Semantic Web

Ing. Federico Chesani

Corso di Fondamenti di Intelligenza Artificiale M
Outline

1. Introduction
 a) The map of the Web (accordingly to Tim Berners-Lee)
 b) The current Web and its limits
 c) The Semantic Web idea

2. Semantic Information (a bird’s eye view)
 a) Semantic Models
 b) Ontologies
 c) Few examples

3. Semantic Web Tools
 a) Unique identifiers - URI
 b) XML
 c) RDF and SPARQL
 d) OWL

4. Semantic Web: where are we?
 a) Problems against the success of SW proposal
 b) Critics against SW
 c) Few considerations
 d) Few links to start with
The Web Map (by Berners-Lee)
About the content

Knowledge Representation

Semantic Web

Web
The Web 1.0 ...

• Information represented by means of:
 – Natural language
 – Images, multimedia, graphic rendering/aspect

• Human Users easily exploit all this means for:
 – Deducting facts from partial information
 – Creating mental associations (between the facts and, e.g., the images)

 – They use different communication channels at the same time (contemporary use of many primitive senses)
The Web 1.0 …

• The content is published on the web with the principal aim of being “human-readable”
 – Standard HTML is focused on how to represent the content
 – There is no notion of what is represented
 – Few tags (e.g. <title>) provide an implicit semantics but …
 • … their content is not structured
 • … their use is not really standardized
The Web 1.0 ...

We can identify the title by means of its representation (<h1>,) ...

... what if tomorrow the designer changes the format of the web pages?
The Web 1.0 …

• Web pages contain also links to other pages, but …
 – No information on the link itself …
 • ... what does a link represent?
 • ... what does the linked page/resource represent?
 – E.g.: in my home page there are links to other home pages …
 • Which ones link to colleagues?
 • Which ones link to friends?
The Web 1.0 ...

Actual Web = Layout + Routing

The problem: it is not possible to automatically reason about the data
The Web 1.0 ...

• We can see the Web as an immense *database*, every day queried by millions of users
 – Users access it through *search engines* and *keywords* ...
 – ... successfull search depends on many parameters
 • the “quality” of the indexing and search algorithm
 • the number of total pages that have been indexed
 • the (meta-)content of the pages
 – E.g.: google, US election in 2005, and the keyword “stupid”
The Web 1.0 ...

• The web is *global*
 – Any page can link to anything
 – Approximatively, anyone can publish anything on the web, about any topic
 • *Distribution* of the information
 • *Inconsistency* of the information
 • *Incompleteness* of the information
 – Some recent attempts to limit such freedom (with mixed results)
And the Web 2.0?

- Term referring to O’Reilly Media Web 2.0 Conference, 2004 (but no coined there).
- A new way of using the web (rather than technical advances)
- Roughly (but really roughly) speaking:
 - Possibility of user of *adding/sharing content* (without being web editors)
 - Strong, unpredictable (???) *social participation* (blogs, wikis, social networking, participation, youtube, folksonomies)
 - Possibility of *net-distributing applications* (hosted services, web services, cloud computing, web-office)
And the Web 3.0?

Ummh... Oooh...
Well... I am not really sure...

And recently I heard also of Web 4.0...
Semantic Web

Goal: “use” and “reason upon” all the available data on the internet automatically

How? By extending the current web with knowledge about the content (semantic information)
"The Semantic Web is about two things. It is about common formats for integration and combination of data drawn from diverse sources, where on the original Web mainly concentrated on the interchange of documents. It is also about language for recording how the data relates to real world objects. That allows a person, or a machine, to start off in one database, and then move through an unending set of databases which are connected not by wires but by being about the same thing."

SOURCE: W3C Semantic Web Initiative
Semantic Web

Principles SW would like to preserve:

• **Globality**
• **Information distribution**
• **Information inconsistency**
 – Content inconsistency
 – Link inconsistency
• **Information incompleteness**
 – ... of contents
 – ... of routing information (links)
Adding information about the content

Adding information is not enough

• Information should be structured (e.g., Linneo classification for the living world)
 – Ontologies?

• There is the need of some inference mechanism (e.g., sillogism, FOL, DL algorithm)
 – Logic?

• We should be able to infer new knowledge
 – We need the proofs that originated such new knowledge
Proof and Trust

We could exchange the proofs to ...
• ... justify new inferred knowledge
• ... overcome the definitory aspect of IT
• ... reason upon the trust...
SW – Applications?

SW is cross-domain (as ICT): standards and tools have application fields in every possible domain.

