributed

Processing

Environment

NCCE Native

Computing

Communication

Environment

Applications and services are obtained atop physical resources
exposed by various and heterogeneous local supports (NCCE)
and integrated the DPE layer

TINA-C ïTRANSPARENT ARCHITECTURE

Models 8

An application

is based on

logical entities

Å Services

Å Resources

Å Elements

Transparent view of applications and services

TINA-C ïTRANSPARENT ARCHITECTURE

Models 9

An application

is based on

logical entities

Å Services

Å Resources

Å Elements

It is also possible a non -transparent view or visibility
approach with complete visibility
required in the design and development phases

TINA-C ïNON TRANSPARENT ARCHITECTURE

Models 10

An application

is based on

ÅDPE

ÅInter -DPE

ÅNCCE

Those are complex but very well spread é

but still there are unsolved issues ;

that is why they are interesting J

We have to face many challenges and problems to be solved via
a good design

As a few examples only of basic requirements

But many difficulties to be solved

Å partial failure overcoming

Å heterogeneity (at many levels)

Å integration and standard

é

MODERN DISTRIBUTED SYSTEMS

Models 11

Scalability and Safe Answer and Service

Predictability and Performance control

The first point in any system is to have a vision in terms of
services to be offered

Along that, any situation of a relationship can be qualified by the
intended quality to be provided by providers to requestors

We have to carefully define the Quality to grant

The QoS defines the whole context of the operation and how
to quantify the operation results

Of course it is not easy to find a standard way to specify
services and their properties in a clear way

Telco providers define service levels via specific and
concrete indicators , such as throughput , jitter , and other
measurable ones

SERVICES IN SYSTEMS AND QUALITY

Models 12

QoS description must take into account all the possible aspects
of a service, under many perspectives

From the experience of telco, we may consider

Å Performance

Å Scalability

Å Correctness

Å Reliability

Å Security

Some of the above aspects are mainly transport-related and tend
to neglect application and user experience (even if they have a
larger meaning)

Some areas are more quantity -based and easy to quantify,
while others are more subjective and descriptive

QoS should take into account both indicators

QUALITY OF SERVICE QOS

Models 13

QoS must adapt to the different usage situations

QoS must be based on both kind of properties

Å Functional properties

Å Non-Functional properties

The functional ones are easy to express and quantify

such as average packet delay (over a service), bandwidth,
percentage of lost packet, é for one service

The non -functional ones are hard to quantify

such as long-term service availability, security level for the
information, perceived user experience in video streaming, é

Sometimes we refer to Quality of Experience (QoE) of a provided
service

QUALITY OF SERVICE INDICATORS

Models 14

One important point is to understand how to express the
complexity and to rule the relationship between different
involved subjects

SLA Service Level Agreement

A typical indicator to express and reach an agreement
between different parties on what you have to offer and why

Of course it is not easy to find a standard way to specify serve
and its properties in a both formal and clear way

Communication providers define service levels via Mean
Time Between Failures (MTBF), for reliability and other
indicators for data rates, throughput and jitter...

Service providers must define service levels via more tailored
indicators that relates and qualify the service for users and also
some user experience key performance indicators (KPIs)

AGREEMENT IN SYSTEMS: SLA

Models 15

Several principles and systems to provide and give a
scenario for business services

ÅMiddleware as a support to all operation phases in a
company, also in terms of legacy systems

Service Oriented Architecture (SOA)

ÅAll the interactions among programs and component are
analyzed in terms of services

ÅAny service should have a very precise interface

Enterprise Application Integration (EAI)

ÅThe need of integrating the whole of the company IT
resources is the very core goal

ÅThat objective must be provided, while preserving Enterprise
values

GOOD SUPPORT TO ENTERPRISE

Models 16

Modern Enterprise strategies require both existing and new
applications to fast change with a critical impact on company
assets

ENTERPRISE INFORMATION TECHNOLOGY

Models 17

This list is only an idea, there are many other components

Á Supply chain management (SCM) ïsuppliers to customers

ÁWarehouse and stock management

Á Customer relationship management (CRM)

Á Finance and accounting

Á Document Management Systems (DMS)

Á Human Resource management (HR)

Á Content Management Systems (CMS)

