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Abstract e The use of powerful new general reasoning algorithms

such as Walksat (Selman, Kautz, and Cohen 1994).
ning as satisfiability framework (Kautz and Sel- Many researchers in different areas of computer science
9 y are creating faster SAT engines every year. Furthermore,
man 1992, 1996) with the plan graph approach to
; these researchers have settled on common representa-
STRIPS planning (Blumand Furst 1995). We show tions that allow algorithms and code to be freely shared
that STRIPS problems can be directly translated 9 Y

into SAT and efficiently solved using new random- and fine-funed. Asa result, at any poir_1t in time the be_st

ized systematic solvers. For certain computation- general SAT engines tend to be faster (in terms of raw in-

ally challenging benchmark problems this unified ferences per second) than the best specialized planning
approach outperforms both SATPLAN and Graph- engines. In prlnC|pIe_, of course, th_es_e same |_mpr9ve-

plan alone. We also demonstrate that polynomial- ments could be applied to the specialized engines; but
time SAT simplification algorithms applied to the by the time that is done, there will be a new crop of SAT

The Bl ackbox planning system unifies the plan-

encoded problem instances are a powerful com- solvers.
plement to the “mutex” propagation algorithm that An approach that shares a number of features with with
works directly on the plan graph. the SATPLAN strategy is the Graphplan system, developed
independently by Blum and Furst (1995). Graphplan broke
1 Introduction previous records in terms of raw planning speed, and has be-

) ) come a popular planning framework. Comparisons to SAT-
Ithas often been observed that the classical Al planningpro p| AN show that neither approach is strictly superior. For
lem (thatis, planning with complete and certain informaJio example, SATPLAN is faster on a complex logistics domain,
is a form of logical deduction. Because early attempts t0 USghey are comparable on the blocks world, and on several other
general theorem provers to solve planning problems provedomains Graphplan is faster. For excellent reviews and dis-
impractical, research became focused on specialized plagyssjons of the two systems, see Kambhampati (1997) and
ning algorithms. Sometimes the relationship to inferenas w \pjg|q (1998).
explicitly acknowledged: for example, the STRIPS system A practical difference between SATPLAN and Graphplan
(Fikes and Nilsson 1971) was originally described as a ways that the former takes as input a set of axiom schemas, while
to make theorem-proving practical. In other work the rela-ihe jnput for the latter is a set of STRIPS-style operators.
tionship to deduction was developed after the fact. For exampyowever, they bear deep similarities. Both systems work in
ple, Chapman’s (1985) work on TWEAK clarified the logic tyq phases, first creating a propositional structure (irpB+a
behind one variety of non-linear planning. _ plan, a plan graph, in SATPLAN, a CNF wff) and then per-
The belief that planning requirespecializedalgorithms  forming a search (over assignments to variables) that is con
was challenged by the work on planning as propositional Salstrained by that structure. The propositional structureeco
isfiability testing of Kautz and Selman (1992, 1996). SAT-ghonds to a fixed plan length, and the search reveals whether
PLAN showed that a general propositional theorem proveg p|an of that length exists. Kautz and Selman (1996) noted
could indeed be competitive with some of the best specialiat the plan graph has a direct translation to CNF, and that
ized planning systems. The success of SATPLAN can be ajne form of the resulting formula is very close to the origi-
tributed to two factors: nal conventions for SATPLAN. In the unifying framework of
¢ The use of a logical representation that has good comKambhampati (1997), both are exampleglgjunctive plan-
putational properties. Both the fact that SATPLAN usesners The initial creation of the propositional structure is a
propositional logic instead of first-order logic, and the case ofplan refinemenwithout splitting, while the search
particular conventions suggested for representing timeéhrough the structure is a case ghn extraction We hy-
and actions, are significant. Differently declarative rep-pothesize that the differences in performance of the twe sys
resentations that are semantically equivalent can stiltem can be explained by the fact that Graphplan uses a better
have quite distinct computational profiles. algorithm forinstantiating(refining) the propositional struc-



ture, while SATPLAN uses more powerfsgarch(extraction) 1000000 4

algorithms.