To cite some:
• Search engines
• Intelligent Assistant
• Database Integration
• Digital libraries (XMP Adobe)
• Web services and cloud computing (Semantic Web Services)
Applications

Document search

• Industries (mid-size and more) needs to index and easily access/retrieve all the documentation
 – GSA - Google Search Appliance
 • (2007 prices: $1,995 up to 50,000 docs, $30,000 up to 500,000 docs)
 • (2010 prices: not available, 2-3 yrs contract, depend on the number of indexed documents)
 – Microsoft Sharepoint Search Services/Server

• Vodafone Live! Mobile Portal based on RDF (SW)
 – For each download, 50% less pages accessed
 – 20% increment of downloaded stuff in 2 months (source: Ivan Herman, SW lead)
Applications
Other portals ...

• Sun’s White Paper and System Handbook
• Harper’s Online magazine – papers linked by means of an internal ontology
• Oracle - virtual press room
• Opera’s community site
• Yahoo! Food
• FAO's Food
• Nutrition and Agriculture Journal
Semantic Information
Semantic Models

How to represent semantic information?
• Which language?
• Which expressivity?
• Reasoning? What about performances?

At this point, Semantic Web meets the Knowledge Representation research field (from AI)
Semantic Web Architecture

- Self-desc. doc.
- Data
- Rules
- Logic
- Ontology vocabulary
- RDF + rdfschema
- XML + NS + xmschema
- Unicode
- URI
Semantic Models

- Semantic Models
- Taxonomies
- Thesaurus
- Conceptual Models
- Logic Theories
- Modal Logic
- First Order Logic
- Description Logic
- UML, OWL
- RDF
- RDFS
- XML
- DB Schemas
- XMLS
- Taxonomies
- XML
Semantic Models

• **Taxonomy**: a set of *terms, hierarchically organized*
 – Allows to represent that there are relations among terms ...
 – ... but does not permit to describe the nature of such relations
 – Tipically, father/child node relation
 – Search of a term is efficient only if you already know where to look for...
Semantic Models

An example of taxonomy we have to deal with: IEEE Computer Society Keywords

http://www.computer.org/portal/web/publications/acmtaxonomy, approximatively 1766 terms hierarchically structured ...

Category: Artificial Intelligence
Semantic Models

- **Thesaurus**: originally from linguistic research field, it is a set of terms together with (linguistic) relations among them:
 - Synonym
 - Hyperonyms
 - Hyponyms
 - Holonyms
 - Meronyms
 - ...

They address typical problems in natural language, such as ambiguity and redundancy

- WordNet (©Princeton University),
 http://wordnet.princeton.edu/
Semantic Model: thesaurus
Semantic Models

• Conceptual models: focused on a particular domain area. They specify:
 – Domain *entities*
 – Relations between the entities (properties and attributes)
 – Rules about classes, roles and relations
 – Inference mechanisms -> *Logic theories*!!!
An ontology is a formal, explicit description of a domain of interest

- Classes
- Semantic relation between classes (roles)
- Properties associated to a concept (e.g., restrictions)
- Logic (axioms, inference rules)
Ontologies – an example
Ontologies

An ontology is a formal, explicit description of a domain of interest

- They are a fundamental piece, independently of Semantic Web
- The issues are in the “subtle distinction of meaning”
- They have been a research field in AI since the beginning
Ontologies
Do we really miss them?

Crisis of dotCom market (2001)

Harvard Business Review, October 2001:

“Trying to engage with too many partners too fast is one of the main reasons that *so many online market makers have founndered.* The transactions they had viewed as simple and routine actually involved many *subtle distinctions in terminology and meaning*”
Ontologies

Do we really miss them?
Ontologies

XML is not enough?

“XML is only the first step to ensuring that computers can communicate freely. *XML is an alphabet for computers* and as everyone who travels in Europe knows, knowing the alphabet doesn’t mean you can speak Italian or French”

Business Week, March 18, 2002
Why ontologies?

• An ontology provides a structured model of a (business) domain
 – Solves term ambiguity
 – Clarifies/simplifies domain peculiarities

 – As a consequence, deep analysis and understanding of a (business) domain ...
 – ... high competitive advantage!
Ontologies

Few examples:
- Dublin Core, focused on documents
- WordNet
- Gene Ontology, genomic
- Protein Ontology, proteomics
- SnoMed, a very important ontology in the medical field

- 41 use case and examples available at http://www.w3.org/2001/sw/sweo/public/UseCases/
Semantic Web Tools
Recalling the Semantic Web Cake
A unique way for identifying concepts

• How to uniquely identified concepts?
 -> by means of a name system ...

