
1

Statistical relational learning for game theory
Marco Lippi

Abstract—In this paper we motivate the use of models and algorithms
from the area of Statistical Relational Learning (SRL) as a framework
for the description and the analysis of games. SRL combines the powerful
formalism of first-order logic with the capability of probabilistic graphical
models in handling uncertainty in data and representing dependencies
between random variables: for this reason, SRL models can be effectively
used to represent several categories of games, including games with
partial information, graphical games and stochastic games. Inference
algorithms can be used to approach the opponent modeling problem, as
well as to find Nash equilibria or Pareto optimal solutions. Structure
learning algorithms can be applied, in order to automatically extract
probabilistic logic clauses describing the strategies of an opponent with a
high-level, human-interpretable formalism. Experiments conducted using
Markov logic networks, one of the most used SRL frameworks, show the
potential of the approach.

I. INTRODUCTION

The intersection between the research areas of artificial intelligence,
machine learning and game theory has recently known a phase
of development. Historically, artificial intelligence has always seen
games as a source of inspiration and challenges for the design of
intelligent systems capable of interacting with the environment and
of taking rational autonomous decisions. Within this context, the
application of algorithms and models from computer science, and
artificial intelligence in particular, to game-theoretic problems, has
produced the rapid growth of the research area called Algorithmic
Game Theory [1], with specific interest in game playing and decision
theory. Some works have instead pointed out that the link between
game theory and machine learning could be stronger, and that a more
prolific collaboration between the two research fields has only been
established in the last decade [2].

Nevertheless, without doubt, there are several research directions
where the contribution of machine learning to game theory problems
has been much significant. For example, with the development
of graphical games [3], where game models are derived from
combinatorial graphs, machine learning methodologies have been
successfully applied to build efficient algorithms for the computation
of Nash equilibria in large multi-player games. In this direction, [4]
introduces a mapping between graphical games and Markov random
fields, describing how inference algorithms such as belief propagation
or Markov Chain Monte Carlo can be applied to the decision problem
of whether a graphical game has a pure Nash equilibrium. Another case
in which machine learning has found application within game theory
is given by opponent modeling, that is the problem of predicting the
moves of the adversaries, given observations of their behavior in past
situations. Among the many techniques which have been employed
throughout the years to address this task we can cite reinforcement
learning [5], [6], Q-learning [7], artificial neural networks [8], and
many others. Iterated games, such as the Iterated Prisoner’s Dilemma
(IPD), represent the ideal scenario to test this kind of approaches
(e.g., see [9] and references therein). In [2] a wider comparison
between inference algorithms for game theory and machine learning
is given, and a connection between fictitious play [10] and variational
learning is presented, producing an interesting efficient solution for the

Marco Lippi is with Dipartimento di Informatica – Scienza e Ingegneria,
Università degli Studi di Bologna, Italy (email: {marco.lippi3@unibo.it}).

opponent modeling problem. Several classical applications of learning
and inference algorithms in game-theoretical frameworks can be found
in [11]. Learning from game logs has become an extremely popular
research field, especially in the context of perfect information games:
deep convolutional neural networks have been applied to the game
of Go [12], while for Othello approaches based on N-tuple systems
and self-learning [13], [14] and evolution functions and preference
learning [15] have been proposed. Deep learning techniques have also
been applied to learn game strategies from visual input configurations:
this is the case, for example, of the reinforcement learning approach
for playing Atari games [16], while recently deep convolutional neural
networks have also been applied within this context to learn from
visual patterns in the game of Go [17]. Another recent, prominent
line of research is given by the use of Monte-Carlo tree search to
predict the evolution of game configurations (e.g., see [18], [19] and
references therein).

It is clear from these works that there are several aspects where
machine learning and, more in general, artificial intelligence, can
give a significant contribution to game theory. First of all, the
problem of knowledge representation is crucial in games, where
it is very often necessary to describe the domain of interest in terms
of strategies, alliances, rules, relationships and dependencies among
players, information concerning the external environment: this is a
context where logic formalisms can play a crucial role in representation
issues, whereas techniques from inductive logic programming [20] can
be applied in order to extract rules from a knowledge base represented
by logic predicates. Moreover, probability also plays a very important
role in game theory, since in many games players have to deal with
missing or incomplete information, and probabilistic reasoning is a
key ingredient for decision making.

For these reasons, a recently developed research area which perfectly
fits such aspects is given by Statistical Relational Learning (SRL),
sometimes also called Probablistic Inductive Logic Programming [21].
SRL methods combine logic representations with the formalism of
probabilistic graphical models and with methodologies coming from
statistical learning. This framework allows to represent background
knowledge in a straightforward way, thanks to the expressive power
of first-order logic, while maintaining the capability of managing
uncertainty in data within graphical models such as Markov random
fields or Bayesian networks. Another feature of SRL models which
might have a great impact on game theory is that of structure learning,
that is the possibility of directly learning model structures from data.

In [22], a first attempt to employ SRL methodologies for game
theory is given, by using Causal Probabilistic Time Logic (CPT-L) for
the modeling of sequential game structures with fully observed data.
The proposed approach has been tested in several domains, including
a multiplayer online strategy game, with the goal of predicting player
actions or identifying groups of cooperating alliances. CPT-L is an
extension of traditional CP-Logic which represents causality among
probability distribution over sequences of relational state descriptions.
The restriction to sequential models and the hypothesis of dealing
with fully observable data limits the representation power of the
framework, but on the other hand it allows to employ efficient learning
and inference algorithms.

Other SRL models which have recently found applications within
decision making scenarios, reinforcement learning and opponent mod-c©2015 IEEE

2

eling include: Logical Markov Decision Programs (LOMDPs) [23],
which combine Markov decision processes with logic programs;
DTProbLog [24] which extends the Probabilistic Prolog language
towards decision theory; Infinite Hidden Relational Trust Model
(IHRTM) [25] which extend Infinite Relational Models towards trust
learning; Relational Reinforcement Learning [26],[27], which has
been applied to planning and policy learning; Independent Choice
Logic [28] (ICL) to model strategic situations. The contribution of
this paper, inspired by these recent works, is to show the potential
of the SRL framework in the context of game theory, by clarifying
the connections between the two research fields, and by highlighting
how SRL can provide an extremely powerful formalism for modeling
several different game categories, and for addressing a number of
challenging problems.

In the next section we briefly review some notation of game theory
and we describe some of the most commonly used categories of
games, with the aim of presenting some suitable scenarios for the
application of SRL methods. Then, we introduce more formally
Statistical Relational Learning, with a particular focus on Markov
Logic Networks, which will be used in our experiments. The final
section will present some experimental results, showing how SRL
models can be applied to classical game theory problems.

II. GAME THEORY

Game theory is a field of mathematics whose aim is to analyze
strategic situations, in which individuals interact during decision-
making processes. In strategic situations, the success of an individual
does not depend only on his/her choices, but also on the choices
of other individuals, with whom there can be direct or indirect
interaction. Game theory applications range in a number of different
areas, including economics, social sciences, evolutionary biology,
politics, computer science and many others [29].

A classic strategic game is defined as a model in which all the
decision-makers (players) plan their decisions simultaneously, with
no possibility of a change. Formally, a strategic game can be defined,
using the normal form, as a triple G = 〈P,S,U〉 where:
• P = {p1, . . . , pN} is the set of players
• S = {S1, . . . , SN} is a set of tuples Si describing the possible

actions (strategies) of player pi
• U = {u1, . . . , uN} is the set of utility functions associated to

each player, ui : S1 × · · · × SN → <.
The aim of each player is to maximize his/her utility, or payoff.

A typical assumption of game theory is that players play rationally,
that is they would not choose a strategy which would give them a
lower payoff than another, other things being equal. This is a natural
assumption when speaking in terms of mathematical game theory,
that is in cases where the utility function of each player is easily
formalized, and it is clear which of two outcomes is to be preferable
for a player.

In a game with perfect information, each player knows all the
relevant information to make a decision (i.e., chess, backgammon,
etc.), clearly including the utilities of all the other players. Normal-
form games are often represented in a matrix-form: in the following
example, the well known prisoner’s dilemma game is described using
the matrix formalism.

Example 1 The Prisoner’s Dilemma (PD)
Two suspects are arrested by the police. Since there is not enough
evidence for a conviction, the two prisoners are separated and they
are offered the same deal: if one testifies against the other (defects)
and the other remains silent (cooperates), the betrayer goes free, while
the silent accomplice receives a 10-year sentence. If they both betray,
they receive a 5-year sentence each. Finally, if they both stay silent,

they can only be sentenced for one year, due to a minor charge. Each
prisoner must choose either to betray or to stay silent, independently
from the other, and they cannot change their position. Which strategy
is the most convenient for them ?

C D
C (-1,-1) (-10,0)
D (0,-10) (-5,-5)

Table I: The matrix payoff of the prisoner’s dilemma game. Greater
numbers are preferred to smaller ones.

Table I shows the matrix payoff of the game: rows correspond
to strategies chosen by player one, while columns correspond to
strategies chosen by player two. The numbers in parentheses indicate
the payoffs of the first and second player, respectively. Positive numbers
are supposed to be preferred to negative ones.

In order to answer the question in Example 1, it is necessary to
introduce the concepts of strategy profile and best reply. A strategy
profile for player k is a probability distribution p = {p1, . . . , pSk}
over the set of strategies which can be chosen by player k. If a profile
has only one non-zero element (that is therefore equal to 1) then the
strategy is called pure, otherwise it is called mixed, meaning that
different actions might be chosen by that player in different moments.
If we now consider a two-player game, being A and B the two payoff
matrices associated to each player, a profile p for the first player is
said to be a best reply for a profile q of the second player if the
following condition holds:

pAq ≥ p′Aq, ∀p′ 6= p.