SATPLAN fully instantiates a complete problem instance
before passing it to a general logic simplifier (a limitedeinf
ence algorithm that runs to completion in polynomial time’
and a solver (a complete or incomplete model-finding prc
gram). By contrast, Graphplanterleavesplan graph instan-
tiation and simplification. The simplification algorithmags
in Graphplan is based omutex computatigran algorithm
for determining that pairs of actions or pairs of facts are mu 1000 ‘ ‘ ‘ ‘ ‘ ‘
tually exclusive. Mutex computation can be viewed as rul 1 10 100 1000 10000 100000 1000000
of limited inference that is specialized to take particiuer log( cutoff)
vantage of the structure of planning problems (Kambhampau
et al. 1997). Specifically, mutex computation is a limited Figure 1:Relationship of the cutoff value (measured in backtracks

100000 +

10000

log ( backtracks )

application ofnegative binary propagation until a restart is performed) on expected solution time. aDatfor
. . a randomized backtracking algorithm (satz-rand) for th&=AAN

given: {-pV ¢}, {pV-r} encoding of a logistics planning problem (log.d). The Ysasipeci-
infer: {=¢ Vv —r} fies the expected number of backtracks performed until diealis

Each application of the rule allows the deduction of a negafound, counting the previous failed restarts.
tive binary clause (a mutex). The mutex algorithm used by

Graphplan _is incomplete (not_ all mutexes that_log_ically fol to axioms in the most direct way, as was done by the earlier
low can be inferred) and terminates in polynomial time. Notey1epic system of Ernst Millstei'n and Weld (1997). Fur-
that this algorithm is different from the simplification '?Ud)f thermore, the fact that t’he plan g}aph’s mutex relatiorship
unit propagation employed by_the original SATPLAN: more are directly translated into negative binary clauses mtkes
powerful in propagating negative clauses, but somewhat Iesformula easier to solve by many kinds of SAT engines.

powerful in propagating positive information. The set of-mu Bl ackbox currently includes the local-search SAT solver
texes is used in two ways by Graphplan, both to prune nodef/

from the graph during instantiation and to prune branches o alksat, and two systematic SAT solvers, satz (Li and An-
the searc% trlz:e thatigvolve mutuall excluspive actions ulagan 1997) and relat (Bayardo and Schrag 1997), in
; Y : addition to the original Graphplan engine (that searches th
These observations have led us to create a new system tr?

X .plan graph instead of the CNF form). The two systematic
combines the best features of Graphplan and SATPLAN. Thi olvers are comparable in power although quite different in

1 i i .
system, calledl ackbox," works in a series of phases: approach: satz is based on forward-checking, whilesael
1. Aplanning problem (specified in a standard STRIPS noemploys dependency-directed backtracking. In order te hav
tation) is converted to a plan graph of lengthand mu-  robust coverage over a variety of domains, the system can em-
texes are computed as described above; ploy ascheduleof different solvers. For example, it can run
2. The plan graph is converted to a CNF wff; G_raphplan f_or 3_0 seconds, then WaII_<sat for 2 minutes, and if
3. The wif is simplified by a general CNF simplification still no solution is found, satz for 5_m|nutes.
' algorithm: TheBl ackbox system actually introduces new SAT tech-
- ) ) nology as well, namely the use e@dndomized complete
4. The wifis solved by any of a variety of fast SAT engines; search methods As shown in Gomes, Selman, and Kautz
5. If a model of the wiff is found, then the model is con- (1998), systematic solvers in combinatorial domains aften
verted to the corresponding plan; otherwikes incre-  hibita “heavy tail” behavior, whereby they get “stuck” orrpa
mented and the process repeats. ticular instances. Adding a small amount of randomizatmn t
the search heuristic and rapidly restarting the algoritfier a

Note that specialized limited inference is used in mutex«:oma fixed number of backtracks can dramatically decrease the

putation, while general limited inference is used in CNF-sim Co ) :
plification. We will return to the complementary nature of average solution time. Figure 1 illustrates the effect aiiag

these two processes in section 3 below. The input to the findfndomized restarts to a deterministic backtracking selrc
general SAT engine can be considered to bectirabinato- gorithm. We see from the figure that as the cutoff is increased

rial core of the problem. The basic translation from a plan from its lowest setting the mean so_lution time first rapidty d
graph to SAT is describéd in Kautz. McAllester. and Selmarcreases. Then, as the cutoff continues to increase, the mean
(1996); in section 2 we will also describe a variation used in.SOIUtlon time increases in a near-linear fashion. Thissase

some of our experiments. Baioletti al. (1998) also propose in expected time is due to the fact that for this problem a non-

. : - negligible portion of the runs take arbitrarily long to com-
?ersr:?g?arlI?/(fgﬁgqli?i;(()jrgt(r)zrl]sgi?]ttlggﬁ'll? n graphs augmented WItﬁlete. In this example, at the optimal cutoff value, aboutt o
The wif generated from the plan graph can be considerabl;?lc 100 runs succeeds in finding a solution.