• SW exploits an already available name systems, URIs (Uniform Resource Identifier)
 – By definition, URI guarantees unicity of the names
 – To each URI corresponds one and only one concept ...
 – ... but more URI can refer to the same concept!
 – NOTE: differently from the web, it is not necessary that to each URI corresponds some content!

Examples:
http://www.repubblica.it
federico.chesani@unibo.it
ISBN 88-7750-483-8
eXtensible Markup Language - XML

- Created for supporting data exchange between heterogeneous systems (hardware and software)
 - No presentation information
 - Human readable and machine readable
- Extensible, so that anyone can represent any type of data
- Hierarchically structured by means of tags
- An XML document can contain, in a preamble, a description of the grammar used in such document (optional) (self-describing document!!!)
- Very mature technology!
Resource Description Framework (RDF/RDFS)

- Standard W3C
- XML-based language for representing “knowledge”
- A design criteria: provide a “minimalist” tool
- Based on the concept of triple:

 `< subject, predicate, object>`

 `< resource, attribute, value>`

 - Some different representations (N3, Graph, RDF/XML)
RDF – Graph Representation

- A node for the subject
- A node for the object
- A labeled arc for the predicate

http://www.example.org/index.html has a creator whose value is John Smith
RDF – Graph Representation
RDF – XML Representation

```xml
<rdf:RDF
   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
   xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

   <contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
      <contact:fullName>Eric Miller</contact:fullName>
      <contact:mailbox rdf:resource="mailto:em@w3.org"/>
      <contact:personalTitle>Dr.</contact:personalTitle>
   </contact:Person>

</rdf:RDF>
```

I can query for the mailbox of Eric Miller, without knowing a priori if he uses mailbox or email ...

... if Eric Miller will change mailbox, search result will be coherent!
RDF - Examples

Empty Nodes
RDF – Examples

Bags/Sets
RDF – Expressive Power

RDF supports:

• **Types** (classes) by means of the attribute **type** (that assume as value an URI)

• Subject/object of a sentence can be also **collections** (bag, sequence, alternative)

• **Meta-sentences**, through **reification** of teh sentences (“Marco says that Federico is the author of web page xy”)
RDF Schema

- RDF can be intended also as a description of resource attributes and of the values of such attributes
- RDFS allows to describe classes and relations with other classes/resources
 - type
 - subClassOf
 - subPropertyOf
 - range
 - domain
RDF and E/R Models

• Many similarities with E/R models ...
 – ... RDF is more expressive
• RDF to be intended as the “E/R” for the web

• Relations in RDF are “first class entities”
• In RDF the list of properties of an entity is not:
 – A priori determined by the developer
 – Centralized (DB)
 • Consequence of the fact that any one can assert anything about any one else
RDF and Relational Databases

There is a direct mapping with relational db
• A record is viewed as a RDF node
• The name of a table column is viewed as rdf:propertyType
• The corresponding field value is intended as the value of the property
• RDF aims to integrate different databases with different underlying model
 – Traditional DBMS are optimized for creating new data models within the same db or within a restricted set of dbs
RDF Frameworks

- **JENA**, Java framework for representing and managing RDF statements

- **SPARQL**, Query language for RDF Repository, that supports graph navigation also to different/distributed rdf repositories
 - Agnostic w.r.t. Implementation
RDF Tools

Many tools already available ...
Only in the W3C wiki there are citations for:
• 25 Frameworks/reasoners
• 27 RDF Triple Stores

Have a look to
http://www.w3.org/2001/sw/wiki/Tools
RDFa

- RDFa is a specification for attributes to express structured data in XHTML.
- The rendered, hypertext content of XHTML is reused by the RDFa markup
 - publishers don't need to repeat significant data in the document.

Source: RDFa Primer
http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014/
RDFa

All content on this site is licensed under

 a Creative Commons License
.

This page has a relation of type license with the page at creative commons...

Source: RDFa Primer
http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014/
RDFa

...<div>
 <h2> The trouble with Bob </h2>
 <h3> Alice </h3>
 ...
</div>

Note the reference to the DC namespace, i.e. the Dublin Core initiative http://dublincore.org/

Source: RDFa Primer
http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014/
SPARQL

- SPARQL can be used to express queries across diverse data sources, whether the data is stored natively as RDF or viewed as RDF via middleware.
- SPARQL contains capabilities for querying required and optional graph patterns along with their conjunctions and disjunctions.
- Supports extensible value testing and constraining queries by source RDF graph.
- The results of SPARQL queries can be results sets or RDF graphs.