The best reply definition implies that a player cannot obtain a better
outcome by changing his/her strategy, other things being equal. A set
of profiles is said to be a Nash equilibrium [30] if, for each player,
the chosen profile is a best response with respect to all the profiles
chosen by the other players. By employing the aforementioned two-
player formalism, a pair (p∗, q∗) is a Nash equilibrium if p∗ is a best
response with respect to q∗ and q∗ is a best response with respect to
p∗. If the profiles are all pure, we speak of a pure Nash equilibrium,
otherwise we speak of a mixed Nash equilibrium. All these concepts
can be naturally extended to multi-player games in a straightfoward
way. In case of pure strategies, in a Nash equilibrum a strategy si is
said to be a dominating strategy, which means that it gives at least
the same payoff of any other sj 6= si, for any possible combination
of strategies of the other players: no unilateral deviation in strategy
by any single player is profitable for that player. For any game with a
finite number of players and finite sets of strategies for all players, it
can be proven that at least one (mixed) Nash equilibrium exists [30].

In the case of the Prisoner’s Dilemma, it is easy to prove that
the Nash equilibrium consists in the situation where the two players
defect, and it is a pure equilibrium. Yet, the two players would obtain
a higher payoff in the case of cooperation: for this reason, such an
equilibrium is said to be not Pareto-optimal. A set of strategy profiles
is said to be Pareto-optimal if no player can increase his/her payoff
without decreasing that of another player. In a two-player game, a pair
of profiles (p∗, q∗) is a Pareto optimum if there does not exist another
profile pair (p, q) such that one of the two following conditions holds:

pAq > p∗Aq∗, pBq ≥ p∗Bq∗

pAq ≥ p∗Aq, pBq > p∗Bq∗.

In general, games can have one or more equilibria. The following
example, describing the well known Battle of the Sexes game, will
describe a scenario where multiple equilibria exist.

3

Example 2 Battle of the Sexes1

A married couple has to decide where to spend the evening. The
husband would like to go to a Soccer game (in another version, to
a Stravinsky concert). The wife, on the other hand, would prefer a
Ballet (in another version, a Bach concert). Both prefer going to the
same place rather than to different ones. Where should they go ?
Table II shows the matrix payoff of the game.

B S
B (1,2) (0,0)
S (0,0) (2,1)

Table II: The matrix payoff of the Battle of the Sexes game. Greater
numbers should be preferred to smaller ones.

In this case, two different pure Nash equilibria exist, corresponding
to the two situations (S,S) and (B,B): if the husband chooses S,
then the best choice for his wife is S too. The other way round, if
the wife chooses B, then her husband should choose B too. It can be
proven that a mixed Nash equilibrium also exists, where each player
plays the preferred strategy more frequently: given the matrix payoff
in II, each player would play the preferred strategy with probability
2/3 and the other with probability 1/3 [29].

Throughout the years, a wide variety of game categories has been
introduced, in order to model different scenarios and real-world
situations in disparate fields, including biology, economics, political
sciences, sociology, psychology and computer science.

A category of games which has recently gained an increasing
attention is that of graphical games, or graph games [3]. In a graphical
game, players are considered as nodes in a graph, where edges
represent their interactions. In such a game, the payoff of a player
does not depend on the strategies of all the other players, but only on
the subset of his/her neighbors, according to the graphical structure
describing the game. Hence, there are several local payoff matrices,
one for each player, rather than a unique global payoff matrix. By
exploiting the representation power of graphical models like Markov
networks, SRL models are a suitable framework for this kind of
scenario.

Stochastic games [31] are dynamic games which are played in stages
by one ore more players: subsequent actions change the state of the
game, as well as the outcome of the players, and are chosen according
to transition probabilities. If there is a finite number of players and
the action sets and the set of states are finite, then a stochastic
game with a finite number of stages always has a Nash equilibrium.
Stochastic games are sometimes called also Markov games, as they
share analogies with Markov Decisions Processes (MDPs) [32], [33],
where actions (strategies) induce transitions between states of the
model and all players act simultaneously.

Uncertainty can be introduced in games in several ways: in games
with incomplete information, players do not know the payoff matrices
of the other players, but they know the actions each other player takes,
while in games with imperfect information the opposite happens, the
actions and strategies of the opposing players being unknown for each
player. Actually, a game with incomplete information can always be
transformed into a game with complete but imperfect information by
applying the so-called Harsanyi transformation [34], which models
Nature randomness as another player whose choices are not yet known
(basically, Nature player acts as a random number generator).

Statistical relational learning can easily handle uncertainty in data
and model scenarios with incomplete or unknown information. One
of the classic problems in game theory, when dealing with incomplete

1Also known as Ballet or Soccer, Bach or Stravinsky (BoS).

or imperfect information, is to model opponents behavior, in order to
predict their actions and consequently plan adapted strategies. This is
a fundamental task also in repeated games and stochastic games, and
it has particular significance in domains where the opponent plays sub-
optimally, that is not following strategies that correspond to strategic
equilibria. In that case, taking advantage of correctly guessing the
behavior of the opponent, exploiting weaknesses in his/her strategy,
and taking decisions according to such knowledge will most likely
bring to larger rewards than those that would be obtained by simply
playing according to an optimal equilibrium strategy. In complex
games such as Poker or Risk, the behavior of players is clearly
sub-optimal, and in those cases opponent modeling plays a crucial
role in constructing successful game strategies. As it will be shown
in the experimental section, SRL models can be used in order to
describe probabilistic rules which can capture the strategy of one or
more players, thus providing an extremely powerful instrument for
opponent modeling.

III. STATISTICAL RELATIONAL LEARNING

Since the end of the nineties, machine learning has run across what
has been called a relational revolution: one of the main assumptions
of traditional machine learning algorithms, like neural networks,
support vector machines or decision trees, was to consider examples
as independent and identically distributed, while on the contrary
in many real-world problems there exist several relations and inter-
dependencies among the objects of the domain. Taking into account
these inter-dependencies within the statistical learning framework
and addressing problems in complex relational domains are the key
ingredients of Statistical Relational Learning (SRL) [35]. The SRL
community was born at the intersection of different areas of artificial
intelligence, logic and statistics, with the aim of combining the
descriptive formalism of first-order logic with the representative power
of graphical models, like Bayesian networks or Markov networks.

Given a data set represented in the form of a complex structure
(e.g., a graph), SRL allows to approach several tasks exploiting
the relationships and dependencies in the data, and performing
collective classification: examples of such tasks are link prediction
(i.e., predicting whether two nodes in a graph are connected), object
classification (i.e., predicting whether a node has some property) or
group detection (i.e., identfying underlying substructures in a graph).
Among the many domains where SRL has been succesfully applied
it is worth citing social networks, bioinformatics, chemoinformatics,
natural language processing, the semantic web.

While first-order logic offers an extremely powerful language to
describe a certain domain in terms of quantified logic formulae [36],
graphical models conveniently represent dependencies between random
variables, and naturally handle uncertainty in data [37]. These two
separate frameworks have been combined in a wide variety of different
formalisms. Historically, the first formalism which has been introduced
to extend inductive logic programming towards handling probability
theory has been that of stochastic logic programs (SLPs). SLPs have
been introduced in [38], and in first instance they can be seen as a
generalization of Hidden Markov Models and probabilistic context-
free grammars [39]. Approaches using the formalism of Bayesian
networks include Relational Bayesian networks (RBNs) [40], Bayesian
Logic Programs (BLPs) [41], PRISM [42], Independent Choice Logic
(ICL) [28] and Probabilistic Relational Models (PRMs) [43]. RBNs
have been developed to represent probabilistic relations on multiple
random events, by modeling a probability distribution over such
relations using a Bayesian network; BLPs are generalizations of
Bayesian networks and logic programs, with an expressive power very
similar to SLPs; PRMs extend Bayesian networks with the concept
of objects, with properties and relations between them, by specifying

4

a template for a probability distribution over a relational database, by
means of a description of the relational schema of the domain, and
the probabilistic dependencies which exist among its objects. Type
extension trees [44], [45] (TETs) were introduced as a representation
formalism for complex combinatorial features in relational domains.
ProbLog [46] is an extension of Prolog programming language [47] to
handle uncertainty in data, which was initially conceived to efficiently
answer probabilistic queries. kLog [48] is a recently developed
language, designed to perform kernel-based learning on expressive
logical and relational representations. The framework of Learning
from Constraints (LfC) [49], [50] extends the classical framework of
kernel machines to incorporate knowledge in the form of logic rules,
encoded in a sort of semantic regularization term.

This multitude of similar systems and models is sometimes referred
to by the term alphabet-soup [51]. On the one hand it indicates the
great interest which this field is gaining, but at the same time it
represents also a weakness of the area, since analogies and differences
between some of these formalisms are often unclear.

As stated in the introduction, a few of the existing SRL systems
have also been used in the context of decision theory. For example,
ProbLog has been extended in this direction, with the development of
DTProbLog (Decision-Theoretic ProbLog) [24], that models strategic
situations with weighted formulae and allows to infer the utility of a
set of strategies in a probabilistic setting. A similar idea was sketched
in [52] for SLPs, while an extension of MLNs towards decision
theory was outlined in [53], but in those two cases the research line
was not further developed. Independent Choice Logic (ICL) [28]
has been proposed to combine logic programming and probability,
by modeling a set of independent strategies, named choices, with
a probability distribution over each choice, and a logic program
specifying the consequences of such choices. The logic formalism of
ICL is restricted to Horn clauses, whereas uncertainty is modeled with
the formalism of Bayesian networks. A further restriction requires the
theory to be acyclic (no recursive clauses). ICL provides a suitable
framework for representing game-theoretic scenarios, and in fact it has
been used to model strategic situations and problems, including Nash
equilibria [28]. Yet, the applicability of this framework to real-world,
large-scale domains still remains to be tested [54].