: We applied this randomization/restart technique to the ver
smaller than one generated by translating STRIPS operator ; : .
9 y 9 P s?on of satz used bBl ackbox. The variable-choice heuris-

!Source code and benchmarks available  fromtic for satz chooses to split on a variable that maximizesa pa
http://www.research.att.com/kautz/blackbox/. ticular function of the number of unit propagations that vabu



be performed if that variable were chosen (see Li and Anbufront-end ofBl ackbox. IPP (Koehlert al. 1997) is a new
lagan (1997) for details). Our version, satz-rand, rangoml implementation of the Graphplan algorithm including many
selects among the set of variables whose scores are withimprovements and extensions. We tried the solvers saiz, sat
40% of the best score. (The value 40% was selected empirand, and Walksat for botBl ackbox and SATPLAN. Input
ically.) The cutoff value is specified in the solver schedule to Bl ackbox, Graphplan, and IPP was in PDDL STRIPS
No one value cutoff value is ideal for all domains. Indeed,format (McDermott 1998); input to SATPLAN was a set of
predicting good cutoff values is a deep theoretical quastio hand-crafted axiom schemas using the “state-based” encod-
(the known asymptotic results (Lukst al. 1993) are often ings described in Kautz and Selman (198)ackbox sim-
not practical). If you need to solve a number of similar prob-plified wffs before passing them on to a solver using thedaile
lems, it is feasible to carefully tune the cutoff value onwa fe literal rule, while SATPLAN simplified using unit propaga-
of the instances, and then use that value for the rest of thion.
set. However, this cannot be done when a unique problem is Let us first make some general observations. We see that
encountered, or if you do not specify the parallel plan langt the scaling ofBl ackbox using any of the SAT solvers is
in advance and the system must search through a series bétter than Graphplan. It is important to note that up to the
different size problems. point at which the wff is generated from the plan graph, the
A simple and effective practical solution is to provide the code running irBl ackbox and Graphplan iglentical This
solver with a schedule of different cutoff values. The sehed indicates that the cost of performing the SAT translation is
ule specifies some number of trials with a very low cutoff small compared to the savings gained by using any of the SAT
value, and if those all failed, then so many at a higher valuegngines instead of the (relatively) simple backward-cingin
and so forth until either a solution is found or all trials end  search performed by Graphplan. Although IPP generally im-
failure. This can be viewed as a version of the well-knownproves upon Graphplan, in this case it only provides faster
search strategy aferative deepeningLike iterative deepen- solution times on the two smallest instances, and is always
ing, the time spent on trials with a low cutoff value is negli- slower tharBl ackbox. This is due to the fact that most of
gible compared to that spent on trials with a higher value, sahe improvements in IPP over Graphplan are not invoked in
that even when the early part of the schedule fails to find ahis test: they only come into play when the plan lengihas

solution little overall effort is wasted. given, or when the initial state description contains falctt
o are irrelevant to the solution. This test also does not allow
2 Empirical Results us to take advantage of the “RIFO” heuristic graph pruning

In order to test the effectiveness of tBeackbox approach option in IPP, because doing so prevents IPP from finding the

we selected benchmark problems that have the followinginimum parallel length solutions atall.
characteristics: In short: for critically-constrained planning problems

. . . . where plan extraction is the computational bottleneck for

¢ Domains are:orr_]pu'gatlonally _challenglng there is no Graphplan-type solvers, translating the plan graph into
simple polynomial time algorithm for optimal planning. gaT and applying a general SAT solver can boost perfor-

¢ Solution time isdominated by search plan graph gen- mance.
eration is relatively fast, but solution extraction is hard A second general observation is that the scaling of the best

e Problem instances aritically constrained: finding ~ solution times forBl ackbox (using satz-rand) is close to

optimal plans is much harder than finding sub-optimalthe scaling of the best solver-only times for SATPLAN (us-
ones. ing Walksat). This is quite remarkable, given the fact that t