ÁWeb site and company presentation

ÁMail marketing

Á Internal Cooperation tools

Á Enterprise Resource Planning (ERP)

And moreé.part of the EAI - ROLE of IT in all areas

TYPICAL DIFFERENT APPLICATION IN A BUSINESS

Models 18

The idea of a complete Application Integration or EAI is to have
systems that produce a unified integrated scenario where all
typical Business applications programs and components can
be synergically provided

There are both:

ÅLegacy components to be reused

ÅNew components to be designed and fast integrated

The easy and complete integration among all business tools
has also another important side effect

The possible control and monitor of the current performance of
any part of the whole business

Å to have fresh data about performance

Å to rapidly change policies and to decide fast (re -)actions

ENTERPRISE APPLICATION INTEGRATION

Models 19

An EAI for a company is traditionally based on some ready-to-
use approach

There are many companies making a business in proposing an
ERP to be embedded inside the company context

SAP, Oracle, Microsotf , é

Å High costs

Å Lock-in

Å Static policies

Å NOT open solutions

EAI AND ENTERPRISE RESOURCE PLANNING

Models 20

The basic interaction is via services defined as platform- and
network-independent operations that must be cleanly available
and clear in properties

Service -Oriented Architecture (SOA) is the enabling abstract
architecture

A service must have an interface to be called and give back
some specific results

The format must be known to all users and available to the
support infrastructure

There are many ways to provide a SOA framework

SOA must offer basic capabilities for description, discovery ,
and communication of services

But it is not tied to any specified technical support

SERVICE-ORIENTED ARCHITECTURE

Models 21

SOA is simply a model and it imposes some methodologies to
obtain its goal of a fast and easy to discover service ecosystem

Á Services are described by an interface that specifies the
interaction abstract properties (API)

Á The interface should not change and must be clearly
expressed before any usage

Á Servers should register as the implementers of the interface
ÁClient should request the proper operations by knowing the

interface

Interaction is independent of any implementation detail,
neither platform-, nor communication-, nor network-
dependent

SERVICE-ORIENTED ARCHITECTURE OR SOA

Models 22

Service -Oriented Architecture SOA proposes a precise
enabling architecture with three actors

SOA ACTORS OR COMPONENTS

Models 23

Providers are in

charge of furnishing

services

Requestors are

interested in

obtaining services

Discovery

agencies are

responsible to give

service information

and full description

of services

Client/Server for any operation request

Intrinsically distributed as a model but

the model does not consider discovery agencies
Very high-level communication rules where
client knows the server and interacts synchronously
(result implied) and blocking (result awaited) by default

Model with tight coupling:
interacting parties must be co-present for some time

Obviously, we are interested only in models inherently
distributed and deployed, and leading to deployment really
distributed

There are many weaknesses and rigidities in C/S
typically these usage difficulties are overcome by small
variations tailored to specific needs

C/S MODEL AS A SOA IMPLEMENTATION

Models 24

One service is an abstraction of any business process ,
resource , or application , that can be described by a standard
interface and that can be published and become widely known
(discovery)

Services are:
Å reusable , in the sense that they can be applied in several

contexts (no limitation, in general anyone)
Å formal , they are not ambiguous in defining the contract

specifications (clear and clean interface)
Å loosely coupled , they are not based on any assumptions on

the context where they could be used
Å black box , they are neither specifying the internal business

logic nor tied to any implementation details of a specific solution

SERVICE CONCEPTUALIZATION

Models 25

A service must be available by all platforms that are offering it to
all the ones in need of it, if the requestor asks for the interface
in the right way
Interfaces should be widely spread and published in some
discovery agencies

Services must be:
Å autonomous , they must not depend on any contex t and

should be capable of self managing
Å stateless , the internal need of state should be minimized

(eventually stateless); the client maintains the state
Å discovery -available , all service must be found via opportune

naming agents and must easy to retrieve and to use
Å composable , existing services can be put together to produce

a modular component to be invoked independently as a novel
service (composition to create new services)

SOA DESIGN PRINCIPLES

Models 26

TRADITIONAL BUSINESS ARCHITECTURES

Models 27

SOA-ORIENTED ARCHITECTURES - EAI

Models 28