The aim of this paper is to highlight the opportunities of an SRL-
based approach to game theory, and actually many of the existing SRL
models proposed in recent years might be employed for this task. Yet,
we believe that choosing one particular model for a more accurate
description of the approach might greatly improve the clarity and
the readability of the paper: we resulted in choosing the framework
of Markov Logic Networks (MLNs) [55], which combine first-order
logic with Markov networks, providing a formalism with which it
is possible to describe a domain in terms of logic predicates and
weighted formulae. In the next section an overview of this model will
be given, as well as some considerations which will motivate this
choice.

IV. MARKOV LOGIC NETWORKS

Markov logic networks [55] (MLNs) combine first-order logic with
Markov networks, providing a formalism with which it is possible to
describe a domain in terms of logic predicates and weighted formulae.

In general, a first-order logic knowledge base can be seen as a set
of hard constraints over possible worlds:2 if a world violates even
only one formula, then it has zero probability. On the other hand, in
Markov logic violations of formulae are allowed: a world violating a
formula will be less probable, but not impossible. A Markov logic

2A world, or Herbrand interpretation, is a truth value assignment for all the
predicates in our domain.

network (MLN) consists in a set of first-order logic formulae F =
{F1, . . . , Fn}, and a set of real-valued weights w = {w1, . . . , wn},
where weight wj is associated to formula Fj . Together with a finite
set of constants C = {c1, . . . ck} (corresponding to the objects of
the domain), an MLN defines a Markov network where the set of
nodes corresponds to all possible ground atoms,3 and there is an edge
between two nodes if and only if the corresponding ground atoms
appear together in at least one grounding of some formula Fj . An
MLN defines a probability distribution over possible worlds:

P (X = x) =
1

Z
exp

 |F|∑
j

wjnj(x)

 (1)

where nj(x) is the number of true groundings of formula Fj in x.
The magnitude of a weight indicates how “strong” the corresponding
rule is: the higher the weight, the lower the probability of a world
violating that formula. Hard constraints can be modeled with rules
having an infinite weight.

An MLN can therefore be defined by i) a set of (possibly typed)
constants, as the following one:

people = {Alice,Bob,Charles,Daniel}
movies = {Movie1,Movie2,Movie3}

and ii) a set of weighted formulae, such as:

2.3 Friends(x,y) <=> Friends(y,x)
1.5 Likes(x,m) ∧ Friends(x,y) => Likes(y,m)

where we adopt the notation of using lowercase strings to indicate
variables within forumlae (e.g., x, m), and strings starting with an
uppercase letter for constants (e.g., Alice). The first formula models
a sort of transitivity of the relation of friendship between three people
x, y and z, while the second describes a sort of movie-suggestion
rule: if one person x likes a certain movie m, and if x and y are
friends, then probably also y will like movie m. In general, such
rules are clearly not always true for all the possible values that each
variable can take. A knowledge base within this context will also
contain a collection of ground predicates (which are known to be
true) like the following ones:

Friends(Alice,Charles)
Friends(Bob,Charles)

Friends(Charles,Daniel)
Likes(Alice,Movie2)
Likes(Bob,Movie1)

Likes(Charles,Movie1)

Although we want to stress the point that Markov Logic is certainly
not the only SRL framework which can be applied to game theory
modeling, we hereby motivate our choice of adopting it, based on the
following considerations:

1) it represents an extremely general formalism, which allows to
model many different game categories and scenarios;

2) it can be applied both to tasks which require to learn the weights
of the probabilistic logic formulae (weight learning), and to
problems where the formulae themselves have to be discovered
directly from the data (structure learning);

3) it allows to employ a discriminative learning setting, where
some facts are observed (evidence) while some others are to be
predicted, which is a very common framework in game theory;

4) it has been succesfully applied to many different application
domains, ranging from natural language parsing to bioinformat-
ics, from computer vision to traffic forecasting [56], [57], [58],
[59], [60];

3A ground atom is an atom where all variables have been substituted by
constants.

5

5) it offers a publicly available software, Alchemy,4 which has
become quite popular in recent years in the machine learning
community.

Three main problem categories can be approached within the
Markov Logic framework, which consist in inference, parameter
learning and structure learning. The following subsections will give
an overview of the existing algorithms for each of these problems.

A. Inference

When using a graphical model to represent a domain, some of
the random variables are usually given as evidence, in the sense that
their configuration is always observable, both during training and at
prediction time, while the remaining are usually called query variables,
being the ones upon which prediction must be performed. The problem
of inference within such a setting consists in retrieving either the
conditional probability of query variables, given the evidence, or
directly the maximum a posteriori (MAP) configuration, that is the
most probable state of the model.

Exact inference in general can be proven to be a #P -complete
problem [61], and it is such in the case of MLNs. Using approximate
algorithms is therefore necessary to deal with such a complex task.
Finding the most probable world corresponds, in Markov logic, to
find the truth assignment maximizing the sum of weights of satisfied
clauses. Any (weighted) satisfiability solver can be employed for
this task: MaxWalkSAT [62], a weighted variant of WalkSAT local-
search satisfiability solver, is one of the commonly used methods.
MaxWalkSAT is a stochastic algorithm which, at each iteration, picks
an unsatisfied clause at random and flips one of its atoms: with a
certain probability p, the atom is chosen as the one maximizing the
sum of satisfied clause weights when flipped; with probability 1− p
it is chosen randomly. These stochastic moves avoid the algorithm
to get stuck in local minima. Being a stochastic algorithm, it is
not guaranteed to retrieve the same optimum in multiple restarts:
different tries are therefore usually run, and the best solution is
finally picked. On the other hand, if the goal is to retrieve the
conditional probability of query variables, among the many methods
developed to address approximate probabilistic inference, one of
the most used is Monte Carlo (MC) algorithms, which compute
approximate expectations of a probability distribution p(x) using
sampling techniques and applying marginalization. Markov chain
Monte Carlo (MCMC) [63] algorithms obtain the samples employing
a Markov chain whose stationary distribution is the desired p(x). Gibbs
sampling, Metropolis-Hastings algorithm and importance sampling are
the most used techniques for MC methods applied to graphical models.
Marginal and conditional probabilities can also be computed using
MC-SAT algorithm [64], which applies a slice sampling technique
in combination with SampleSAT routine, in order to perform sound
inference also in the presence of deterministic dependencies.

As it happens with many other SRL frameworks, by employing the
aforementioned algorithms, inference on a Markov Logic Network
is performed over the ground graphical model generated by proposi-
tionalization over the first-order logic template, using the universe of
constants which are available in the domain of interest. This kind of
approaches can quickly become extremely costly and often completely
unfeasible. In order to solve this propositionalization problem, lifted
inference [65], [66], [67] algorithms have been recently introduced,
in order to perform inference directly over the first-order logic model,
therefore saving both memory occupation and computational time. The
approaches by [65] and [66] are based on variable elimination [68],
generalized to first-order logic, while Singla and Domingos [67]

4The project webpage is http://alchemy.cs.washington.edu

proposed to build a lifted network which aggregates ground atoms
into super-nodes with super-features, therefore reducing considerably
the size of the graph upon which inference is performed. Recently,
also inference algorithms based on probabilistic theorem proving [69],
which have shown to have a dramatic impact to the scalability
of MLNs. Despite these recent improvements, exploiting efficient
inference algorithms for large scale data sets is still one of the most
important open problems for MLNs, and in general for the whole
SRL community.

B. Parameter learning

Both conditional and generative learning algorithms have been
developed to learn the set of parameters wj associated to the rules
within an MLN. In a generative setting, MLN weights can be learned
by maximizing the likelihood of a database of ground predicates,
under the closed-world assumption that clauses not present in the
database are false. These methods typically require the computation
either of the likelihood function itself, or of its gradient, and are
therefore extremely expensive. For this reason, the pseudo-likelihood
is typically employed in place of the likelihood function, which is
much faster to compute but indeed less accurate [67]. Yet, in many
applications, it is a priori known which variables are always observed,
and which will be queried at prediction time. This is the case of
discriminative settings, where one wants to predict the truth value
of a set of query variables Y , given the set of evidence ones X .
For example, at prediction time an MLN could be used to infer the
probability of some query atoms (e.g., is Likes(Daniel,Movie2)
true ?), given the evidence of the knowledge base.

In the discriminative setting, the weights of an MLN can be learned
by maximizing the conditional log-likelihood (CLL) of query atoms
Y , which are the target of the learning, given the evidence X , which
are always observed. The conditional probability P (Y = y|X = x)
is defined as follows:

P (Y = y|X = x) =
1

Zx
exp

 ∑
i∈FY

wini(x, y)

 (2)

where FY is the set of first-order formulae containing query predicates
Y and ni(x, y) is the number of true groundings of clause i in world
(x, y). The gradient of the CLL can be computed as follows:

∂

∂wi
logPw(y|x) = ni(x, y)−

∑
y′ Pw(y

′|x)ni(x, y
′) (3)

= ni(x, y)− Ew[ni(x, y)] (4)

Since the computation of the expected number of true groundings
Ew[ni(x, y)] is intractable, an approximation is given by the counts
in the Maximum A Posteriori (MAP) state y∗w: MAP inference is
therefore called as a subroutine at every gradient descent step. Several
variants to the described method have been implemented to speed up
the convergence of the learning procedure: the most efficient is a scaled
conjugate gradient method (SCG) which uses the inverse diagonal
Hessian as a preconditioner, and which is based on a trusted-region
approach to select appropriate search directions.