Bl ackbox encodings were generated automatically, while
the SATPLAN axioms were carefully hand-tuned in order
o ) to provide the best possible performance for Walksat. The
e Instancespush the limits of the approach in order to SATPLAN encodings even included explisitate invariants
demonstrate how it scales up. (such as the fact that “a truck is only at one location at a
In this paper we present results on a set of such problems frotime”) that are known to boost the performance of problem
logistics planning (Velosa 1992), a highly parallel plammi  solvers (Kautz and Selman 1998). Even more striking is the
domain, and from the classic blocks world, a purely sequenfact that when the time to generate the SATPLAN encod-
tial domain. The test machine was an SGI 194 MHz R10000ngs is also taken into account, the oveilllackbox times
Challenge server, where each process ran on a dedicated pare consistently better than the SATPLAN times. For exam-
cessor. The largest amount of RAM allocatedBbyackbox ple,Bl ackboxtakes 28 seconds to generate and solve log.d,
during solution of the largest logistics problem (log.d)swa while SATPLAN takes 3.6 minutes (3.5 minutes to generate
178 MB, and during the solution of the largest blocks worldand 7 seconds to solve).
problem (bw.c) was 660 MB. Most of the memory was allo- In short: advances in SAT solvers have made plan-
cated during the phase of constructing the initial plan lgrap ning using SAT encodings automatically generated from
Table 1 compares the performanceBbfackbox (version ~ STRIPS operators competitive with planning using hand-
3.4), SATPLAN, Graphplan, and IPP (version 3.3) on our lo-crafted SAT encodings.
gistics benchmark problems, where the optimal plan length These results contrast with earlier experiments on solving
is provided as input. Graphplan is the original code devel-automatically-generated SAT encodings of planning prob-
oped by Blum and Furst (1995) that also is incorporated in théems. Kautz and Selman (1996) reported that both Walksat

¢ Both both parallel and sequential planning problems
are included.



problem| par- Bl ackbox Graphplan| IPP SATPLAN

allel | walksat satz| satz- create| walksat satz satz-

time rand rand
rocket.a 7 3.2sec| 5sec| 5sec 3.4 min 28sec| 42sec| 0.02sec| 0.3sec 2 sec
rocket.b 7 2.5sec| 10sec| 5sec 8.8 min 55sec| 4l1lsec| 0.04sec| 0.3sec 1sec
log.a 11 7.4sec| 5sec| 5sec| 31.5min| 1hour| 1.2 min 2sec| 1.7min 4 sec
log.b 13| 1.7min| 7sec| 7sec| 12.7min| 2.5hour| 1.3 min 3sec| 0.6sec 7 sec
log.c 13| 149min| 9sec| 9sec — — | 1.7 min 2 sec 4sec| 0.8sec
log.d 14 — | 52sec| 28 sec — — | 3.5 min 7 sec| 1.8 hour | 1.6 min

Table 1: Results on critically constrained logistics banatk planning problems running on a 194 MHz SGI Challengesser
Optimal parallel plan length was provided as an inpBt.ackbox options for column “satz” are “compact -l -then satz".
Bl ackbox options for column “satz-rand” are: “compact -l -then satateff 20 -restart 10 -then satz -cutoff 200 -restart
100000”". SATPLAN solver options for column “satz-rand” afsatz -cutoff 16 -restart 100000”. Walksat options for ot
Bl ackbox and SATPLAN are: “-best -noise 50 100 -cutoff 200000000"miFigs are real wall-clock times including all
input and output; differences less than 1 second betweésralit programs are not significant due to implementatidailde
Timings for the randomized methods are averages over 1t@0€ fTimings for SATPLAN separate time used to generafe wf
(create) and time used for each of the solvers. Long dashtdidates solution not found after 24 hours.

and ntab (a determinisitc backtracking solver, less compleagation at each branch of the backtracking search and thus
than satz or rekat) had difficulty solving plan graph gen- speed the solutiontime. An interesting open question tleat w
erated SAT encodings of the larger logistics problems, getare currently investigating is whether a SAT solver thasuse
ting as far as log.b before the running time exploded. Thelependency-directed backtrackired. rel_sat) can actually
MEDIC system (Ernst, Millstein, and Weld 1997) used the“learn” the added clauses while running on a MEDIC-type
same solvers but generated the SAT encodings directly frorancoding.