Source: SPARQL W3C Working group
http://www.w3.org/2001/sw/wiki/SPARQL
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
SPARQL

Data:

```html
<http://example.org/book/book1>
  <http://purl.org/dc/elements/1.1/title>
"SPARQL Tutorial" .
```

Query:

```sparql
SELECT ?title
WHERE {
  <http://example.org/book/book1>
    <http://purl.org/dc/elements/1.1/title>
    ?title .
}
```

Source: SPARQL W3C Working group
http://www.w3.org/2001/sw/wiki/SPARQL
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
Ontology Web Language (OWL 1.0)

- Standard W3C
- Based upon/extend RDF/RDFS
- Formal Semantics (*Description Logic Fragments*)
- Three level of expressivity/complexity
 - OWL Lite
 - OWL DL
 - OWL Full
OWL – Features

• **Classes (categories):** subClassOf, intersectionOf, unionOf, complementOf, enumeration, equivalence, disjoint

• **Properties (Roles, Relations):** symmetric, transitive, functional, inverse Functional, range, domain, subPropertyOf, inverseOf, equivalentProperty

• **Instances (Individuals):** sameIndividualAs, differentFrom, allDifferent
OWL Tools

• Many tools for OWL
 – Editors (19 listed at http://www.w3.org/2001/sw/wiki/Category:Editor)

• Quite often integrated in a comprehensive framework

A well known (but not necessarily the best one) ontology editor: Protégé http://protege.stanford.edu/
The Semantic Web Cake

- User Interface & Applications
- Trust
- Proof
- Unifying Logic
- Query: SPARQL
- Ontology: OWL
- Rule: RIF
- RDFS
- Data interchange: RDF
- XML
- URI/IRI

Crypto
Semantic Web: where are we?
Semantic Web – which problems?

• SW has been officially proposed in 2001 ...
• ... it has not transformed the web (yet!)
 – A lot of research about in the academic world
 – A bit less interest in the industrial world
 • Recently, some interest for Semantic Web Services
• Roughly speaking, “it is difficult to understand the benefits”
Semantic Web – which problems?

• RDF adoption
 – Adding semantic content is expensive
 – Until a critical mass of semantic content is available on the web
 ... SW tools fail to convince.
 – W3C answer: many proposals in such directions
 • *Gleaning Resource Descriptions from Dialects of Languages* – GRDDL
 • RDFa with HTML5

• Ontologies
 – To produce a new one is highly expensive and time-demanding
 – An ontology is “alive”, it changes in time
 • Updating costs
 • Managing costs
Semantic Web – critics?

• It cannot be done practically ... ?????
 – Metacrap problem
 – Wrong content (introduce with some bad purpose)

• Which use of the data?
 – Censorship problems & freedom
 – Privacy problems

• Data are already available on the web, it is sufficient to extract them
 – SW is not useful ????? But how to extract, and then represent data?
 – Mashups show some interesting results
Semantic Web – critics?

• Computationally expensive
 – ... but the adoption of a fragment of Description Logic is an answer
 – ... maybe we don’t need in every application all the expressive power...
Concluding...

• Semantic Web: adding semantic information to web resources (data and whatever)
• Big perspectives ...
• ... we start seeing the results after 9 years, but no revolution has been really achieved yet
Concluding...

• Instead of Semantic Web, we should use the term Data Web (Berners-Lee)
• From the focus on the reasoning ...
• ... to the data, and especially the re-use of a big amount of data already available in the web
Few considerations (personal) ...

• Who is responsible to add semantic content on the web?
 – Single users (authors)
 • Metacrap 😞
 • Folksonomies (e.g. flickr) 😊
 • Wikis 😊
 – Industry firms
 • They already have huge data collections, more or less organized ...
 • ... why they should share their knowledge?
 • Global market extremely hard and difficult... Knowledge is a key to competitive advantage in the Porter chain...
Few considerations (personal) ...

• Cultural issues ...
 – Not in all country there is such a desire of sharing information

• SW really appealing in a intra-business scenario

• Few doubts in a inter-business scenario
 – *Business secrecy, NDA, and other commercial practices*
 – Usually, a firm wants to have a complete control over its data
 • Which data to publish?
 • Who is using them (competitors?)
 • What are they doing with our data?
Few links to start with...

Official site W3C:

- http://www.w3.org/2001/sw/

Communities:

- http://www.semanticweb.org/
- http://www.websemantico.org/
Thanks for the attention

Questions?

Ing. Federico Chesani, Phd

c/o DISI– Facoltà di Ingegneria
Viale Risorgimento 2
40136 - Bologna
federico.chesani@unibo.it
Tel. 051 20 93086