C. Structure learning

Structure learning is one of the hardest tasks within SRL, and it is in
fact an open problem for many existing models. This is particularly true
for Markov networks in general, owing to the undecomposable form of
the likelihood function, and therefore this also holds for MLNs. Among
the most used algorithms for Markov networks structure learning, it is
worth mentioning greedy local heuristic search [70], which iteratively
adds and removes features from the network, if such moves contribute

http://alchemy.cs.washington.edu

6

to improve the model likelihood. When using an SRL framework
which employs a logical formalism in addition to a graphical model
representation, the structure learning task also relies on inductively
learn logic clauses from data description and background knowledge.
Learning the graph structure and the logic representation of the model
are therefore, in this case, two inter-related tasks which are typically
jointly addressed. The main approaches specifically developed for
MLNs structure learning are iterated local search [71], top-down [72]
and bottom-up [73] clause learning, but in principle other algorithms
from inductive logic programming could be employed. As a matter of
fact, cascade methods which first learn the clauses following inductive
logic programming procedures, and subsequently learn the weights
of such clauses, have shown to be an appropriate trade-off between
expressivity and efficiency [72].

V. GAME MODELING WITH MARKOV LOGIC

Modeling games with a logic formalism is a well known task.
For example, the game description language (GDL) [74] has been
designed for this goal, although the rules that can be written with
this language are thought more for computer players than for humans.
The LUDOCORE game engine [75] has instead been developed to
design game rules and specifications on a higher level, by linking
game-level concepts developed by game designers to first-order logic
rules that can be used by AI reasoning tools.

Being a very general framework, Markov logic allows to model
knowledge in terms of logic predicates, which can be either evidence
(known facts) or query (facts to be inferred). When modeling a strategic
game, for example, evidence predicates can be used to describe the
payoff matrix:5

Payoff(strategy1,strategy2,outcome1,outcome2)

where strategy1 and strategy2 are the types corresponding to
the sets of possibile actions for players 1 and 2, respectively (and the
same for outcomes). Query predicates can describe players’ choices:

PlayerOneAction(strategy1)
PlayerTwoAction(strategy2).

By introducing a hard rule in the model which prevents multiple
predicates modeling actions to be true at the same time, a Herbrand
interpretation will correspond to a specific choice of strategies
simultaneously made by all the players. Inference in the MLN can
be used in order to retrieve the Herbrand interpretation with the
highest probability, given the (weighted) rules specified in the model.
Section VI will show that different problems can be approached by
specifying different rules in the MLN.

Sequential or repeated games need a further element in the modeling,
that is a sort of timing variable which allows to describe the temporal
relationships between events. Consider for example a repeated Rock-
Paper-Scissors (Roshambo) game, where each player tries to model
the opponent’s strategy; in this case, observed game sequences can
be modeled with predicates like the following one:

PlayerOneObservedAction(object,game)

where the grounding

PlayerOneObservedAction(ROCK,G3)

means that Player 1 played rock during the third game. A predicate
Next(game,game) can be used to model the information that two
games were played consecutively. This kind of context may allow

5For the remaining of the paper, we adopt the syntax of the Alchemy system:
predicates start with uppercase letters as well as constants, while both variables
and type identifiers are lowercase. A tutorial on Alchemy can be found at
http://alchemy.cs.washington.edu/tutorial.html.

opponent modeling using Markov logic in repeated and stochastic
games, by learning the weight of rules which model the dependencies
between subsequent choices:

PlayerOneObservedAction(object1,game1) ∧
Next(game1,game2) =>

PlayerOneAction(object2,game2)

When the number of players in the game grows, more sophisticated
rules can be included in the model, so as to incorporate background
knowledge of the game (e.g., information about the map of the world
where a strategic/military game takes place), or to introduce complex
relationships and structures, such as teams, alliances, objectives.

A small set of elementary built-in functions over integer and string
types is implemented in Alchemy, so that these can be naturally used
without the need of defining extended predicates. For example, integer
outcomes can be modeled with the int type, upon which operators
such as > or <= can be applied (rather than introducing predicates such
as MoreThan or LessOrEqualTo). Apart from such facilities, the
pure logic representation of constants does not allow to directly embed
numerical attributes in an MLN. Yet, there are some attempts in this
direction, namely with grounding-specific weights (GS-MLNs) [59],
that allow to have different weights for different groundings of the
same first-order clause, and with HMLNs [76], that allow to embed
continuous values, and functions over them, as MLN features. These
could represent very interesting frameworks when dealing with game
domains where a categorical description of the world is not sufficient,
and the use of numerical features is required. In this paper, anyhow,
the considered domains are described in terms of classic first-order
logic, thus without exploiting hybrid features.

Finally, it is also worth mentioning that Markov logic has been
extended towards a decision-theoretic framework [53] by attaching
utility functions to first-order clauses, heading to the so-called
Markov Logic Decision Networks (MLDNs). Such model can be
used to represent several decision problems, such as Markov Decision
Processes. Yet, for the purpose of this paper, MLDNs do not provide
particular advantages with respect to classic MLNs. In particular, the
inference algorithm of MLDNs maximizes the overall utility of the
network, that is the sum of the utility functions for all players, but
the model does not allow to write constraints on such utilities (for
example, to encode rules for Nash equilibria). Thus, we preferred to
encode utilities within the Payoff predicate, as detailed above, and
to employ the standard MLN model.

VI. EXPERIMENTS

We run experiments on MLNs, using the publicly available Alchemy
software,6 version 2.0, developed at the University of Washington. We
first present three opponent modeling applications: (1) predicting the
serving direction of tennis players; (2) learning the opponent’s strategy
in an iterated Roshambo game; (3) predicting an adversary’s hand in
Texas Holdem poker. We will present results on parameter learning
of a handcrafted MLN in the first case, while structure learning will
be used in the second case, and, finally, both the rules and their
parameters will be learned in the third application. Then, we will
present some worked examples showing how to model the problem
of finding Nash equilibria and Pareto optima in strategic games with
Markov logic, showing the advantages but also the main limitations
of this approach.

A. Predicting serving direction in tennis matches

Predicting tennis serving direction is a crucial element in a tennis
match, as correctly guessing the direction of the serve would give

6http://alchemy.cs.washington.edu

http://alchemy.cs.washington.edu/tutorial.html
http://alchemy.cs.washington.edu

7

a player a great advantage in terms of effectiveness of his/her
return. This task has been subject of several studies [77], and it
is a common scenario in many sports, being similar to predicting the
pitching sequence in baseball [78], or the direction of penalty kicks
in soccer [79]. We use the data set presented in [77], which consists
in a collection of annotated tennis matches from Grand Slam finals
in the last 30 years. For each point played in the match, we extracted
the following information in the form of logic predicates:

• the set and game in which the point was played
• which player served
• the serving court (Even/Odd)
• the serving direction (Left/Right)
• which player won the point

Using this information, the goal is to predict, at each point in
the match, the serving direction of a player (query predicate), given
evidence of all the facts describing the match until that point. The
query predicate is therefore defined as:

Left(set,game,point)

which is true for a certain grounding Left(S,G,P) if in point P
of game G of set S the serving direction was left; the truth value is
false if the serving direction was right.

We model the situation with a MLN whose rules try to capture the
strategy of the serving player, in relation to the current game state,
and to the points played in the immediate past. We consider two
tennis matches as our test-bed: the 1995 match between Agassi and
Sampras (AS) at the US Open, and the 1987 match between Cash
and Wilander (CW) at the Australian Open. For each match, the first
three sets were considered as the training set (184 points for CW, 172
for AS), while the remaining sets (one for AS, two for CW) were
the test set (132 points for CW, 64 for AS). We first consider a very
simple MLN (MLN1) modeling only the following rules:

Serve(set,game,PLR1) ∧ Court(set,game,point,EVEN)
=> Left(set,game,point)

Serve(set,game,PLR1) ∧ Court(set,game,point,ODD)
=> Left(set,game,point)

Serve(set,game,PLR2) ∧ Court(set,game,point,EVEN)
=> Left(set,game,point)

Serve(set,game,PLR2) ∧ Court(set,game,point,ODD)
=> Left(set,game,point)

Such rules model just the prior probability that each player (PLR1
or PLR2) will serve left/right, according to the odd/even court from
which they will serve. In Alchemy syntax, a shortcut can be used to
quickly write different rules for each different grounding of a certain
variable, using a + sign: in this case the four rules above would be
summarized by a single formula using such notation:

Serve(set,game,+player) ∧
Court(set,game,point,+court)

=> Left(set,game,point)

The second model (MLN2) adds a more complex set of rules,
considering also the relationships between either two consecutive
points:

Serve(set,game,+player1) ∧
ServedLeft(set,game,point1) ∧

Won(set,game,point1,+player2) ∧
Next(point1,point2)

=> Left(set,game,point2)

or two consecutive points with the same serving court:

Match Predictor Accuracy
AS Baseline AL 45.3
AS Baseline AR 54.7
AS Baseline CRT1 58.3
AS Baseline CRT2 41.7
AS MLN1 64.1
AS MLN2 68.8
CW Baseline AL 47.0
CW Baseline AR 53.0
CW Baseline CRT1 59.4
CW Baseline CRT2 40.6
CW MLN1 61.4
CW MLN2 63.6

Table III: Results obtained by MLN on the task of predicting the
serving direction in a tennis match. The baseline predictors either
predict the server to serve always left (AL), always right (AR), right
from odd and left from even courts (CRT1), right from even and left
from odd courts (CRT2).