the STRIPS axiomwithouttaking advantage of an interme- |y short: use of an intermediate plan graph represen-
diate plan graph representation, by using the conventiens dation appears to improve the quality of automatic SAT
scribed in Kautz, McAllester, and Selman (1996). They re-encodings of STRIPS problems.

ported a solution time of 1.1 hours using Walksat on log.a.
One should note that there is no significant overhead in us;
ing a plan graph for generation; in fact, the generation @has
in Bl ackbox takes only a few seconds for each of prob-

lems described above, versus several minutes for generati?ar tl dload B local h m
by SATPLAN or MEDIC. gest, log.c and log.d. By contrast, local search workis we
for even the largest SATPLAN encodings. (This suggests
A longer version of this paper will contain a detailed some specific connection between local search and state-
comparison with MEDIC. However, our preliminary exper- based encodings, a topic that has received relatively kit
iments indicate that wffs generated from a plan graph (asention since the original SATPLAN work.) The determin-
in Bl ackbox) have significantly different computational istic version of satz shows more consistent behavior across
properties from ones generated directly from STRIPS (as ithe Bl ackbox instances, although it stumbles on rocket.b
MEDIC), despitethe fact that they are logically equivalent and log.d. Satz stumbles even more dramatically on log.a and
(Kautz, McAllester, and Selman 1996). In particular, thenpl  |o0g.d for the SATPLAN encodings.
graph-based wifs contain fewer variables, more clauses, an \ynat is happening in each of these “stumbles” is that the
are easier to solve. For example, the encoding of l0g.a gens,t; yariable choice heuristic (which is usually very good)
erated byBl _ackbox cont_alned 2,709 variables and 27,522 a5 made a wrong choice early on in the search tree, and
clauses, while the encoding generated by MEDIC (using the, ihe aigorithm spends much time exploring a large area of
regular operator representation with explanatory frame aXine search space that is devoid of solutions. As discussed

. . . t

ioms) contained 3,510 variables and 16,168 clauses. Ag Gomes, Selman, and Kautz (1998), one can observe this

shown above, thBl ackbox wff can be solved by satz-rand ,ccrring for backirack search for eithedaterministical-

in 5 seconds, butwe have notyet been able to find a setting fof,rjthm on alarge distributionof problem instances, or for

the_parameters for satz-rand that will let it solve the MEDIC .o hqomizedbacktrack algorithm repeatedly solvingsin-

wif in less than 24 hours. gleinstance. The latter case is the easiest to observe and has
The differences between the two kinds of wffs can beformed the basis of most experimental work on the subject,

explained by the fact that the plan graph algorithm prunesince one can simply do many runs of the algorithm (where

many unreachable nodes, thus reducing the number of varthe variable choice heuristic randomly breaks “ties”). he t

ables in the corresponding encoding, while propagating muexperiments discussed here we have, by contrast, a determin

texes between nodes, thus increasing the number of (negsstic algorithm running on small d@ifferentinstances. In a set

tive binary) clauses. The added binary clauses increage proof examples this small it is not surprising that the phencamen

Next, let us consider the differences in performance caused
y different SAT solvers foBl ackbox and SATPLAN.
First, we see that while Walksat performs very well on the
smaller Bl ackbox instances, it does poorly on the two



problem| Timeout | Prove optimal] Prove optimal rand. Finally, the table presents some data from our irgkal
/satz-rand /satz /rel_sat periments using the dependency-directed backtracking SAT
rocket.a 59 sec 59 sec 57 sec solver relsat. This is also a complete method that guarantees
rocket.b 1 min 1 min 1 min optimality, but now we see that it's timings are comparable
log.a 1.3 min 1.3 1.1 min with using satz-rand in its incomplete mode. (When the plan
log.b 2.1 min 45 min 2.1 min length is given as input, our preliminary experiments iatkc
log.c 3 min _ 4.9 min that satz-rand usually has a edge oversal)
log.d 3.7 min 3.7 min 2.6 min In short: Performance of Bl ackbox for plan length

search tasks can be acceptable, even though information

Table 2: Results foBl ackbox finding optimal solutionsto ~ from failed too-short trials is not reused, as itis in Graph-
benchmark planning problems where system must search félan. ) _ o

the minimum parallel time length. The “Timeout/satz-rand” A problem with the SAT approach in some domains is that
solver options are “-maxsec 30 graphplan -then satz -coff the problem encodings become very large. A notable case
-restart 10 -then satz -cutoff 200 -restart 1. The “Prové-op IS the classic single-armed blocks world. Because no par-
mal/satz” solver options are “-maxsec 30 graphplan -then sa allel actions are permitted, the plan graph must contain as
-cutoff 20 -restart 10 -then satz”. The “Prove optimalsat”  Many layers as there are actions in the solution. If there are
solver options are “-maxsec 30 graphplan -then relsat”gLon » blocks, then there af@(n_z) actions andD(n*) mutexes
dash (—) indicates solution not found after 24 hours. Inyever Per layer. Thus the translation of a 28-step, 15 block prable

case the same quality solutions were ultimately found. (large.c) contains about 2.5 million clauses, most of which
are negative binary clauses (mutexes).

We therefore developed a modification to the translation
only occurred for 4 of the 12 trials scheme that can reduce the number of clauses in such cases.
i L _ Note that it is not logically necessary to translate a paldic
We next reran the experiments using the randomized/restaghtex if that negative binary clause is implied by other part
version of satz described earlier. TBeackbox sched- ofthe translation. If particular, if we add clauses thatestaat
ule for satz-rand used a cutoff of 20 backtracks for up to 103n action implies its effects as well as its preconditiohs (t
restarts, followed by a cutoff of 200 backtracks restarting  |atter are part of the default translation), then mutexeaato
til a solution was found. The SATPLAN schedule for satz- need to be explicitly translated for actions with confligtizf-
rand was a cutoff of 16 backtracks restarting until a sohutio fects or conflicting preconditions: only mutexes where the e
was found. These schedules were only very roughly tuned bjgct of an action conflicts with the precondition of another a
hand after observing a few trials and are not necessarily opheeded. Table 3 shows the results of performing this “com-
timal. However, in each case the observed solution time Wagressed” translation. The encodings are about 75% smaller
significantly reduced. FdBl ackbox the times for rocket.b iy the number of clauses and considerably easier to solve
and log.d were cut in half, while even more significant sav-py satz-rand (which has no difficulty in chaining through the
ings were seen for SATPLAN, where the solution time for Horn clauses that entail the “missing” mutexes). For compar
log.d decreased from 1.8 hours to 1.6 minutes. ison the final column provides solution times for the Graph-
In short: Randomized restarts boost the performance plan search engine working on the plan graphs éxafic-
of systematic SAT algorithms on encodings of planning itly include all the inferred mutex relations. Performance of
problems. Bl ackbox and Graphplan is comparable, although neither
Table 2 shows the results of runniBfjackbox and the is currently state of the art. (Howeva| ackbox’s ability
same logistics instances where the parallel solution teisgt  to find optimal solutions to a 28-step blocks world problems
not specified in advance. The times for running Graphplarwould have been considered state of the art performance as
or IPP in this mode on these instances are only marginalljittle as two years ago.)
higher than when the plan length is given as input: most of the In short: SAT encodings become problematically large
work the Graphplan-type engines perform occurs when thé sequential domains with many operators, although re-
plan length reaches the optimal bound. We Barackbox finements to the encoding scheme can delay the onset of
with satz-rand in two modes: in the first “timeout” mode, if a the combinatorial explosion.
solution is not found after a few restarts (10 restarts atf€ut In summary, our experiments show tltackbox pro-
20, 1 restart at cutoff 200), the plan length is incrementedvides an effective approach for “search bound” problem in-
In the second modeBl ackbox is madecompleteby mak-  stances in certain highly parallel planning domains such as
ing the final part of the solver schedule run satz without anylogistics planning. The approach runs into difficulties oy d
cutoff. Thus, only the second mode actugtpvesoptimal- ~ mains such as the blocks world whdreththe intermediate
ity. By comparing two modes, we see that the first (time-plan graph and the SAT translation become very large, al-
out) is muchfaster than the second, even though the saméhough the technique of compressed encodings provide sig-
quality solutions are ultimately found. This is becausehm t nificant relief.
second mode most & ackbox'’s effort goes into proving A longer version of this paper (in preparation) will include
the non-existence of a solution of length one step less tharesults on an expanded set of benchmark problems, including
optimal. Or, in other words, the “co-NP” part of the SAT the instances from the AIPS-98 Planning Competition. Al-
translation was empirically harder than the “NP” part fdzsa though the performance & ackbox in the AIPS competi-



problem| steps Bl ackbox Graphplan
default compress
clauses time | clauses time
reverse 8 1,347 2 sec 917 3 sec 2 sec
12step 12 25,978 5 sec 6,643 3 sec 3 sec
large.a 12 116,353| 13sec| 18,061 5 sec 3 sec
large.b 18 | 469,993| 6.5min | 123,653| 28 sec 1.9 min
large.c 28 | 2,496,832 * 1917,402| 1.3 hour —