Serve(set,game,+player1) ∧
ServedLeft(set,game,point1) ∧

Won(set,game,point1,+player2) ∧
Next(point1,point2) ∧
Next(point2,point3)

=> Left(set,game,point3)

The first rule models the probability that a player will serve left (or
right), given the observed facts that at the previous point (i) he had
served left (or right), (ii) he had won (or lost) the point. The second
rule is almost identical to the previous, but considers as observed fact
the previous point played in the same (odd or even) court. For each of
the two matches, we considered the first three sets as the training set to
learn rule weights, while the remaining sets were used as the test set,
where inference algorithms were run, in order to predict the truth value
of the query atoms (Left predicate), given the evidence ones (all the
remaining predicates). The weights of the rules were therefore learned
from the training set in a discriminative setting, by employing the
rescaled conjugate gradient algorithm, running with MAP inference to
estimate the expected counts. For all the other parameters of learning
and inference algorithms, we relied on Alchemy default values.

Table III shows the results obtained by the two MLN models, as well
as some baseline classifiers which trivially always predicts the serving
direction as left/right, or depending on the serving court (odd/even).
The reported accuracy is simply computed as the percentage of points
for which the serving direction was correctly predicted. These results
show that the proposed approach is indeed promising and might be
applied to several different domains, even in multi-player situations.

Table III shows the results obtained by the two MLN models, as well
as some baseline classifiers which trivially always predict the serving
direction as left/right, or depending on the serving court (odd/even).
The reported accuracy is simply computed as the percentage of points
for which the serving direction was correctly predicted. These results
show that the proposed approach is indeed promising and might be
applied to several different domains, even in multi-player situations.

B. Learning strategies in Iterated Roshambo

As a first simple structure learning experiment, we considered an
iterated Roshambo game. The interest in iterated games, even very
simple ones, has largely spread after the pioneering work by Axelrod
on the iterated prisoner’s dilemma [80], where many different strategies
have been studied, with the goal of understanding the dynamics of
repeated game situations, where the history of past matches was
known to each player. The scenario is totally different from a static

8

situation, as players can naturally learn from their errors and from the
actions observed in the behavior of their opponent, and thus change
their strategies accordingly.

In order to test the ability of SRL models to capture strategies in
iterated games, we generated a sequence of iterated Roshambo games
between two players who follow these strategies:
• player one adopts a random strategy, so that, at each game, his/her

action is randomly chosen between the three possible R/P/S
strategies (therefore independently from the previous games);

• player two implements a win-stay, lose-switch strategy, which
consists in keeping playing a winning strategy, and randomly
changing it if the previous game ended up with a draw or a loss.

We generated a sequence of 1,000 games following the aforementioned
criteria, and we used the built-in structure learning algorithm of
Alchemy to learn logic clauses whose query predicate is the strategy
adopted by the second player. The set of facts from which the clauses
are learned consists in a set of ground predicates which describe the
sequence of played games, like the following ones:

PlayerOneRock(G12)
PlayerTwoPaper(G12)
WonByPlayerTwo(G12)

Next(G12,G13)

which, for example, indicate that game G12 was won by player two
(paper vs. rock), and the predicate Next indicates the sequentiality
between games G12 and G13. By observing this set of ground facts,
the system is capable of learning a set of clauses which explain the
win-stay, lose-switch strategy for the second player. Such strategy
is in fact represented by rules such as the following one, correctly
learned by Alchemy7:

PlayerOneRock(game1) ∧ WonByPlayerTwo(game1) ∧
Next(game1,game2) => PlayerTwoPaper(game2)

Such rule explains that, if player one played Rock in game1 and
lost, then player two keeps playing Paper (the winning strategy in
game1) also in game2, which is the game following game1 in the
generated sequence (Next predicate). The set of rules learned by the
structure learning algorithm could now be used to run probabilistic
inference on new test cases, in order to understand the behavior of
an adversary. This is what will be done in the next experiment.

C. Predicting opponent’s hand in Texas Holdem poker

As a third and more complete case study, we considered Texas
Holdem poxer, with the aim of predicting the hand of an adversary at
the showdown. We collected data from the IRC Poker Logs data set8

by considering the three players with the largest number of played
hands: kwikfish, tigger2 and Poki_S2. For each of these three
players, we collected all the hands which arrived at the showdown,
in order to have the ground truth of the real hand of the player. In
this way, we collected a total of 1664 (Poki_S2), 1094 (tigger2)
and 894 (kwikfish) hands, respectively.

We modeled the domain with a set of 156 evidence pred-
icates, describing observable facts, and 9 query predicates de-
scribing the possible hands, to be predicted (HighCard, Pair,
TwoPair, ThreeOfAKind, Straight, Flush, FullHouse,
FourOfAKind, StraightFlush). The evidence predicates de-
scribe the development of the hand, by including information regarding
the bets and the cards on board at each phase of the hand. For example,
the following ground predicate:

7We used the following parameters: -minWt 0.001 -penalty 0.001
-beamSize 10 -numClausesReEval 20 -tryAllFlips true

8For our experiments we employed the 200001 sample data, available at
http://poker.cs.ualberta.ca/IRCdata/.

PairOnBoardAtFlop(947366462)

indicates that a pair was on board after the flop during game having
id 947366462 in the IRC Poker Logs database, while

RaiseAtPreflop(947366462)

indicates that in the same game the observed opponent performed a
raise at preflop game stage. We also encoded the information regarding
the a-priori probability of a hand, given the seven cards on board,
with a set of predicates used to indicate the most probable point: for
example, the predicate

MostProbableTwoPair(947366462)

means that, considering all possible preflop configurations, two pair
is the most probable hand.

We prepared a set of 76 hard rules in order to model elementary
information regarding poker rules, such as the fact that a player cannot
have a FullHouse if there is neither a pair nor three cards of a kind
on board:

!PairOnBoard(g) ∧ !ThreeOfAKindOnBoard(g)
=> !FullHouse(g).

or the fact that a player cannot have a Flush if there are not at least
three cards of the same seed on board:

!AtLeastThreeCardsSameSeedOnBoard(g) => !Flush(g).

Within these hard rules, we also modeled the trivial information that
two different points are mutually exclusive, which means, for example,
that a player cannot have both a Flush and a FullHouse at the same
time, since the actual hand of each player is given by the highest
point that can be obtained with the given seven cards:

!(Flush(g) ∧ FullHouse(g)).

Then we independently run three different experiments, one for each
opponent (kwikfish, tigger2, Poki_S2), following the same
common procedure. For each player we built a distinct dataset, by
splitting the available hands in a training set and a test set (the first 2/3
and the remaining 1/3 of the total amount of given hands, respectively).
In order to learn the clauses from training data, we employed both the
Alchemy’s built-in algorithm named learnstruct, and the well-
known FOIL algorithm [81]. While Alchemy is capable of jointly
learning both the clauses and their weights, clearly FOIL can learn
only the clauses, and thus weight learning was subsequently performed
with Alchemy on the set of clauses returned by FOIL. In order to
have a large set of clauses for FOIL, we run the algorithm with
different values for its precision-level parameter a. FOIL, in fact,
returns clauses only having a precision > a, and therefore by selecting
different values for a we obtain different clause sets. Whereas using
the built-in structure learning algorithm of Alchemy is certainly more
appropriate for this problem, the use of FOIL in combination with
Alchemy’s parameter learning wants to highlight the fact that, in
principle, any combination of clause and weight learning algorithms
could be employed for this task. In particular, this includes also those
SRL frameworks that do not allow yet to directly perform structure
learning (such as, for example, ProbLog). Being FOIL a very simple,
well-known and fast method for clause learning (it took just a few
seconds to run on the Poker data set), we used it for this comparison in
place of more sophisticated systems such as Aleph9 or TILDE [82].10

9http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
10Following the framework described in [72], when learning the weights

of the rules extracted by FOIL, we used the modified version of Alchemy
that performs on-line max-margin weight, developed by Tuyen N. Huynh
and available at http://www.ai.sri.com/~huynh/, acheiving slightly better
performance than the original algorithm in Alchemy.

http://poker.cs.ualberta.ca/IRCdata/
http://www.ai.sri.com/~huynh/

9

By following the aforementioned procedures, we obtained two
distinct MLNs (one from Alchemy’s structure learning, the other from
FOIL plus Alchemy’s weight learning) to be used for inference on
the test set, where, given the evidence predicates for each test hand,
the system inferred the most probable query atom, that corresponded
to the most probable player hand.

In order to compare against other classical machine learning algo-
rithms for opponent modeling, we considered Support Vector Machines
(SVMs) with Gaussian kernel and Artificial Neural Networks (ANNs).
We encoded the evidence predicates into a boolean feature vector
v = [v1, . . . , vk], where vj = 1 if the j-th predicate is true for the
considered hand, and vj = 0 otherwise. We employed a validation
set to select the number of hidden neurons for ANNs and the kernel
parameters (C and γ for the RBF kernel, C for the linear kernel) for
SVMs. For ANNs, 10 restarts were used to perform training with
early stopping on the validation set to select the best architecture. It
is worth mentioning that, differently from the tennis serving direction
problem, in this case the problem can be easily modeled as a multi-
class classification task for SVMs and ANNs, since the sequentiality
of data is not considered, while being a crucial ingredient in the
tennis task. We also employed plain decision trees using the C4.5
algorithm [83] to compare against a pure rule-based, interpretable
approach.

Table IV reports the accuracy achieved by our classifiers (MLN
and FOIL+MLN) (simply computed as the percentage of correctly
predicted test hands), compared against the C4.5, SVM and ANN
classifiers, as well as a baseline predictor which simply predicts, as
the opponent’s hand, the most probable one given the five cards on
board. We can notice how the MLN approach largely outperforms the
baseline, and achieves a better accuracy than ANNs too, while the
SVM model performs slightly better on two out of three opponents. Yet,
the distinguishing characteristic of the proposed approach is in terms
of interpretability. We can also observe that MLN performs much
better than decision trees, and also slightly better than FOIL+MLN,
which yet achieves good quality results. By observing the learned
rules and their associated weights, we can discover some strategies
driving each player’s choices. For example, consider the following
rule learned for the kwikfish player:

CheckRiver(g) ∧ MostProbableFlush(g)
=> Flush(g)

It suggests that this player has adopted the strategy of checking after
the river when having a Flush in hand. In other cases, the learned rule
suggests that the player does not have a certain hand. For example,
the following clause for the kwikfish player:

RaiseAtRiver(g) => !Pair(g)

suggests that, in case the player raises after the river, he likely does
not have a pair.