Table 3: Comparing the default and “compressed” SAT traiwsia produced by blackbox, for blocks world problems where
the optimal plan length is input (no parallel actions posdibSolver used byl ackbox is “-compact -l -then satz -cutoff 40
-restart 20 -then satz -cutoff 400”. Star (*) indicates solffailed due to memory size, and long dash (—) that no saidtond
after 48 hours.

tion was respectable (no competitor dominated it in on &ll ca percent set by

egories in round 1, and only IPP did so in round 2), we must problem| vars| uprop flit blit
note that the competition problem instances did not provide 12step 11911 13% | 43% | 79%
a way of distinguishing planning systems that employ plan bw.a 2452 | 10% | 100% | 100%
graphs on the basis of thesearch strategiesNearly all of bw.b 6358 5% | 43% | 99%
the instances were “too easy” in the sense that once a pannin bw.c 19158 206 | 33% | 99%
graph was generatethysearch strategy could extract a solu- rocketal 1337 3% | 24% 1 40%
tion, or “too hard” in the sense that the planning graph grew rocketb | 1413 3% | 21% | 49%
intolerably largebefore conversion to CNF. For example, log.a 2709 2% | 36% | 45%
Bl ackbox’s difficulty in dealing with the “gripper” domain log.b 3287 206 | 24% | 30%
were due to explosion of the initial plan graph, even though log.c 4197 206 | 23% | 27%
the domain is inherentlgon-combinatorial (a linear time do- log.d 6151 1% | 25% | 33%

main specific optimal planning algorithm exists). Diffeces
in performance between the various systems was largely due ) ) ) )
the RIFO strategy of IPP (Nebet al. 1997). Many of these Of planning problems before simplification, and the percent
strategies can be incorporated ifloackbox by simply re-  age determined by simplification by unit propagation (uprop
placing it's Graphplan front-end witg. IPP. the_\ failed I|t_eral rule (flit), and by the binary failed ligdnrule
sue for runningdl ackbox on small-memory machines (as Ond set are logistics.
noted above, ones with less than the 178 MB required for
log.d), particularly because the current code does not optiOI
mize memory usee(g, several copies of the wff are kept in
core, and memory is not reused when wffs are sequentiall
generated with larger bounds). Even so, the falling prioes f
E'Z‘m Eﬁg:rtehneﬂﬁgg?ou;cil\?v(i)l?(IgIry5;r20'\\:lv8r11<s)lrjep%?zratctt?ceala \r,?iltjh stantiated at a particular time-instant) are mutually esivle

if all the actions that add one are exclusive of all actiora th

time. A more serious technical challenge comes from recen dd the other. Additional mutexes are added between actions
work on structure sharing techniques for compactly repre-

. : . ._~if a precondition of one is mutex with a precondition of the
(S)??glggalr?ég;Tgsn(ggip;ﬁ d(aLl(S)r\]’\gIIlaggg?)aug\;[vhsa?]eg;\e/etfzﬁsn_other. If one takes the number of preconditions or effects of
late such representations into SAT Withdut multiplying allit an opergitortozbe_constant the_n mutex computation can be per-
the shared structure? Instead of compiling into pure SAE, Onforr_ned in0(n”) time, wheren is the number of instantiated
miaht trv to com ilethe lan araph into a smaller semxibm' actions (where an instantiated action specifies all itsmara

gnttry mpiie the plan grap . ters as well as a particular time step).
schemasthat is, a “lifted” form of CNF. The axiom schemas

could be passed on to a general lifted SAT solver or further Thtjs_n:utex comtpu_tat|o|r_1 I'St S(;”:jplz afspeughzed for(;n of
compiled into rules in a constraint logic programming sys-Cons raint propagation.€., limited deduction. Some nodes

tem. The latter alternative appears particularly attvacin can be_determi_ne_d to be inconsistent during instantiatin_in_a
the light of good results recently obtained in using coristra immediately eliminated from the plan graph. The remaining

logic broaramming to solve blannina problems (van Beek an utex relations are used to con_strain _the search over the ei-
CﬁenplggQ). 9 P gp ( her the graph or its SAT translation. It is natural to wonifler

other forms of limited inference are useful for planninglpro
. lems. Blum (personal communication) observes that comput-
3 The Role of Limited Inference ing higher-order mutexes (between triples of acti@ts) is