More complex rules can also be learned. For the tigger2 player,
for example, the following clause indicates that, when a Pair is the
most probable hand for that player (as there is a pair on board), and
the player has checked both at turn and at river, he is likely to really
have a Pair:

CheckAtTurn(g) ∧ CheckAtRiver(g) ∧
MostProbablePair(g) ∧

PairOnBoard(g) ∧ OpponentBetAtFlop(g) =>
Pair(a1)

Another rule for the same player suggests instead a different kind
of behavior. With a high pot (over 100 dollars), even if the most
probable hand is a Pair, in case he has made a Call both at flop
and at river, the player might have two pairs:

CallAtFlop(g) ∧ CallAtRiver(g) ∧
MoreThan100DollarsAtTurn(g) ∧

MostProbablePair(g) ∧ OpponentBetAtTurn(g) =>
TwoPair(g)

Clearly, in some cases, there are some evidence predicates which,
if true, automatically exclude the possibility of some query predicates.
For example, if the predicate BestPossibleStraight(g) is true,
then the player cannot have a Flush, nor a FullHouse, which in
turns rules out the possibility that, for example, there are three cards
of the same seed, or a pair, on board. The following rule, learned for
player Poki_S2, indicates that, if Straight is the best possible
hand for that player, but he has always checked at flop, turn and river,
he is likely to have just a HighCard.

BestPossibleStraight(g) ∧ CheckAtFlop(g) ∧
CheckAtTurn(g) ∧ CheckAtRiver(g) => HighCard(g)

Note that, in some cases, Alchemy learns rules that are similar to
the hard constraints that we added to the model to represent basic
Texas Hold’em rules and principles. For example, the following rule
is learned with a very high score:

!MostProbableFlush(g) ∧
!ThreeCardsSameSeedOnBoard(g) => !Flush(g)

Such a rule is indeed very close to the constraint explaining that
without at least three cards of the same seed on board, it is not
possible to have a flush.

Moreover, it is worth saying that, in the considered setting, the MLN
approach did not exploit sequentiality in the data (as it happened in
the tennis serving direction problem), since, in our present formulation
of the task, we only analyzed hands arrived at the showdown and not
the sequence of all the played hands. Therefore, it was not possible
to employ in the MLN predicates that model the consequentiality of
two hands, nor collective classification algorithms that would also
allow to jointly predict the strategies of multiple players. Despite
not taking advantage of relational information, this experiment still
shows the potential of the approach. In principle, Alchemy allows to
perform inference also on partially observed databases, that is data
collections containing predicates with unknown truth values. Such
predicates would correspond to hidden variables in the underlying
model, and the Expectation-Maximization (EM) algorithm could be
employed to infer the value of such predicates [84] and thus to use,
in principle, the whole sequence of played hands, without limiting to
the ones arrived at showdown. Nevertheless, the computational cost to
perform learning and inference in such partially-observed databases
is clearly much greater [84].

It is also worth mentioning that different classifiers could obviously
be developed for the different game stages, in order to support
players throughout the match. Moreover, alternative models could be
conceived, for example aiming to directly predict the cards in the
hand of the opponent: yet, in that case a much larger training set
would likely be needed, in order to help generalization and avoid
overfitting.

The data set encoded in the Alchemy language, as well as the MLN
models learned for each of the three considered players, are available
for download at the following link:

http://lia.disi.unibo.it/~ml/TexasHoldemMLN.tgz

D. Finding Nash equilibria and Pareto optimal solutions

The experiments described so far have focused on the opponent
modeling problem, where SRL-based approaches can give a great
contribution in constructing interpretable models. Yet, in this section

http://lia.disi.unibo.it/~ml/TexasHoldemMLN.tgz

10

kwikfish Poki_S2 tigger2
MostProbableHand 40.2 44.4 45.2

ANN 44.4 52.1 57.0
C4.5 45.9 54.6 59.2
SVM 53.1 60.5 59.8

FOIL+MLN 50.7 56.5 58.9
MLN 50.2 57.3 61.1

Table IV: Accuracy achieved on the problem of predicting an
opponent’s hand in Texas Holdem poker. MLN is compared against
Artificial Neural Networks (ANNs), Support Vector Machines (SVMs),
and a baseline which predicts the most probable hand.

we also want to point out that SRL frameworks are also suitable for
finding equilibria in games, although some considerations have to be
taken into account.

Suppose we want to model with Markov logic the Prisoner’s
Dilemma (Example 1). We employ three (typed) predicates:

Payoff(strategy,strategy,outcome,outcome)
PlayerOneAction(strategy)
PlayerTwoAction(strategy)

where the arguments of predicate Payoff represent, respectively,
the strategies played by players P1 and P2, followed by their outcomes.
The set of possible strategies will be defined by the set of constants:

strategy={C,D}

with C for Cooperate and D for Defeat. For example, the
ground predicate Payoff(C,D,-10,0) will represent the top-right
element in the payoff matrix represented in Table I.

Looking for Nash equilibria corresponds to imposing a constraint
in the form of first-order logic rule, as in the following formula:

PlayerOneAction(s1) ∧ PlayerTwoAction(s2) ∧
(Payoff(s1,s2,o1,o2) ∧ Payoff(s3,s2,o3,o4) ∧

s1!=s3 ∧ o3>o1) .

which means that it is impossible that P1 prefers strategy s1 to
strategy s3, if the outcome o3 is greater than o1, given that P2
plays the same strategy s2 in the two cases. Clearly, a symmetric
version of this rule also has to be added for P2. Including these
formulae in the MLN and running an inference algorithm, such as
MaxWalkSAT, results in finding the correct Nash equilibrium (both
players defeating), as shown in the following predicate list, where
each ground predicate is associated to the truth value (0=false, 1=true)
retrieved by the inference algorithm.

PlayerOneAction(C) 0
PlayerOneAction(D) 1
PlayerTwoAction(C) 0
PlayerTwoAction(D) 1

It is worth remarking that inference algorithms which compute
the MAP state aim at finding the configuration of truth values of
query variables minimizing the cost of unsatisfied clauses: in the
case of Nash equilibria, this corresponds to find only pure-strategies
equilibria, since the solution is searched through the search space of
truth value logic assignments to query variables, with no possibility
of exploiting mixed strategies.

In the case of games with multiple pure Nash equilibria, different
runs of the MAP inference algorithm with different seed initialization
would find different equilibria, obviously always obtaining a total
sum of unsatisfied clauses equal to zero. Yet, to avoid performing
multiple restarts to retrieve the multiple equilibria, it could be possible
to simply apply the enumeration mode of a SAT solver within the

inference engine, so that all the pure Nash equilibria of the game could
be retrieved (this is currently not available in the Alchemy software).
This MLN approach with MAP inference can be naturally applied
to find Nash equilibria in several game categories. With the Gamut
software11 we generated a random graphical game with 5 players and
4 actions each. The MLN model was easily adapted to a multi-player
configuration, and the inference engine was able to correctly retrieve
the pure Nash equilibria detected with the gambit-enumpure
software,12 a suite of game theory software tools.

Things are instead different when dealing with mixed strategies.
Alchemy in fact does not allow a proper and direct representation of
mixed strategies, which means that the probabilistic clauses in the
model can only be quantified over pure strategies. Inference algorithms
which compute the marginal probabilities of query predicates given the
evidence, such as MC-SAT or MCMC (see Section IV) also basically
estimate the frequencies of the strategies at pure Nash equilibria,
but they cannot directly model mixed strategies. An extension of
the MLN framework would thus be necessary in order to handle
also mixed strategies: within this context, GS-MLNs and HMLNs
could represent two notable starting points, as they allow to introduce
numerical features in the MLN model. Other formalisms, such as
DTProblog and ICL, could be extended as well in this direction: as
a matter of fact, in [28] a brief discussion on the representation of
stochastic strategies in the ICL framework is given. Also Probabilistic
Soft Logic (PSL) [85] could be employed within this context, as it
allows to assign soft truth values to predicates (as it happens, for
example, in fuzzy logic) and thus it could be used to model probablity
distributions upon strategies.

We conclude with a final example on finding Pareto optima. As
already stated, in the PD game the Nash equilibrium does not
correspond to a Pareto optimal solution. In order to find the Pareto
optima of the game, the rule used to find Nash equilibria must be
substituted with the following one:

(Payoff(s1,s2,o1,o2) ∧ Payoff(s3,s4,o3,o4) ∧
PlayerOneAction(s1) ∧ PlayerTwoAction(s2) ∧

(s1!=s3 ∨ s2!=s4) ∧ (o4>o2 ∨ o3>o1)) .

In this way, the inference algorithm will look for a configuration of
strategies such that there does not exist a different configuration where
every player is at least as well off and at least one player strictly
better off: in this case, the configuration with both players cooperating
is found. Note that, since in the current implementation Alchemy
needs to build the set of grounded clauses in order to perform MAP
inference, this rule will scale up with the fourth power of the number of
strategies, because four different strategies (s1, s2, s3 and s4) need
to be grounded, while they are three for Nash equilibria. Nevertheless,
this is an additional example of exploiting the proposed framework
to quickly model different strategic constraints and situations using a
powerful interpretable language.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a statistical relational learning (SRL)
approach to game theory. This framework allows to use the formalism
of first-order logic to describe several different categories of games,
as well as to use graphical models in order to handle uncertainty
in data. A number of classic game-theoretic problems can therefore
be easily modeled and addressed by employing the formalism of
SRL, such as predicting the strategies of an adversary, or finding
Nash equilibria. Preliminary results obtained with the formalism
of Markov logic networks show the potential of the approach, in

11http://gamut.stanford.edu/
12http://gambit.sourceforge.net/

11

particular by highlighting the great expressive power of the proposed
framework. Clearly, there are some limitations within this approach:
MLNs currently have limited support for the integration of numerical
features within the model, and thus mixed strategies are difficult to
handle; in addition, the implementation of the enumeration mode of
a SAT solver within the framework would allow to directly retrieve
multiple pure Nash equilibria, which currently can be obtained only
by performing multiple inference runs.

Many future directions of research can be identified. From a machine
learning point of view, one of the most important and challenging
tasks would be that of developing fast ad-hoc inference algorithms for
certain categories of games represented with an SRL language: within
this context, applications of the recently introduced lifted inference
paradigm and probabilistic model checking could be of great interest.
Moreover, different solutions to the problems described in this paper
could certainly be attained by employing different SRL frameworks,
such as DTProbLog, Probabilistic Soft Logic or Independent Choice
Logic, which have the potential to model several game-theoretic tasks,
in particular regarding mixed strategies. To address the challenging
task of handling mixed strategies, in fact, one possibility could be that
of using a soft assignment of truth values to predicates (as it happens,
for example, in PSL) or to exploit utility functions, such as the ones
defined in DTProbLog or ICL. Applying SRL to a self-play learning
setting would be another very interesting line of research: in this case,
the SRL approach would need to be integrated within a reinforcement
learning framework, thus novel algorithms for both structure and
parameter learning within this context should be conceived.

On the game theory perspective, an extremely challenging opportu-
nity would be that of applying the described approach to multi-player
situations in real-world strategy games, such as Poker or Risk. This is
a framework where collective classification algorithms could be very
powerful, and the highly relational nature of data could be naturally
exploited. The automatic discovery of interpretable strategies has also
a wide variety of applications in many different domains, including
social sciences, economics, and bioinformatics.

REFERENCES

[1] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Algorithmic game
theory. Cambridge University Press, 2007.

[2] I. Rezek, D. S. Leslie, S. Reece, S. J. Roberts, A. Rogers, R. K. Dash,
and N. R. Jennings, “On similarities between inference in game theory
and machine learning,” J. Artif. Intell. Res., vol. 33, pp. 259–283, 2008.

[3] M. J. Kearns, M. L. Littman, and S. P. Singh, “Graphical models for
game theory,” in UAI Proceedings, 2001. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2001, pp. 253–260.

[4] C. Daskalakis and C. H. Papadimitriou, “Computing pure nash equilibria
in graphical games via markov random fields,” in ACM Conference
on Electronic Commerce, J. Feigenbaum, J. C.-I. Chuang, and D. M.
Pennock, Eds. ACM, 2006, pp. 91–99.

[5] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” CoRR, vol. cs.AI/9605103, 1996.

[6] M. L. Littman, “Value-function reinforcement learning in Markov games,”
Cognitive Systems Research, vol. 2, no. 1, pp. 55–66, 2001.

[7] C. J. C. H. Watkins and P. Dayan, “Technical note q-learning,” Machine
Learning, vol. 8, pp. 279–292, 1992.

[8] A. Davidson, D. Billings, J. Schaeffer, and D. Szafron, “Improved
opponent modeling in poker,” in 2000 International Conference on
Artificial Intelligence, 2000, pp. 1467–1473.

[9] D. Ashlock, E.-Y. Kim, and N. Leahy, “Understanding representational
sensitivity in the iterated prisoner’s dilemma with fingerprints,” Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 36, no. 4, pp. 464–475, 2006.

[10] G. Brown, “Iterative solution of games by fictitious play,” Activity analysis
of production and allocation, vol. 13, no. 1, pp. 374–376, 1951.

[11] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games.
Cambridge University Press, 2006.

[12] C. J. Maddison, A. Huang, I. Sutskever, and D. Silver, “Move
evaluation in go using deep convolutional neural networks,” CoRR, vol.
abs/1412.6564, 2014. [Online]. Available: http://arxiv.org/abs/1412.6564

[13] S. M. Lucas, “Learning to play othello with n-tuple systems,” Australian
Journal of Intelligent Information Processing, vol. 4, pp. 1–20, 2008.

[14] K. Krawiec and M. G. Szubert, “Learning n-tuple networks for othello by
coevolutionary gradient search,” in Proc. of the 13th annual conference
on Genetic and evolutionary computation. ACM, 2011, pp. 355–362.

[15] T. Runarsson and S. M. Lucas, “Preference learning for move predic-
tion and evaluation function approximation in othello,” Computational
Intelligence and AI in Games, IEEE Transactions on, vol. 6, no. 3, pp.
300–313, 2014.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, pp. 529–533, 2015.

[17] C. Clark and A. Storkey, “Training deep convolutional neural networks to
play go,” in ICML-15 Proceedings, Lille, France, 2015, pp. 1766–1774.

[18] S. Gelly and D. Silver, “Monte-carlo tree search and rapid action value
estimation in computer go,” Artificial Intelligence, vol. 175, no. 11, pp.
1856 – 1875, 2011.

[19] D. Robles, P. Rohlfshagen, and S. M. Lucas, “Learning non-random
moves for playing othello: Improving monte carlo tree search,” in IEEE
Conference on Computational Intelligence and Games (CIG). IEEE,
2011, pp. 305–312.

[20] S. Muggleton and L. de Raedt, “Inductive logic programming: Theory and
methods,” The Journal of Logic Programming, vol. 19–20, Supplement
1, no. 0, pp. 629 – 679, 1994, special Issue: Ten Years of Logic
Programming.

[21] K. Kersting, “An inductive logic programming approach to statistical
relational learning,” AI Commun., vol. 19, no. 4, pp. 389–390, 2006.

[22] I. Thon, N. Landwehr, and L. D. Raedt, “Stochastic relational processes:
Efficient inference and applications,” Machine Learning, vol. 82, no. 2,
pp. 239–272, 2011.

[23] S. Joshi, K. Kersting, and R. Khardon, “Generalized first order decision
diagrams for first order Markov decision processes,” in IJCAI-09
Proceedings, Pasadena, USA, C. Boutilier, Ed., 2009, pp. 1916–1921.

[24] G. V. den Broeck, I. Thon, M. van Otterlo, and L. D. Raedt, “Dtproblog:
A decision-theoretic probabilistic prolog,” in AAAI Proceedings, Atlanta,
Georgia, USA, M. Fox and D. Poole, Eds. AAAI Press, 2010.

[25] A. Rettinger, M. Nickles, and V. Tresp, “Statistical relational learning of
trust,” Machine Learning, vol. 82, no. 2, pp. 191–209, 2011.

[26] P. Tadepalli, R. Givan, and K. Driessens, “Relational reinforcement learn-
ing: An overview,” in ICML-04 Workshop on Relational Reinforcement
Learning, 2004.

[27] T. Croonenborghs, J. Ramon, H. Blockeel, and M. Bruynooghe, “Online
learning and exploiting relational models in reinforcement learning,” in
IJCAI-07 Proceedings, Hyderabad, India, M. M. Veloso, Ed., 2007, pp.
726–731.

[28] D. Poole, “The independent choice logic for modelling multiple agents
under uncertainty,” Artificial intelligence, vol. 94, no. 1, pp. 7–56, 1997.

[29] M. J. Osborne, An Introduction to Game Theory. Oxford University
Press, USA, August 2003.

[30] J. Nash, “Non-cooperative games,” The Annals of Mathematics, vol. 54,
no. 2, pp. 286–295, 1951.

[31] L. S. Shapley, “Stochastic Games,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 39, no. 10, pp. 1095–
1100, 1953.

[32] R. A. Howard, Dynamic Programming and Markov Processes. The
MIT Press, 1960.

[33] M. L. Littman, “Markov games as a framework for multi-agent reinforce-
ment learning,” in ICML, W. W. Cohen and H. Hirsh, Eds. Morgan
Kaufmann, 1994, pp. 157–163.

[34] J. C. Harsanyi, “Games with incomplete information played by bayesian
players, part iii. the basic probability distribution of the game,” Manage-
ment Science, vol. 14, no. 7, pp. 486–502, 1968.

[35] L. Getoor and B. Taskar, Eds., Introduction to Statistical Relational
Learning. The MIT Press, 2007.

[36] R. Smullyan, First-Order Logic. Dover Publications, January 1995.
[37] C. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics), 1st ed. Springer, October 2007.
[38] S. Muggleton, “Stochastic logic programs,” in New Generation Comput-

ing. Academic Press, 1996.
[39] ——, “Learning stochastic logic programs,” in Proceedings of the

AAAI2000 Workshop on Learning Statistical Models from Relational
Data, vol. 5, 2000.

[40] M. Jaeger, “Relational bayesian networks,” in UAI-97 Proceedings,
Providence, Rhode Island, USA, D. Geiger and P. P. Shenoy, Eds. Morgan
Kaufmann, 1997, pp. 266–273.

http://arxiv.org/abs/1412.6564

12

[41] K. Kersting and L. D. Raedt, “Basic principles of learning bayesian
logic programs,” in Probabilistic Inductive Logic Programming - Theory
and Applications, ser. LNCS, L. D. Raedt, P. Frasconi, K. Kersting, and
S. Muggleton, Eds., vol. 4911. Springer, 2008, pp. 189–221.

[42] T. Sato and Y. Kameya, “Prism: a language for symbolic-statistical
modeling,” in IJCAI-97 Proceedings, vol. 97, 1997, pp. 1330–1339.