The plan graph approach to STRIPS planning gains much afiot very useful. Do the binary mutex computations extrdct al
its power through its use of mutex computations, as we brieflymportant “local” information from the problem instances?

escribed above. During construction of the plan graph,
Graphplan marks a pair of instantiated actions as mutuglly e
Ylusive if one deletes a precondition or add-effect of theent

It further determines that a pair of facts (predicates firlly



We decided to test this hypothesis by experimenting with &  Conclusions

series of different limited inference algorithms that work  \yje have provided an overview of ti& ackbox planning
Ehe the Se\Tencodmgsnf the problems. We used the program ¢ stem, and described how it unifies the plan graph approach
compact” developed by James Crawford, and considered thg STR|PS planning with the planning as satisfiability frame
following options: work. It provides a concrete step toward tAEAI Challenge
for unifying planning frameworks (Kambhampati 1997). We
discussed empirical results that suggest that new ran@oimiz
systematic SAT algorithms are particularly suited to sodvi
failed literal For each literal, try adding the literal to the for- SAT encodings of planning problems. Finally, we examined
mula and applying unit resolution. If inconsistency is the role of limited inference algorithms in the creation and
determined then then literal can be set to false. Requiresolution of problem encodings.
O(n?) time. There is strong evidence that the best current general SAT
_ ) ) ) ) _ engines are more powerful than the search (plan extraction)
binary failed literal For each pair of literals, try adding the engines used by Graphplan and its descendents. Although it
pair of literals to the formula and applying unit reso- js possible to incorporate the heuristics used by thesergene
lution. If inconsistency is determined then the binary solvers back into a specialized planner (see Rintanen §1998
clause consisting of the negations of the_ Ilter_als can bgor such an approach), given the rapid development of new
added to the formula, and the single failed literal rule SAT engines such a tactic may be premature. As an alterna-
applied again. Require3(n”) time. tive, Giunchigliaet al. (1998) present evidence that it possi-
ble to dramatically boost the performance of a general SAT
%ngine by feeding it a tiny amount of information about the

unit propagation Apply unit resolution. Require®)(n)
time.

Table 4 shows the result of applying each of these kind
of S|mp_I|f|g:at|ons to a series of encodings of blocks Worldstructure of the encoding (in particular, identificationtioé
and logistics planning problems. For each problem we sho

. . . Viction variables). There is also much work on improving
the number of variables in the instance and the percentage ﬂfe plan graph generation phaseg(, Kambhampatiet al.
those variables whose values are determined by local Cor%-

. . . 1997), Nebekt al. (1997)) which could be directly incor-
putation. The r_e_sults for unit pro_paganon_(uprop) seem 1q, ated irBl ackbox by replacing its front-end
confirm the intuition that there is little local informatideft Bl ackbox is an evolving system. Our geheral goal is
in these problems. For the blocks world problems only be- . . : ; -
tween 202 and 13% of the variables are getermined bz unil unify many different threads of research in planning and
. O ) ference by using propositional satisfiability as a common
propagation, and for the logistics problems no more than 30?

are determined. However. the storv chanaes dramaticall fOoundation. An important direction that we have not touched
the failed literal rule (7). In the blocks world from 339 to " In this paper is the use dbmain specific control know-
100% {.e., the problem is completely solved!) of the vari- edgein planning (Bacchus and Kabanza 1996; Kautz and Sel-

ables are determined. In the logistics domain over 21% of th(rgnan 1998; Gerevini and Schubert 1998; Fox and Long 1998);
variables are eliminated. The binary failed literal rulBtjlis ee Cheng, Seiman and Kautz (1999) forwork on adding con-

even more powerful. All of the blocks world problems were trol knowledge td3l ackbox.

either solved completely or made trivial to solve (less than

131 variables) by this rule. The logistics problems were als References
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