[43] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer, “Learning probabilistic
relational models,” in IJCAI-99 Proceedings, 1999, pp. 1300–1309.

[44] M. Jaeger, “Type extension trees: a unified framework for relational
feature construction,” in Proc. MLG-06, 2006.

[45] M. Jaeger, M. Lippi, A. Passerini, and P. Frasconi, “Type extension trees
for feature construction and learning in relational domains,” Artif. Intell.,
vol. 204, pp. 30–55, 2013.

[46] L. De Raedt, A. Kimmig, and H. Toivonen, “Problog: A probabilistic
prolog and its application in link discovery,” in IJCAI-07 Proceedings,
Hyderabad, India, M. M. Veloso, Ed., 2007, pp. 2462–2467.

[47] E. Shapiro and L. Sterling, The Art of PROLOG: Advanced Programming
Techniques. The MIT Press, 1994.

[48] P. Frasconi, F. Costa, L. D. Raedt, and K. D. Grave, “klog: A language
for logical and relational learning with kernels,” Artificial Intelligence,
vol. 217, no. 0, pp. 117 – 143, 2014.

[49] M. Diligenti, M. Gori, M. Maggini, and L. Rigutini, “Bridging logic and
kernel machines,” Machine Learning, vol. 86, no. 1, pp. 57–88, 2012.

[50] G. Gnecco, M. Gori, S. Melacci, and M. Sanguineti, “Foundations of
support constraint machines,” Neural Computation, vol. 27, no. 2, pp.
388–480, 2015.

[51] L. Getoor, “Tutorial on statistical relational learning,” in ILP 2005,
Bonn, Germany, Proceedings, ser. Lecture Notes in Computer Science,
S. Kramer and B. Pfahringer, Eds., vol. 3625. Springer, 2005, p. 415.

[52] J. Chen and S. Muggleton, “Decision-theoretic logic programs,” in
Proceedings of ILP. Citeseer, 2009, p. 136.

[53] A. Nath and P. Domingos, “A language for relational decision theory,”
in Proc. Int. Workshop on Statistical Relational Learning, Leuven, 2009.

[54] D. Poole, “The independent choice logic and beyond,” in Probabilistic
inductive logic programming. Springer, 2008, pp. 222–243.

[55] M. Richardson and P. Domingos, “Markov logic networks,” Machine
Learning, vol. 62, no. 1-2, pp. 107–136, 2006.

[56] F. Wu and D. S. Weld, “Automatically refining the wikipedia infobox
ontology,” in 17th international conference on World Wide Web, Pro-
ceedings, ser. WWW. New York, NY, USA: ACM, 2008, pp. 635–644.

[57] S. D. Tran and L. S. Davis, “Event modeling and recognition using
Markov logic networks,” in ECCV 2008 Proceedings. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 610–623.

[58] S. Kok and P. Domingos, “Extracting semantic networks from text
via relational clustering,” in ECML/PKDD 2008 Proceedings, Antwerp,
Belgium. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 624–639.

[59] M. Lippi and P. Frasconi, “Prediction of protein beta-residue contacts by
Markov logic networks with grounding-specific weights,” Bioinformatics,
vol. 25, no. 18, pp. 2326–2333, 2009.

[60] M. Lippi, M. Bertini, and P. Frasconi, “Collective traffic forecasting,” in
ECML/PKDD 2010 Proceedings, Barcelona, Spain, ser. Lecture Notes in
Computer Science, J. L. Balcázar, F. Bonchi, A. Gionis, and M. Sebag,
Eds., vol. 6322. Springer, 2010, pp. 259–273.

[61] D. Roth, “On the hardness of approximate reasoning,” Artificial Intelli-
gence, vol. 82, no. 1-2, pp. 273–302, 1996.

[62] H. Kautz, B. Selman, and Y. Jiang, “A general stochastic approach to
solving problems with hard and soft constraints,” 1996.

[63] W. R. Gilks, Markov Chain Monte Carlo in Practice. Chapman
Hall/CRC, 1995.

[64] H. Poon and P. Domingos, “Sound and efficient inference with proba-
bilistic and deterministic dependencies,” in AAAI Proceedings, Boston,
USA. AAAI Press, 2006, pp. 458–463.

[65] D. Poole, “First-order probabilistic inference,” in IJCAI-03 Proceedings,
Acapulco, Mexico, G. Gottlob and T. Walsh, Eds. Morgan Kaufmann,
2003, pp. 985–991.

[66] R. D. S. Braz, E. Amir, and D. Roth, “Lifted first-order probabilistic
inference,” in IJCAI-05 Proceedings, Edinburgh, L. P. Kaelbling and
A. Saffiotti, Eds. Professional Book Center, 2005, pp. 1319–1325.

[67] P. Singla and P. Domingos, “Memory-efficient inference in relational
domains,” in Proc. AAAI, Boston, USA. AAAI Press, 2006.

[68] R. Dechter, “Bucket elimination: A unifying framework for probabilistic
inference,” pp. 211–219, 1996.

[69] V. Gogate and P. Domingos, “Probabilistic theorem proving,” in Proc.
UAI 2011, Barcelona, Spain. AUAI Press, 2011, pp. 256–265.

[70] A. McCallum, “Efficiently inducing features of conditional random fields,”
in Proceedings of the Nineteenth Conference on Uncertainty in Artificial

Intelligence, ser. UAI-03. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2003, pp. 403–410.

[71] M. Biba, S. Ferilli, and F. Esposito, “Structure learning of Markov logic
networks through iterated local search,” in Proc. ECAI-08, ser. Frontiers
in Artificial Intelligence and Applications, M. Ghallab, C. D. Spyropoulos,
N. Fakotakis, and N. M. Avouris, Eds., vol. 178. IOS Press, 2008, pp.
361–365.

[72] T. N. Huynh and R. J. Mooney, “Discriminative structure and parameter
learning for Markov logic networks,” in Proc. ICML-08, Helsinki, Finland,
ser. ACM Int. Conf. Proceeding Series, W. W. Cohen, A. McCallum,
and S. T. Roweis, Eds., vol. 307. ACM, 2008, pp. 416–423.

[73] L. Mihalkova and R. J. Mooney, “Bottom-up learning of Markov logic
network structure,” in Proc. ICML-07, ser. ACM Int. Conf. Proceeding
Series, Z. Ghahramani, Ed., vol. 227. ACM, 2007, pp. 625–632.

[74] M. Thielscher, “A general game description language for incomplete
information games.” in AAAI, vol. 10. Citeseer, 2010, pp. 994–999.

[75] A. M. Smith, M. J. Nelson, and M. Mateas, “Ludocore: A logical game
engine for modeling videogames,” in Computational Intelligence and
Games (CIG), 2010 IEEE Symposium on. IEEE, 2010, pp. 91–98.

[76] J. Wang and P. Domingos, “Hybrid markov logic networks,” in Proc.
AAAI-08 - Volume 2. AAAI Press, 2008, pp. 1106–1111.

[77] M. Walker and J. Wooders, “Minimax play at Wimbledon,” American
Economic Review, vol. 91, no. 5, pp. 1521–1538, December 2001.

[78] T. Williams and J. Underwood, The science of hitting. Simon & Schuster,
1986.

[79] P.-A. Chiappori, S. Levitt, and T. Groseclose, “Testing mixed-strategy
equilibria when players are heterogeneous: The case of penalty kicks in
soccer,” The American Economic Review, vol. 92, no. 4, pp. 1138–1151,
2002.

[80] R. Axelrod and W. D. Hamilton, “The evolution of cooperation,” Science,
vol. 211, no. 4489, pp. 1390–1396, 1981.

[81] J. R. Quinlan and R. M. Cameron-Jones, “FOIL: A midterm report,” in
ECML-93 Proceedings, Vienna, Austria, ser. Lecture Notes in Computer
Science, P. Brazdil, Ed., vol. 667. Springer, 1993, pp. 3–20.

[82] H. Blockeel and L. De Raedt, “Top-down induction of first-order logical
decision trees,” Artificial intelligence, vol. 101, no. 1, pp. 285–297, 1998.

[83] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[84] P. Domingos and D. Lowd, Markov Logic: An Interface Layer for
Artificial Intelligence, 1st ed. Morgan and Claypool Publishers, 2009.

[85] A. Kimmig, S. Bach, M. Broecheler, B. Huang, and L. Getoor, “A short
introduction to probabilistic soft logic,” in Proc. NIPS Workshop on
Probabilistic Programming: Foundations and Applications, 2012, pp.
1–4.

Marco Lippi received the M.S. Laurea degree (cum
laude) in Information Engineering and the Ph.D. in
Computer and Automation Engineering from the
University of Florence in 2006 and 2010, respectively.
Currently, he is a post-doc fellow at the Department
of Informatics – Science and Engineering, at the
University of Bologna. He previously was a post-
doc fellow at the University of Siena, and a visiting
scholar at the Laboratoire d’Informatique Paris 6, Uni-
versité Pierre et Marie Curie, Paris. His work focuses
on machine learning and artificial intelligence, with

applications to the fields of bioinformatics, time-series forecasting, computer
vision and argumentation mining. He has been and currently is a member of
the program commitee in several international conferences and a reviewer for
many international journals. In 2012 he was awarded the “E. Caianiello” prize
for the best Italian Ph.D. thesis in the field of neural networks.

	Introduction
	Game theory
	Statistical Relational Learning
	Markov Logic Networks
	Inference
	Parameter learning
	Structure learning

	Game modeling with Markov logic
	Experiments
	Predicting serving direction in tennis matches
	Learning strategies in Iterated Roshambo
	Predicting opponent's hand in Texas Holdem poker
	Finding Nash equilibria and Pareto optimal solutions

	Conclusions and future work
	References
	Biographies
	Marco Lippi

